
	

	 1	

Transcriptomic analyses reveal tissue-specific selection on genes related to apoptotic processes in 1	
the subterranean rodent, Ctenomys sociabilis 2	

 3	
 4	
 5	
Andrew Lang1+, Lauren Kordonowy1, Eileen Lacey2, Matthew MacManes1* 6	
 7	
1Department of Molecular, Cellular and Biomedical Sciences 8	
University of New Hampshire 9	
Durham, NH 03824 10	
1+al2025@wildcats.unh.edu 11	
1*Matthew.MacManes@unh.edu 12	
 13	
2 Museum of Vertebrate Zoology 14	
Department of Integrative Biology 15	
 16	
University of California, Berkeley 17	
Berkeley, CA 94706 18	
 19	
*Corresponding Author 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	
 32	
 33	
 34	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/256875doi: bioRxiv preprint 

https://doi.org/10.1101/256875
http://creativecommons.org/licenses/by/4.0/


	

	 2	

ABSTRACT 35	
Specialization for a subterranean existence is expected to impact multiple aspects of an organism’s 36	
biology, including behavior, physiology, and genomic structure. While the phenotypic correlates of life 37	
underground have been extensively characterized, the genetic bases for these traits are not well 38	
understood, due in part to the challenges of generating large, multi-locus data sets using traditional DNA 39	
sequencing strategies. To begin exploring the genomic architecture of adaptation to a subterranean 40	
existence, we generated high-quality de novo transcriptome assemblies for 8 different tissue types 41	
(hippocampus, hypothalamus, kidney, liver, spleen, ovary, testis, skin) obtained from the colonial tuco-42	
tuco (Ctenomys sociabilis), a group-living species of subterranean rodent that is endemic to southwestern 43	
Argentina. From these transcriptomes, we identified genes that are evolving more rapidly in the C. 44	
sociabilis lineage compared to other subterranean species of rodents. These comparisons suggest that 45	
genes associated with immune response, cell-cycle regulation, and heavy metal detoxification have been 46	
subject to positive selection in C. sociabilis. Comparisons of transcripts from different tissues suggest that 47	
the spleen and liver - organs involved in immune function and detoxification - may be particularly 48	
important sites for these adaptations, thereby underscoring the importance of including multiple tissue 49	
types in analyses of transcriptomic variation. In addition to providing an important resource for future 50	
genomic studies of C. sociabilis, our analyses generate new insights into the genomic architecture of 51	
functionally significant phenotypic traits in free-living mammals.  52	
 53	
INTRODUCTION 54	
Convergent traits provide critical opportunities to examine interactions between shared environmental 55	
challenges, selection, and the evolution of phenotypic and genotypic variation (Mares, 1975; Muschick, 56	
Indermaur & Salzburger, 2012; Parker et al., 2013). One well-characterized suite of convergent 57	
phenotypic traits occurs among subterranean rodents, which are defined by their tendency to spend 58	
virtually their entire lives in underground burrows (Nevo, 1979; Lacey & Patton, 2000). This designation 59	
encompasses more than 120 species representing 6 families and 3 suborders of rodents (Lacey & Patton, 60	
2000; Gardner, Wilson & Reeder, 2005). Shared physiological challenges associated with life 61	
underground include the high energetic costs of excavating burrows (Luna & Antinuchi, 2006; Zelová et 62	
al., 2011), hypoxia and hypercapnia (Lovegrove, 1986; Buffenstein, 2000), maintenance of circadian 63	
patterns of activity (Vasicek et al., 2005; Urrejola et al., 2005; Tomotani et al., 2012), and, at least in 64	
some habitats, exposure to heavy metals in soils (Lovegrove, 1986; De Vleeschouwer et al., 2014; 65	
Fernández-Cadena et al., 2014). While the convergent phenotypic processes associated with these 66	
challenges have been studied in some detail (Nevo, 1979; Buffenstein, 2000; Burda, Šumbera & Begall, 67	
2007), the genetic architecture underlying similar physiological responses to these challenges remains 68	
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largely unknown (but see Partha et al., 2017). Determining the proximate mechanisms (e.g., the genetic 69	
underpinnings) of adaptations enabling organisms to thrive in such an environment is critical to 70	
improving our understanding of how specializations for a subterranean existence arise and are maintained.  71	
 72	
The advent of high-throughput transcriptome sequencing has greatly facilitated efforts to relate patterns of 73	
gene expression to differences in phenotypic traits, including physiological processes such as metabolism 74	
(Devi et al., 2016) and water regulation (Kordonowy & MacManes, 2016; MacManes, 2017). This 75	
sequencing strategy has also been used to identify physiologically relevant regions of the genome 76	
undergoing positive selection (Zhang, Dyer & Rosenberg, 2000; Swanson et al., 2001; Brodsky et al., 77	
2005; Kosiol et al., 2008; Karn et al., 2008; Gardiner et al., 2008; Kong et al., 2011), thereby generating 78	
insights into the evolutionary bases for relationships between gene expression and specialization for 79	
specific phenotypic attributes. The marked examples of evolutionary convergence and divergence among 80	
burrow-dwelling mammal species offer an ideal opportunity to implement sequencing methods for 81	
exploration of the genomic bases for the functional and evolutionary consequences of a shared 82	
subterranean lifestyle.  83	
 84	
The colonial tuco-tuco (Ctenomys sociabilis) is a subterranean rodent that is endemic to Neuquen 85	
Province, Argentina (Tammone, Lacey & Relva, 2012). This species has been the subject of extensive 86	
research due to its unusual social system; while the majority of ctenomyids are thought to be solitary, C. 87	
sociabilis is group living, with burrow systems routinely occupied by multiple adult females plus, in 88	
many cases, a single adult male (Lacey, Braude & Wieczorek, 1997; Lacey & Wieczorek, 2004). In 89	
particular, this species has been studied with respect to not only to behavior, ecology and demography 90	
(Lacey, Braude & Wieczorek, 1997; Lacey, 2001; Chan & Hadly, 2011; MacManes & Lacey, 2012), but 91	
also neuroendocrinology (Beery, Lacey & Francis, 2008; Woodruff et al., 2013) and population genetic 92	
structure (Lacey, 2001; Hambuch & Lacey, 2002; Chan et al., 2005). Compared to other subterranean 93	
rodents for which transcriptomic data are available (Malik et al., 2011; Lin et al., 2014), C. sociabilis is 94	
phylogenetically, geographically, and behaviorally distinct, suggesting that this species is critical to 95	
efforts to examine the genomic impacts of adaptation to life underground.  96	
 97	
Here we present a high-quality annotated transcriptome generated from eight tissue types (hippocampus, 98	
hypothalamus, kidney, liver, spleen, ovary, testis, skin) obtained from C. sociabilis.  The use of multiple 99	
tissues has resulted in a particularly complete transcriptome for htis non-traditional study species. In 100	
addition to presenting this annotated assembly, we characterize each tissue type with regard to the most 101	
highly abundant transcripts, after which we compare patterns of expression across tissue types.  We then 102	
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conduct a comparative analysis of coding sequence evolution in C. sociabilis based on contrasts with 103	
single-tissue transcriptomes from seven other subterranean rodent species. In addition to highlighting the 104	
importance of tissue type in determining patterns of transcript abundance, our analyses generate important 105	
new insights into the genetic correlates of subterranean life.   106	
 107	
METHODS 108	
 109	
Sample collection, RNA Extraction & Library Preparation 110	
 111	
Tissue samples were obtained from two adult C. sociabilis (1 male and 1 female) that were members of a 112	
captive population of this species maintained at the University of California, Berkeley. The housing and 113	
husbandry of this population have been described previously (MacManes & Lacey, 2012; Woodruff et al., 114	
2013). The animals sampled were euthanized via overdose with Isoflurane followed by decapitation. The 115	
hippocampus, hypothalamus, kidney, liver, ovary, skin, and spleen were extracted from the female and 116	
the testes were extracted from the male. Each tissue type was placed in a cryotube containing RNAlater 117	
(Thermo Fisher Scientific, Waltham, MA) and then flash frozen with liquid nitrogen. The interval 118	
between euthanasia and flash freezing of tissues did not exceed five minutes. All tissue samples were 119	
stored at -80°C until they were sent to the Broad Institute (Cambridge, MA) for RNA extraction, cDNA 120	
library preparation, and 125bp paired-end sequencing on an Illumina 2500 platform. All procedures 121	
involving live animals were approved by the Berkeley Animal Care and Use Committee and were 122	
consistent with guidelines established by the American Society of Mammalogy for the use of wild 123	
mammals in research (Sikes, 2016). 124	
 125	
Tissue-Specific Transcriptome Assembly  126	
 127	
Tissue-specific Illumina reads (36-49 million paired-end reads per tissue) were obtained for each of the 8 128	
tissue types examined. For each tissue type, read quality was evaluated with SolexaQA++ v3.1.4 (Cox, 129	
Peterson & Biggs, 2010) and reads were corrected using Rcorrector v1.0.1 (Song & Florea, 2015). 130	
Adaptor sequences and reads falling below the quality threshold PHRED=2 were removed using 131	
Trimmomatic (Bolger, Lohse & Usadel, 2014), following the protocol of MacManes (2014). De novo 132	
transcriptome assemblies were generated using Trinity v2.1.1 (Haas et al., 2013). For each tissue type, 133	
two assemblies were generated – a khmer normalized (Crusoe et al., 2015) 100x coverage assembly and a 134	
non-normalized assembly. Digital normalization had no detectable effect on either the completeness or 135	
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the consistency of the resulting transcriptomes (Table S1) and thus all downstream analyses were 136	
conducted using assemblies generated from the non-normalized datasets. 137	
  138	
Compiled Transcriptome Assembly, Annotation and Analysis 139	
  140	
In addition to tissue-specific transcriptomes, read data from all tissue types were pooled to generate a 141	
single, merged transcriptome assembly.  We produced 12 alternative merged assemblies through 142	
combinations of read subsampling, transrate optimization, and merging algorithms. Each assembly was 143	
evaluated for quality using TransRate v1.0.1 (Smith-Unna et al., 2016), which generates both quality 144	
metrics and an optimized assembly. In addition, we evaluated each assembly for completeness using the 145	
Vertebrata database within BUSCO v1.1b1 (Simão et al., 2015). Based on these analyses, we selected the 146	
assembly with the highest quality and completeness.  The pipeline for producing this selected assembly is 147	
described below.   Because previous research has revealed that little information is gained from using 148	
datasets above 40M reads (MacManes, 2015), a random subset of 50 million paired-end reads were 149	
selected for analyses (seqtk v1.0-r82 (https://github.com/lh3/seqtk)) from  the entire dataset  (N= 339 150	
million reads). The subset of reads was assembled with both Trinity v2.1.1 and BinPacker (Liu et al., 151	
2016). The resulting two assemblies were merged into a single assembly using Transfuse v0.5.0 152	
(https://github.com/cboursnell/transfuse).  This merged assembly was optimized with TransRate to retain 153	
only highly-supported contigs.  The resulting assembly was annotated with dammit version 0.3.2 154	
(https://github.com/camillescott/dammit) and filtered to retain only annotated transcripts. 155	
  156	
Transcript Abundance and Gene Presence/Absence 157	
 158	
To generate measures of relative transcript composition across tissue types, the abundance of each 159	
annotated transcript in our tissue-specific assemblies was assessed using Kallisto v0.42.4 (Bray et al., 160	
2016). Transcripts with TPM (transcripts-per-million) values of less than 1 were determined to be absent 161	
from a given tissue (MacManes et al., 2017; MacManes & Lacey, 2012; MacManes & Eisen, 2014). 162	
Transcript presence/absence was compared across all tissues using the UpSetR package (Gehlenborg, 163	
2016), and the 10 most abundant genes were identified within each tissue.  164	
 165	
Comparative Analysis with Other Subterranean Taxa 166	
 167	
To compare patterns of gene evolution across multiple lineages of subterranean rodents, we downloaded 168	
Illumina RNAseq reads for 5 other subterranean species (Spalax carmeli, Bathyergus suillus, 169	
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Tachyoryctes splendens, Eospalax baileyi, Cryptomys hottentotus pretorian) from the NCBI Sequence 170	
Read Archive (accession numbers SRR2016467, SRR2141210, SRR214121, SRR931783, and 171	
SRR2141213, respectively). In addition, we downloaded mRNA datasets derived from whole genome 172	
sequencing projects for a sixth species of subterranean rodent (Heterocephalus glaber: Mole Rat genome 173	
v1.7.2 http://gigadb.org/dataset/100022) and for Mus musculus (Mus genome vGRCm38); the latter 174	
served as the outgroup for these analyses. These mRNA data sets were assembled following the Oyster 175	
River Protocol (http://oyster-river-protocol.readthedocs.io/, (MacManes, 2015)). Together with the 176	
transcripts for C. sociabilis generated here, this comparative data set encompassed 3 families of 177	
subterranean rodents (Ctenomyidae, Spalacidae, Bathyergidae), each of which represents a 178	
phylogenetically distinct origin of specialization for life in underground burrows. 179	
 180	
For each of the species in this comparative data set, coding sequences were identified using TransDecoder 181	
v3.0.0 (Haas et al., 2013). Orthologous relationships among these species (including the M. musculus 182	
outgroup) were identified using the output from BUSCO v2.0 and the associated database of mammalian 183	
sequences. The resulting groups of orthologous transcripts were then edited to include only single copy 184	
transcripts, which were then aligned using Prank v150803. Sequence alignments were refined using 185	
pal2nal v14 (Suyama, Torrents & Bork, 2006) and a gene tree was constructed using RAxML v8.2.8 186	
(Stamatakis, 2014). To explore potential evidence of selection on the genes included in our dataset, we 187	
used PAML v4.9a (Yang, 2007), with our gene tree as the phylogenetic framework.  Specifically, we 188	
tested for positive selection using the M7 versus M8 models in PAML. We then tested for evidence of 189	
lineage-specific selection using the PAML branch-site model with C. sociabilis as the foreground lineage. 190	
We controlled the false discovery rate for multiple comparisons following the procedure of Benjamini and 191	
Hockberg (1995). Genes determined to be under positive selection were then examined using the Gene 192	
Ontology Consortium Enrichment Analysis (http://geneontology.org/page/go-enrichment-analysis) tool to 193	
determine if these loci were grouped according to ontology terms. 194	
 195	
To explore potential tissue-specific patterns of gene expression among loci identified as being under 196	
positive selection in C. sociabilis, we imported gene expression count data generated by Kallisto into the 197	
R statistical package v3.3.0 (Team, R C, 2013). To allow comparisons across tissue types, we normalized 198	
count data using the TMM method (McCarthy, Chen & Smyth, 2012) as implemented in edgeR v3.1.4 199	
(Robinson, McCarthy & Smyth, 2010). For each transcript under positive selection, we identified the 200	
tissue for which the expression level was highest. These maximum count values were then normalized by 201	
dividing by the total number of genes expressed in that tissue; this procedure allowed us to identify 202	
tissues enriched for positively selected transcripts.   203	
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 204	
Data and Code Availability 205	
 206	
Sequence read files for this study are available on the NCBI Short Read Archive (PRJNA358281).  All 207	
code used in transcriptome assembly, annotation, analyses, and data visualization is freely available 208	
online at (https://github.com/macmanes-lab/tuco_manuscript and https://github.com/macmanes-lab/paml). 209	
The tissue-specific assemblies, as well as the final merged C. sociabilis transcriptome assembly are 210	
available on Dropbox (in fasta format), as are all annotation data files (in gff3 format) and kallisto 211	
transcript counts (https://www.dropbox.com/sh/jq98iderelxi9sm/AAAQG6Ex51sG9dcIrb8vK8gPa?dl=0). 212	
These files will be uploaded to Dryad upon acceptance of this manuscript for publication. 213	
 214	
RESULTS AND DISCUSSION 215	
 216	
Tissue-specific Transcriptome Assembly Analysis 217	
 218	
Individual tissue-specific transcriptome assemblies were 68-82% complete (mean= 75.87%), with 219	
TransRate scores ranging from 0.145 to 0.172 (Table S1). The TransRate optimized assemblies, which 220	
included only highly-supported transcripts, contained on average 7% fewer BUSCOs than the original 221	
assemblies. Due to this pronounced reduction in completeness, the TransRate optimized assemblies were 222	
not used for subsequent analyses.  While individual, non-optimized tissue-specific assemblies were of 223	
acceptable quality and completeness, they were notably inferior in quality and completeness to the 224	
compiled, transfused assembly described below.  225	
 226	
Compiled Transcriptome Assembly, Annotation and Analysis 227	
 228	
The most complete and highest quality assembly was generated from a 50 million read-pair subsample of 229	
the full dataset (Table 1). This assembly was annotated and all non-annotated transcripts were removed to 230	
produce the final assembly (annotation_only; Table 1). Removal of unannotated transcripts resulted in 231	
minimal reduction of TransRate and BUSCO scores but reduced the number of contigs by ~ 50%; the 232	
transcripts removed were likely artifacts of the assembly process (Moreton, Izquierdo & Emes, 2016) and 233	
thus this reduction was was not considered problematic. Reads from different tissue types mapped to the 234	
final transcriptome at a rate of 86-90% (Table 2). The final assembly contained 96,224 annotated 235	
transcripts, with 79,938 search matches to the Uniref90 database, 73,896 matches to OrthoDB 236	
(Waterhouse et al., 2013), 46,659 matches to PFAM, and 2,698 matches to RFAM (Griffiths-Jones et al., 237	
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2005). Of the 96,224 transcripts in this final assembly, 78,241 (81.3%) contained open reading frames 238	
(ORFs) and 53,711 (55.8%) contained complete ORFs, indicating that these transcripts included the entire 239	
protein-coding sequence for the associated locus. 240	
 241	
Comparative analysis with Other Subterranean Taxa 242	
 243	
Using the output from BUSCO, we identified 2,182 single-copy ortholog groups from the transcriptomes 244	
of seven subterranean rodent species and from Mus musculus. Of these, 1,951 (89.4%) were successfully 245	
aligned and analyzed via PAML software. Branch site analysis identified 50 transcripts as being under 246	
positive selection in the lineage leading to C. sociabilis; in contrast, only seven were identified using the 247	
site-model of positive selection. While the larger set of transcripts identified using the branch-site model 248	
for GO enrichment did not reveal statistically significant enrichment of GO terms for C. sociabilis genes 249	
under positive selection, it did reveal that many of the GO terms identified corresponded to processes of 250	
cell proliferation control, DNA damage response, immune response, and ion transport. These findings are 251	
intriguing in light of evidence suggesting that burrowing rodents may be exposed to heavy metals or other 252	
toxins in the soils that they inhabit (De Vleeschouwer et al., 2014; Fernández-Cadena et al., 2014) and 253	
recent studies characterizing the immunogenetics of subterranean rodents (Cutrera et al., 2010; Merlo, 254	
Cutrera & Zenuto, 2016; Novikov et al., 2016). Particularly exciting is the identification of transcripts 255	
involved in the control of cell proliferation, which has potential ties to susceptibility to cancer (Tian et al., 256	
2013).  257	
 258	
For each gene under positive selection, we identified the tissue in which it was most abundant (Figure 1). 259	
We then compared the number of positively selected genes per tissue to that expected under a random 260	
distribution of these loci across tissue types – that is we divided the 50 genes under positive selection by 261	
the number of tissues (N=8) sequenced and then normalized these values according to the overall number 262	
of genes expressed in each tissue. This analysis revealed a significantly higher representation of genes 263	
under positive selection in the spleen and liver (𝜒2test, p-values <0.05), an outcome that is perhaps not 264	

surprising given the functional roles of these tissues. Collectively, the preponderance of genes under 265	
positive selection in C. sociabilis that are associated with response to cell damage and immune response 266	
suggests that the environmental physiology of this species deserves further investigation.  267	
 268	
Transcript Abundance and Gene Presence/Absence 269	
 270	
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Filtering of transcripts to remove those for which TPM was less than 1 (Havens & MacManes, 2016; 271	
Kordonowy & MacManes, 2016) removed 5,722 (6.0%) of our annotated transcripts. Of the remaining 272	
90,502 transcripts, 21,602 (23.9%) were expressed in all of the tissue types examined. In contrast, 774 273	
(0.9%) of these transcripts were expressed in only a single tissue type. The distribution of these unique 274	
transcripts across tissue types was as follows: skin (N = 171), liver (N = 156), testes (N = 140), ovary (N 275	
= 93), spleen (N = 92), kidney (N = 77), hypothalamus (N = 23), and hippocampus (N = 22).  276	
 277	
Between 81% and 88% of reads mapped to the reference transcriptome. Visual representations of 278	
transcript overlap between tissue types are presented in Figures 2, S1, and S2.  The 10 most common 279	
transcripts unique to each tissue type are shown in Figure 3. While our data set did not allow a statistical 280	
comparison of levels of gene expression across tissue types, our assessments of transcript abundance per 281	
tissue type provide potential insights into the function of each tissue examined (Table S2). In particular, 282	
pairwise comparisons of transcript abundance revealed that tissues with similar functions tended to 283	
display similar suites of highly-expressed transcripts. For example, the two brain tissues examined – the 284	
hippocampus and the hypothalamus – shared the highest number of transcripts (5,200 out of 62,716 and 285	
66,421 transcripts, respectively). The two reproductive tissues examined – the testes and the ovary – had 286	
an overlap of 1,359 out of 66,876 and 67,251 transcripts, respectively. The spleen did not share many 287	
transcripts with other tissues; the greatest overlap in spleen transcripts was with the testes (400 of 66,876 288	
transcripts) and the ovary (298 of 67,251 transcripts). The kidney and liver, both associated with 289	
detoxification, shared 1,382 of 61,767 and 46,063 transcripts, respectively. Somewhat surprisingly, of the 290	
58,796 transcripts in the skin, this tissue shared 1,397 with the ovary, the largest transcript overlap of any 291	
other tissue with the skin. 292	
 293	
Tissue Characterization 294	
 295	
Each of the tissue types included in this study has been well characterized with respect to its function in 296	
mammalian biology. Accordingly, we examined whether functional differences between tissues were 297	
reflected in the identities of the most abundant transcripts unique to each tissue. We also assessed loci 298	
under positive selection, highlighting aspects we believe may be key factors associated with live in 299	
underground burrows. The functions of many of the most abundant transcripts that were unique to a given 300	
tissue type have been characterized as part of empirical studies, as described below: 301	
 302	
The hippocampus. The hippocampus is integrally involved in neurotransmission (Vianna et al., 2000; 303	
Shatz, 2009). In particular, the hippocampus has been studied with regard to spatial memory and 304	
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navigation (Bannerman et al., 2002; Eichenbaum, 2017) and as a site for for adult neurogenesis in the 305	
mammalian brain (Seri et al., 2001; van Praag et al., 2002). Among the transcripts that were uniquely 306	
abundant in the hippocampus in C. sociabilis were genes associated with regulating presynaptic density 307	
(Neurexin: NRXN1, TPM= 33.72) and synchronous firing of hippocampal pyramidal cells (Carbonic 308	
Anhydrase VII: CA7, TPM= 7.78) (Ruusuvuori et al., 2004; Kumar & Thakur, 2015).  Loci found to be 309	
under positive selection in the hippocampus include genes involved in cell cycle progression and tumor 310	
growth, such as BRCA1 Associated Protein 1 (BAP1) and Apoptosis Antagonizing Transcription Factor 311	
(AATF) (Bruno et al., 2002; Qin et al., 2015).  Both of these genes have been implicated in tumor 312	
suppression and cell growth inhibition, with BAP1 functioning by means of deubiquitinating host cell 313	
factor-1 (Machida et al., 2009) and AATF acting as an essential cofactor for the p53 gene (Bruno, Iezzi & 314	
Fanciulli, 2016).  315	
 316	
The hypothalamus. The hypothalamus has been implicated in multiple critical signaling pathways, such as 317	
the Hypothalamic-Pituitary-Adrenal (stress) and Hypothalamic-Pituitary-Gonadal (reproductive) axes in 318	
vertebrates (Hall et al., 2012; Clément, 2016).  Transcripts that were uniquely abundant in the 319	
hypothalamus tended to be directly involved in downstream signaling of  activities such as feeding and 320	
parental or sexual behaviors (Insulin Receptor Substrate 4: IRS4, TPM= 31.63) as well as formation of 321	
the diencephalon and prethalamic brain region (FEZ Family Zinc Finger 1: FEZF1, TPM= 24.65) 322	
(Numan & Russell, 1999; Shimizu & Hibi, 2009). Genes identified to be under positive selection, similar 323	
to those identified for the hippocampus, are implicated in the cell cycle. For example, Prostate Androgen-324	
Regulated Mucin-Like Protein 1 (PARM1) functions in prostate cell androgen dependence, has been 325	
linked to apoptotic mechanisms (Bruyninx et al., 1999), and may impart cell immortalisation (Cornet et 326	
al., 2003).   327	
 328	
The ovary. Ovarian function is highly regulated by hormonal signals that mediate cell proliferation and 329	
the production of viable ova (Verga Falzacappa et al., 2009).  Transcripts that were uniquely abundant in 330	
the ovary included an immunogene (Immunoglobulin Kappa Locus: IGK, TPM= 102.30) as well as genes 331	
involved in neuron development (NSMF, TPM= 50.20), and primordial follicle formation (Follistatin: 332	
FST, TPM= 23.87) (Brekke & Garrard, 2004; Palevitch et al., 2009; Kimura, Bonomi & Schneyer, 2011). 333	
Ovarian genes under positive selection (e.g., Nuclear Mitotic Apparatus Protein 1; NUMA1) tend to 334	
function in the structural components of cellular division and mRNA binding.  For example, Nuclear 335	
Mitotic Apparatus Protein 1 (NUMA1) interacts with proto-oncogene PIM1 during mitosis and regulates 336	
p53-mediated transcription (Bhattacharya et al., 2002).  337	
 338	
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The testis. Similar to the ovaries, testis function is regulated hormonally and results in the production of 339	
viable gametes (Alves et al., 2013; O’Shaughnessy, 2014). The uniquely most abundant testis transcripts 340	
included an antimicrobial defense immunogene  (Beta-defensin: DEFB118, TPM= 86.89), a transcription 341	
factor (PAS Domain Containing 1: PASD1, TPM= 45.73), and a gene unique to the testes that has not 342	
been fully characterized with regard to structure or function (P Antigen Family, Member 1: PAGE1, 343	
TPM= 44.62). Testicular genes under positive selection include known regulators of DNA damage (SprT-344	
Like N-Terminal Domain; SPRTN, Ring Finger and WD Repeat Domain 3; RFWD3) (Fu et al., 2010; 345	
Gong & Chen, 2011; Liu et al., 2011; Juhasz et al., 2012) and cell proliferation regulation (Dishevelled 346	
Segment Polarity Protein 3, DVL3) (Schlange et al., 2007). Thus, as in the ovary, active testicular genes 347	
were generally associated with immune response and cell replication.  348	
 349	
The skin. Not surprisingly, the majority of the most abundant transcripts that were uniquely abundant in 350	
skin were keratins (Keratin 71 Type II: KRT71 TPM= 5248.41, Keratin Associated Protein 3-1 Type II: 351	
KRTAP3-1 TPM= 1696.92, Kerain 83: KRT83 TPM= 941.12, Keratin 73 Type II: KRT73 TPM= 747.05, 352	
Keratin 85 Type II: KRT85 TPM= 495.35, Keratin type II cytoskeletal 5: KRT5 TPM= 446.98), the 353	
proteins that comprise the protective external layer for epithelial cells (Bragulla & Homberger, 2009; 354	
Deek et al., 2016). Highly abundant skin transcripts also include genes involved in muscle movement 355	
(Myosin Light Chain 1; MYL1 TPM= 345.10, Troponin T3; TNNT3 TPM= 190.25) (Periasamy et al., 356	
1984; Ling et al., 2010; Wei & Jin, 2016). Genes found to be under positive selection in skin have been 357	
associated with tumor suppression (UBS Domain Protein 1; UBXN1) (Wu-Baer, Ludwig & Baer, 2010) 358	
and repair of double-stranded DNA (Heterogeneous Nuclear Ribonucleoprotein U Like 1 (HNRNPUL1) 359	
(Polo et al., 2012).  360	
 361	
The kidney. Two well-documented functions of renal tissue are the transport of nutrients and the secretion 362	
of urine (Wang & Giebisch, 2009; Bobulescu & Moe, 2012). Consistent with this, uniquely abundant 363	
transcripts identified in the kidney included solute carriers SLC34A1 (TPM= 433.72) and SLC14A2 364	
(TPM= 114.25), which are involved in transport of nutrients and urea (Shayakul, Clémençon & Hediger, 365	
2013; Martovetsky, Bush & Nigam, 2016). Among those genes displaying signatures of positive selection 366	
in the kidney were Suppressor of Ty 3 (SUPT3), which binds p53 during DNA repair (Martinez et al., 367	
2001; Gamper & Roeder, 2008) and N-Myc Downstream Regulated 1 (NDRG1), which is involved in 368	
suppression of metastasis, particularly under hypoxic conditions (Salnikow et al., 2002; Mao et al., 2013).  369	
 370	
The spleen. Uniquely abundant transcripts in the spleen tended to encompass more functional diversity 371	
than transcripts identified for the other tissues sampled. Highly abundant spleen-specific transcripts 372	
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include proteins involved in nucleotide exchange (ARHGEF17, TPM= 137.25), erythropoiesis (EPOR 373	
TPM= 26.56, SPTA1 TPM= 21.82), and GTP hydrolysis (GBP6, TPM= 22.15), as well as at least one 374	
kinase (LIMK2, TPM= 10.09) that is associated with immune function (Bernard, 2007; Kim et al., 2011; 375	
Lutz et al., 2013; Ponceau et al., 2015; Kuhrt & Wojchowski, 2015). Both erythrocytic activity and 376	
immune function are consistent with the functional role of the spleen, which filters blood and recycles 377	
blood cells (Cesta, 2006; Scott & Olson, 2007; Droppelmann et al., 2013; Pivkin et al., 2016). 378	
Interestingly, the spleen was found to express more genes under positive selection than expected (Fig. 1), 379	
suggesting this tissue may be an active target for adaptation. Three of these genes (Sperm Associated 380	
Antigen 9; SPAG9, Cell Division Cycle 7; CDC7, and Zinc Finger CCCH-Type Containing 13; ZC3H13) 381	
have been previously characterized in humans. Upregulated in cancerous cells, SPAG9 is thought to be an 382	
early marker for diagnosis (Baser et al., 2013; Chen et al., 2014). Cell Division Cycle 7 is a DNA 383	
replication regulator, and can inactivate tumor suppressor protein p53 when CDC7 is overexpressed in 384	
tumor cells (Bonte et al., 2008; Ito et al., 2012).  Finally, ZC3H13 is a component of Wilms’ tumor 385	
associating protein, a splicing regulator potentially required for cell cycle progression (Horiuchi et al., 386	
2013).  387	
 388	
The liver. The primary functions of the liver are to produce blood coagulation hormones, detoxify blood, 389	
and to metabolize foreign substances (Cheeke, 1994; Wada, Usui & Sakuragawa, 2008; Davidson, 390	
Ballinger & Khetani, 2016; Schiöth et al., 2016; Harrall et al., 2016). The two genes that were most 391	
uniquely expressed in the liver were associated with these functions, specifically blood clotting 392	
(Fibrinogen Alpha Chain: FGA, TPM= 864.02), and drug toxin metabolism (Cytochrome P450 2A11: 393	
CYP2A11, TPM= 370.43) (Mosesson, 2005; Yang et al., 2012). Our results suggest that the liver, like the 394	
spleen, may also be an active site of adaptation given the number of genes found to be under positive 395	
selection in the liver was more than twice that expected by chance (Fig. 1). Of these genes, three are 396	
involved in metal ion transport (Solute Carrier Family 30 Member 10 [SLC30A10], Nedd4 Family 397	
Interacting Protein 2 [NDFIP2], and Family With Sequence Similarity 21 Member C [FAM21]) (Ohana et 398	
al., 2006; Yang et al., 2012; Shusterman et al., 2014; Gallon & Cullen, 2015; Lee, Chang & Blackstone, 399	
2016; Foot et al., 2016), while three others have ontology terms associated with immune response (Signal 400	
Peptide Peptidase Like 2A [SPPL2A: Biological Process- regulation of immune response], Ataxin 2 401	
[ATXN2: Biological Process - negative regulation of multicellular organism growth], SET Domain 402	
Containing 6 [SETD6: Biological Process- regulation of inflammatory response]). Given the roles that the 403	
spleen and liver play in immunological processes and the genes identified to be under positive selection in 404	
these tissues, it is possible that both the spleen and liver of the tuco-tuco are particularly involved in 405	
adaptation to the subterranean environment. 406	
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 407	
C. sociabilis is not the first subterranean rodent to provide evidence of possible adaptation to the 408	
regulation of cell cycling.  The naked mole-rat (H. glaber), has been the subject of numerous studies 409	
attempting to discern the source of the cancer resistance reported for this long-lived species (Buffenstein, 410	
2008; Rodriguez et al., 2011; Delaney et al., 2013).  Decreased prevalence of cancer in the naked mole rat 411	
has been attributed to a heightened sensitivity to contact inhibition (Seluanov et al., 2009) and fibroblast 412	
secretion of high-molecular-mass hyaluronan (Tian et al., 2013).  Studies have also suggested that the 413	
naked mole rat has increased translational fidelity due to a unique 28S ribosomal structure (Azpurua et al., 414	
2013).  More recently, cancer has been detected in this species (Delaney et al., 2016), although these 415	
examples were based on studies of captive mole-rats not exposed to the natural hypoxic environment for 416	
this species, an environmental setting that may have contributed to tumor formation (Welsh & Traum, 417	
2016).  Colonial tuco-tucos also presumably occur in hypoxic environments and it is possible that the 418	
fourteen apoptotic genes identified as being subject to positive selection in this species also have 419	
important regulatory functions in this setting. Gene ontology terms associated with cell cycling/DNA 420	
damage response genes comprised over 20% (12 genes of 50) of the genes identified as being under 421	
positive selection, with other gene ontology categories comprising a substantially smaller portion of the 422	
loci thought to be subject to selection. Collectively, these genes present important candidates for future 423	
studies of regulation of cell physiology in subterranean rodents.  424	
        425	
Future studies of C. sociabilis would benefit from quantifying differential gene expression across multiple 426	
individuals to provide a more robust quantitative assessment of tissue-specific patterns of gene 427	
expression. Of the highly abundant transcripts identified for each tissue type, many suggest a role in 428	
immune function while positively selected genes hint at specializations for cell cycle regulation. Both of 429	
these characteristics are seen across the different tissues samples for C. sociabilis. Expression patterns can 430	
vary greatly among individuals, and thus although our data set does not allow for statistical analyses  of 431	
patterns of gene expression in  C. sociabilis, our findings are consistent with those revealed by previous 432	
studies of  subterranean organisms. Expansion of our analyses to include multiple individuals, as well as 433	
additional taxa, will allow for a more comprehensive understanding of the genomic underpinnings of 434	
physiological adaptations to subterranean life. 435	
 436	
SUMMARY 437	
 438	
In this study, we present a high quality and complete transcriptome for the colonial tuco-tuco (C. 439	
sociabilis). By characterizing transcriptomes generated from eight tissue types, we provide preliminary 440	
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insights into how transcript abundance differs across tissues.  Notably, the most abundant transcripts and 441	
the genes subject to positive selection were generally consistent with the primary physiological 442	
function(s) of the tissues from which they were derived, with a prevalence of transcripts associated with 443	
cell proliferation. We also identify a set of genes that appear to be under positive selection; the number of 444	
genes subject to selection that were expressed in the liver and spleen were greater than expected, 445	
suggesting that these tissues are of particular functional importance to the colonial tuco-tucos. The 446	
underlying reasons for enhanced selection of genes in these tissues remains to be determined, providing 447	
an intriguing basis for additional studies of genomic evolution in C. sociabilis and other subterranean 448	
rodents. At the same time, given extensive field data regarding the behavior, ecology, and physiology of 449	
C. sociabilis, the transcriptomic data presented here represent a critical tool for future studies aimed at 450	
clarifying relationships among physiology, selection, and specialization for a subterranean lifestyle. 451	
 452	
 453	
 454	
 455	
 456	
 457	
 458	
 459	
 460	
 461	
 462	
 463	
 464	
 465	
 466	
 467	
 468	
 469	
 470	
 471	
 472	
 473	
 474	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/256875doi: bioRxiv preprint 

https://doi.org/10.1101/256875
http://creativecommons.org/licenses/by/4.0/


	

	 15	

Assembly 
Num. 
Reads 

Num. 
Contigs 

Assembly 
Size 

Transrate 
Score BUSCO Metrics 

good_compiled_50M_transfuse 50M 157996 240Mb 0.430 C: 88%, D: 64%, M: 8% 

annotation_only 50M 96224 227Mb 0.420 C: 88%, D: 64%, M: 8% 
 475	
Table 1. A comparison of assemblies utilizing metrics for quality and completeness. (Num. Reads = Number of 476	
Reads, Num. Contigs = Number of Contigs, Assembly size, TransRate score, and BUSCO Metrics: C = 477	
Complete, D = Duplicated, M = Missing BUSCOs). The good_compiled_50M_transfuse assembly was chosen for 478	
annotation, and the annotation_only assembly is the transcriptome we present as our finalized assembly. 479	
 480	

Tissue  
good_compiled_50M_transfuse Annotation_only 
% mapped % prop paired % mapped % prop paired 

hippocampus 87.51 80.28 85.18 78.51 
hypothalamus 86.40 79.10 83.98 77.29 
kidney 86.74 77.05 84.53 75.47 
liver 87.79 79.68 85.92 78.50 
ovary 84.59 74.62 81.57 72.42 
testes 85.24 77.00 82.86 75.32 
skin 85.82 73.42 83.37 71.71 
spleen 90.67 83.53 88.89 82.24 
Average 86.85 78.09 84.54 76.43 

 481	

Table 2. Burrows-Wheeler Aligner mapping statistics comparing the percent mapping and percent properly paired 482	
mapping rates of the annotated assembly (annotated good_compiled_50M_transfuse) and the final assembly 483	
(Annotation.only). 484	
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485	
Figure 1. Tissue-specific counts of the 50 positively selected genes detected, normalized by the total 486	
number of genes present in each tissue. Tissue types are indicated on the x-axis. Expected abundance of 487	
positively selected genes is depicted by light blue bars; observed abundance of positively selected genes 488	
is shown in dark blue. Asterisks denote statistically significant differences between expected and 489	
observed values (Chi-square tests, p < 0.05). 490	

 491	

Figure 2. Comparing transcript composition of the liver to other tissues. The x-axis depicts intersections 492	
between tissue types, and the y-axis is the log10 transformation of normalized transcript counts. The 128 493	
Intersection groups have been arranged to present groups with the highest transcript counts to the left, and 494	
lowest counts to the right.  Figures depicting transcript composition of the remaining tissues can be found 495	
in supplemental materials (Figures S1 & S2). 496	
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 497	

Figure 3. Ten most abundant unique transcripts for each tissue type. For each tissue type, the left column 498	
is the gene ID, while the right column contains the associated TPM values.     499	
 500	
 501	
 502	
 503	
 504	
 505	
 506	
 507	
 508	
 509	
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