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Background: Single-cell RNA sequencing (scRNA-seq) is an enabling technology for the study of cellular differentiation and
heterogeneity. From snapshots of the transcriptomic profiles of differentiating single cells, the cellular lineage tree that leads from a
progenitor population to multiple types of differentiated cells can be derived. The underlying lineage trees of most published datasets
are linear or have a single branchpoint, but many studies with more complex lineage trees will soon become available. To test and
further develop tools for lineage tree reconstruction, we need test datasets with known trees.

Results: PROSSTT can simulate scRNA-seq datasets for differentiation processes with lineage trees of any desired complexity,
noise level, noise model, and size. PROSSTT also provides scripts to quantify the quality of predicted lineage trees.

Availability: https://github.com/soedinglab/prosstt

Contact: soeding@mpibpc.mpg.de

1 Introduction

Recent advances in single-cell RNA sequencing (scRNA-seq) (Macosko, 2015; Klein et al., 2015) make it possible to generate
expression profiles for thousands of cells. Applications to study cellular heterogeneity are challenging traditional definitions of
cell types (Trapnell, 2015) and techniques are being scaled up for the Human Cell Atlas Project (Regev et al., 2017). Single-cell
transcriptomics is also pushing the study of cellular differentiation to a new, quantitative level. For example cellular lineage trees
can be reconstructed from snapshots of single-cell transcriptomes of cells caught at various stages of their differentiation process.
Organoids serve as particularly attractive, simple model systems (Camp et al., 2017). The change in gene expression along the
reconstructed trees gives us unprecedented, time-resolved data to quantitatively investigate the gene regulatory processes underlying
cellular development.

Various tree inference methods have been developed (Rostom et al., 2017). They order cells according to their pseudotime, i.e.,
to their progression along a developmental pathway. The progenitor population is at the root of the lineage tree, branchpoints in the
tree represent cell fate decisions, and endpoints represent differentiated cell states.

Lineage tree inference algorithms are indispensable for the analysis of scRNA-seq data. As more and more complex processes
are investigated, there will be a need to derive lineage trees of topologies more complex than linear or singly-branched ones. Also,
with various methods already published and more being developed, the need to quantify method performance is becoming more
pressing. With the available data, assessing method performance is challenging as there are no datasets with known ground truth,
i.e. data with known intrinsic developmental time and cell identity.

To address these needs we developed PROSSTT (PRObabilistic Simulation of Single-cell RNA-seq Tree-like Topologies), a
python package for simulating realistic sSCRNA-seq datasets of differentiating cells.

2 Model

PROSSTT generates simulated scRNA-seq datasets in four steps:

1. Generate tree: The topology of the lineage tree (number of branches, connectivity) and the length of each branch are read in
or, alternatively, sampled. The integer branch lengths give the number of steps of the random walk (see next point) and correspond
to the pseudotime duration (Fig. 1A (inset)).

2. Simulate average gene expression along tree: Gene expression levels are linear mixtures of a small number K (default: 10)
functional expression programs wy,. For each tree segment, we simulate the time evolution of expression programs by random walks
with momentum term (see Fig. 1A and Supplementary Material). The mean expression of gene g in tree branch b at pseudotime ¢ is
a weighted sum of the K different programs k: fi4(t,0) = Zszl wi(t, b)hi, g (Fig. 1B). The weights hy, 4 are drawn from a gamma
distribution (Supplementary Material, sections 6, 8).

3. Sample cells from tree: We offer three ways of sampling cells from a lineage tree, which impact the reconstruction difficulty:
(1) sampling cells homogeneously along the tree, (2) sampling centered diffusely around selected tree points and (3) sampling with
user-supplied density (Fig. 1C left, Supplementary Material, section 9).

4. Simulate UMI counts: We simulate unique molecular identifier (UMI) counts using a negative binomial distribution. First, a
scaling factor s,, for the library size is drawn randomly for each cell n (see section 7 in Supplementary Material). Following Griin et al.
(2014) and Harris et al. (2017), we make the variance 03 depend on the expected expression s, [g as aﬁg =y (snug)2 +By (snug). If
X, (t,b) = (21,22, ..., x) is a cell at pseudotime ¢ and branch b, the transcript counts are 4 (¢, b) ~ NegBin (s, ,(t,b),02/(t,b))
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Figure 1: PROSSTT models the single-cell RNA-seq transcriptomes of cells differentiating along a (user supplied or sampled) lineage tree. (A)
A small number of gene expression programs is simulated by random walk along each of the tree branches (number of steps = integer branch
length). Here, a double bifurcation is regulated by thee expression programs . (B) Relative expected gene expression pg4(t,b) is computed as
weighted sum of the expression programs with randomly sampled weights (here: gene g in branch 3). Expected expression values are obtained by
multiplying with a gene-dependent sampled scaling factor. (C) Cells are sampled from the tree as pairs of pseudotime ¢ and branch b. For each
pair, the corresponding average gene expression is retrieved and UMI counts sampled using a negative binomial distribution. Low-dimensional
representations of the resulting gene expression matrix are similar to those of real data (section 1, Supplementary Material) and capture the lineage
tree topology (diffusion map created with destiny, (Angerer et al., 2016)).

(Fig. 1C, right). For each of N cells and each of G' genes we draw the number of UMIs from the negative binomial, resulting in an
N x G expression matrix, which can serve as input for tree inference algorithms.

Users can specify the topology of the lineage tree, assign branch pseudotime lengths, adjust parameters for the gene expression
programs, and control the noise levels in the data. Default parameter values for a4, 34, and the base gene expression values were set
in the range of parameters of real datasets (Supplementary Material, sections 3 and 8).

3 Application

We generated 10 sets of 100 simulations each, for different degrees of topology complexity (from 1 up to 10 bifurcations). In another
study, we used this dataset to assess the performance of our tool MERLoT and other methods (Parra et al., 2018).

4 Conclusions

PROSSTT simulates scRNA-seq data for complex differentiation processes. Low-dimensional visualizations produced by tree
reconstruction tools resemble those of real datasets. Increasingly complex datasets with uncertain biological ground truth are
becoming available. PROSSTT can help the development of methods that can reconstruct such complex trees by facilitating their
quantitative assessment. Furthermore, the modular nature of the software allows for easy extensions, for example PROSSTT could
serve to test the influence of noise models and give biological insights into how to model and interpret sScRNA-seq data.
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