
   

Learning to read increases the informativeness of distributed ventral temporal responses 1 
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Abstract 1 

Becoming a proficient reader requires substantial learning over many years. However, it is 2 

unknown how learning to read affects development of distributed visual representations 3 

across human ventral temporal cortex (VTC). Using fMRI and a data-driven, computational 4 

approach, we quantified the development of distributed VTC responses to characters 5 

(pseudowords and numbers) vs. other domains in children, preteens, and adults. Results reveal 6 

anatomical- and hemisphere-specific development. With development, distributed responses 7 

to words and characters became more distinctive and informative in lateral but not medial 8 

VTC, and in the left but not right hemisphere. While development of voxels with both 9 

positive (that is, word-selective) and negative preference to words affected distributed 10 

information, only development of word-selective voxels predicted reading ability. These data 11 

show that developmental increases in informativeness of distributed left lateral VTC 12 

responses enable proficient reading and have important implications for both developmental 13 

theories and for elucidating neural mechanisms of reading disabilities. 14 
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Introduction 1 

Reading is a unique human ability that is learned. Each year, over a quarter of a billion 2 

children across the globe attend primary school (grades 1-6) whose central mission is literacy 3 

instruction. Reading entails visual processing of letters and words and associating these visual 4 

inputs with sounds and language. Thus, reading involves a network of brain regions involved 5 

in vision, audition, and language. As such, prior research has examined how learning to read 6 

affects white matter tracts of the reading network (Ben-Shachar, Dougherty, & Wandell, 7 

2007; Carreiras et al., 2009; Schlaggar & McCandliss, 2007; Wandell, Rauschecker, & 8 

Yeatman, 2012; Yeatman, Dougherty, Ben-Shachar, & Wandell, 2012) and the emergence of 9 

the visual word form area (VWFA, Ben-Shachar et al., 2011; Cantlon et al., 2011). The 10 

VWFA (Cohen et al., 2000; Dehaene, Le Clec’H, Poline, Le Bihan, & Cohen, 2002) is 11 

located within ventral temporal cortex (VTC), an anatomical expanse that processes high-12 

level visual information (Cohen et al., 2000; Dehaene et al., 2002; Grill-Spector & Weiner, 13 

2014; Hannagan, Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015; Rauschecker et al., 14 

2011). A separate body of research has shown that distributed responses across VTC have a 15 

characteristic pattern that represents the category of the visual input (Carlson, Tovar, Alink, & 16 

Kriegeskorte, 2013; Golarai, Liberman, & Grill-Spector, 2017; Haxby et al., 2001; 17 

Kriegeskorte, 2008). Indeed, independent classifiers can decode from distributed VTC 18 

responses the category of the viewed stimulus (Cox & Savoy, 2003; Grill-Spector & Weiner, 19 

2014; Weiner & Grill-Spector, 2010). However, it is unknown how learning to read during 20 

childhood affects the development of distributed representations of words and characters 21 

across VTC and if cortical development has behavioral ramifications.  22 

To address these gaps in knowledge, we examined three questions in school-aged 23 

children and young adults.  24 

(1) If and how does learning to read affect distributed responses across the VTC? We 25 

considered two main developmental hypotheses. One hypothesis predicts that learning to read 26 

leads to the emergence of new distributed representations of words across VTC. This 27 

hypothesis predicts that distributed VTC responses to words and characters will become more 28 

distinct and informative from childhood to adulthood. A second hypothesis predicts that 29 

distributed representations for words and characters in VTC may not be different across 30 

children and adults because both groups see characters in their natural environment. Thus, by 31 

the age of 5, distributed VTC representations to characters may be fully developed, as has 32 

been reported for other domains such as places and objects (Golarai, Liberman, Yoon, & 33 

Grill-Spector, 2010; Golarai et al., 2017).  34 

 (2) Is there anatomical specificity to the development of distributed VTC responses to 35 

words and characters? The theory of object form topography (Haxby et al., 2001) suggests 36 

that visual category information is obtained by distributed responses across the entire VTC 37 

(Carlson et al., 2013; Connolly et al., 2012; Cox & Savoy, 2003; Haxby et al., 2001; 38 

Kriegeskorte, 2008). This theory predicts no anatomical specificity within VTC to the 39 

development of distributed responses. In contrast, eccentricity bias theory (Hasson, Levy, 40 

Behrmann, Hendler, & Malach, 2002; Levy, Hasson, Avidan, Hendler, & Malach, 2001; 41 

Malach, Levy, & Hasson, 2002), suggests that reading requires fine-grain visual acuity 42 

afforded by foveal vision. This theory predicts that foveation on words during reading will 43 

lead to the development of word representations in cortical regions with a pre-existing foveal 44 

bias (higher responses to central than peripheral stimuli). In both children and adults regions 45 
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lateral to the mid-fusiform sulcus (MFS, Weiner et al., 2014) are foveally-biased (Hasson et 1 

al., 2002; Levy et al., 2001; Weiner et al., 2014) and regions medial to the MFS are 2 

peripherally-biased (Hasson et al., 2002; Levy et al., 2001; Weiner et al., 2014). Thus, 3 

eccentricity bias predicts that learning to read will lead to development of distributed 4 

responses in foveally-biased lateral VTC, but not peripherally-biased medial VTC. A third 5 

theory of domain specificity, suggests that visual processing of words is accomplished by a 6 

specific region, the VWFA, as (i) it responds significantly more strongly to characters than 7 

other stimuli (Dehaene et al., 2002), (ii) it is causally involved in processing words (Gaillard 8 

et al., 2006), and (iii) it shows developmental increases in response amplitude to letters and 9 

(pseudo)words (Ben-Shachar et al., 2011; Cantlon et al., 2011). Thus, domain-specificity 10 

predicts that learning to read will induce an even more anatomically-specific development of 11 

distributed responses restricted to just word-selective voxels rather than the entire lateral 12 

VTC. 13 

 (3) Does development of distributed VTC responses have behavioral ramifications? 14 

One possibility is that the development of distributed VTC responses improves reading 15 

ability, predicting a positive correlation between reading ability and information in distributed 16 

VTC responses to words and characters. If such a correlation exists, it would be critical to 17 

determine if anatomically-specific compartments of VTC predict reading ability. 18 

Alternatively, development of reading ability may depend on white matter connections 19 

between VTC with downstream areas (Gullick & Booth, 2015; Takeuchi et al., 2016; 20 

Yeatman et al., 2012) rather than distributed VTC responses. This alternative predicts no 21 

relationship between reading ability and development of distributed VTC responses.  22 

  To address these questions, we conducted fMRI in three age groups: 12 children 23 

(ages, 5-9 years; 11 female), 13 preteens (ages, 10-12 years; 6 female), and 26 adults (ages, 24 

22-28 years; 10 female). During scanning, participants viewed images of characters 25 

(pseudowords and uncommon numbers) and items from four other domains, each consisting 26 

of two categories (Figure 1a). Participants viewed both words and numbers to allow 27 

distinguishing if development is general to the domain of characters or is specific to words. 28 

We used pseudowords, which are enunciable but lack meaning, for two reasons: (i) to control 29 

for age-related differences in semantic knowledge and (ii) to control familiarity across 30 

domains, as items from other domains were also unfamiliar.  31 

To test developmental hypotheses, we measured distributed responses to items from 32 

each category in each of the medial and lateral VTC compartments and examined: (i) if there 33 

are age-related differences in the information and discriminability of distributed VTC 34 

responses to words and characters, (ii) if development of distributed responses shows 35 

anatomical specificity, and (iii) if development of distributed VTC response predicts reading 36 

ability. 37 

 38 

Results 39 

There were no significant differences across age groups in (i) motion during fMRI 40 

(Figure 1c, F(2,48)=2.67, p=0.08), (ii) the number of voxels in anatomical partitions of VTC 41 

(Figure 1d, all Fs≤0.86, ps>0.42, analysis of variance (ANOVA) with the factor age group) 42 

and (iii) the number of word-selective voxels (Figure 1e, all Fs≤0.71, ps>0.49, ANOVAs 43 
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with factor age group). These analyses show that data quality and the anatomical size of VTC 1 

is similar across age groups.  2 

 3 

 4 
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Does information of distributed VTC responses for characters, words, and numbers develop 1 

after age 5? 2 

We used a decoding approach to quantify if there are developmental changes either in 3 

decoding characters, words, or numbers from distributed VTC responses. Thus, we quantified 4 

using a winner-takes-all classifier three types of information in distributed VTC responses: (i) 5 

characters (pseudowords+numbers) vs. other domains (faces, places, objects, and body parts), 6 

(ii) pseudowords vs. the other nine categories (adult faces, child faces, houses, corridors, cars, 7 

guitars, bodies, limbs, Figure 1a), and (iii) numbers vs. the other nine categories.  8 

 9 

Results show that in all age groups, VTC partitions, and hemispheres, decoding 10 

character information was significantly higher than the 20% chance level (Figure 2a, all 11 

ps≤0.005). Notably, decoding character information significantly increased from age 5 to 12 

adulthood (Figure 2a, main effect of age group, F(2,48)=5.74, p=0.006, 3-way rmANOVA 13 

with factors of age group, VTC partition, hemisphere).  14 

Critically, this development was anatomically specific: character information was 15 

better decoded from multivoxel patterns (MVPs) across lateral VTC compared to medial VTC 16 
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(main effect of VTC partition, F(1,48)=113.58, p<0.001), and also better decoded from left 1 

than right hemisphere MVPs (main effect of hemisphere, F(1,48)=40.17, p<0.001, no 2 

significant interactions, all ps>0.066). The largest development was observed in left lateral 3 

VTC in which decoding of character information improved on average by 25% from age 5 to 4 

25. Specifically, decoding characters vs. other stimuli from left lateral VTC yielded an 5 

accuracy of 65%±6% (mean±SEM) in children, but reached a 90%±3% accuracy in adults 6 

(significantly higher than 5-9 year-olds, post-hoc t-test, t(36)=4.2, p<0.001, Figure 2a).  7 

In contrast to the development of character information, we did not find a significant 8 

development of information for the domains of bodies, objects, and places in VTC (Figure 9 

S1a). However, we found a significant development of face information in VTC, consistent 10 

with prior research (Golarai et al., 2017). Critically, decoding of domain information was not 11 

due to low-level features, as decoding domain information from VTC was significantly higher 12 

than from V1 (Figure S1b, main effect of ROI, F(2,72)=142.1, p<0.001, rmANOVA with the 13 

factors group and ROI (lateral VTC, medial VTC, V1) in a subset of subjects with V1 defined 14 

retinotopically (5-9 year-olds, n=8, 10-12 year-olds, n=12, 22-28 year-olds, n=19). Together, 15 

these analyses suggest that information about some domains is adult-like in VTC in 5-9 year 16 

olds, even as character information continues to develop. 17 

Surprisingly, analysis of pseudoword and number decoding revealed a differential 18 

development of word and number information across VTC partitions (Figure 2b, age group × 19 

character type × VTC partition interaction, F(2,48)=3.93, p=0.03, 4-way rmANOVA with 20 

factors of age group, character type, partition, hemisphere), as well as a differential 21 

development of word and number information across hemispheres (age group × character type 22 

× hemisphere interaction, F(2,48)=5.10, p=0.01).  23 

That is, pseudoword information specifically developed in the left lateral VTC, even 24 

as decoding pseudowords was significantly higher than chance in all age groups (all 25 

ps<0.003). Notably, decoding of pseudowords from left lateral VTC progressively increased 26 

from 40%±7% in 5-9 year-olds (significantly lower than adults, post-hoc t-test, t(36)=-2.95, 27 

p=0.006), to 55%±8% in 10-12 year-olds (significantly lower than adults, post-hoc t-test, 28 

t(37)=-2.72, p=0.01), to 78%±5% in 22-28 year-olds (Figure 2b - top left). This reflects an 29 

almost two-fold improvement in decoding word information from left lateral VTC from age 5 30 

to adulthood. In contrast, in the right lateral VTC decoding pseudowords was not significantly 31 

different across age groups and overall lower than left lateral VTC, averaging at an accuracy 32 

of 31%±4% (not significantly different across age groups, all ps>0.15, Figure 2b-top left). 33 

Additionally, there were no significant differences across age groups in decoding 34 

pseudowords from medial VTC (all ps>0.19, Figure 2b-bottom left), and performance was 35 

around 30% in the left hemisphere and only around 13% in the right hemisphere. 36 

In contrast to the development of word information, there was no significant 37 

development of number information in any partition or hemisphere (no significant effects of 38 

age group or interactions with age group, all Fs<1.03, ps>0.36, 3-way rmANOVA on number 39 

classification with the factors age group, partition, hemisphere). Indeed, number decoding 40 

averaged about 30%±4% across age groups, partitions, and hemispheres (Figure 2b-right). 41 

Additionally, there was no significant development of information for other categories in 42 

VTC, except for corridors (Figure S2). Thus, information in VTC for 8 out of 10 categories 43 

remained stable from childhood to adulthood. This provides evidence that the increased 44 
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information for pseudowords from lateral VTC responses is specific, and does not reflect a 1 

general developmental increase in category information across VTC. 2 

 Taken together, these analyses reveal two important findings. First, we find evidence 3 

for development of both character and word information in VTC. Second, the development of 4 

character information occurs across the lateral VTC in both hemispheres, but development of 5 

word information is largely restricted to left lateral VTC.  6 

 7 

Is the developmental increase in word and character information driven by changes in 8 

within-domain similarity or between-domain distinctiveness? 9 

We next sought to determine if development of word and character information is due 10 

to (i) an increase in the similarity between MVPs within the character domain, (ii) decrease in 11 

the dissimilarity (increase in distinctiveness) between MVPs of characters vs. other domains 12 

or (iii) increases in both within-character-domain similarity and between-domain 13 

distinctiveness. Similarity was estimated by computing the Pearson correlation coefficient 14 

between MVPs to different items from different runs.  15 

Results reveal three main findings. First, across age groups and VTC partitions, 16 

within-character-domain correlations between MVPs to pseudowords (w-w) and numbers (n-17 

n) were positive (Figure 3, ps<0.001), indicating that MVPs generalize to other items within 18 

the category. Second, crucially, within-character-domain similarity of word MVPs (w-w) and 19 

number MVPs (n-n) systematically increased from age 5, to age 12, to adulthood (main effect 20 

of age, F(2,48)=4.16, p=0.02, 4-way rmANOVA with factors age group, hemisphere, VTC 21 

partition, character type). Third, development of the reliability of pseudoword and number 22 

MVPs was anatomically heterogeneous. Development significantly varied across hemispheres 23 

and VTC partitions (significant age group × hemisphere × VTC partition interaction, 24 

F(2,48)=4.21, p=0.02), as well as across hemispheres and character types (significant age 25 

group × character-type × hemisphere interaction, F(2,48)=3.52, p<0.04, Figure 3,w-w/n-n).  26 

The largest development of within-character-domain similarity of MVPs occurred for 27 

pseudowords in left lateral VTC, as compared to pseudowords or numbers in medial VTC or 28 

the right hemisphere. Indeed, similarity between pseudoword MVPs in left lateral VTC 29 

increased from a median value of .19±.18 (median±interquartile range) in 5-9 year-olds to 30 

.44±.26 in adults (Figure 3a, w-w). In contrast, similarity between pseudoword MVPs in left 31 

medial VTC only increased from .07±.20 to .13±.13 from age 5 to adulthood (Figure 3c, w-32 

w), and the similarity of distributed responses to numbers in left lateral VTC, increased from a 33 

median of .12±.20 to .23±.20 from age 5 to adulthood (Figure 3a, n-n). In lateral VTC, 34 

pseudoword MVPs also became more similar to number MVPs from age 5 to adulthood 35 

(Figure 3, w-n, significant age group × VTC partition interaction, F(2,48)=9.33, p<0.001, 4-36 

way rmANOVA).  37 

 Evaluation of between-domain correlations revealed that in all age groups words and 38 

numbers generate MVPs that were distinct from items of other domains (Figure S3 shows the 39 

entire representational similarity matrix). Indeed the correlation between MVPs to words (or 40 

numbers) vs. items of other-domains were negative (Figure 3, w-nc/n-nc) and were 41 

significantly lower than the within-character-domain correlations (main effect of domain type, 42 

lateral VTC: F(1,48)=330.4, p<0.001; medial VTC: F(1,48)=157, p<0.001, rmANOVA with 43 

factors age group, hemisphere, domain type (within-domain/between-domain)).  44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 22, 2018. ; https://doi.org/10.1101/257055doi: bioRxiv preprint 

https://doi.org/10.1101/257055
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 1 

Notably, MVPs to both words and numbers became significantly less correlated (or 2 

more dissimilar) from MVPs to other domains from age 5 to adulthood (Figure 3, w-nc/n-nc, 3 

main effect of age, F(2,48)=4.57, p<0.02, 4-way rmANOVA with factors age group, VTC 4 

partition, hemisphere, character type). This developmental decrease of between-domain 5 

similarity of character MVPs vs. other domains varied across VTC partitions (significant age 6 

group × VTC partition interaction, F(2,48)=9.79, p<0.001) as well as hemispheres (significant 7 

age group × VTC partition × hemisphere interaction, F(2,48)=3.96, p=0.026). Between-8 

domain correlations significantly decreased in left lateral VTC, for both pseudowords and 9 

numbers (Figure 3a, w-nc/n-nc, both Fs≥6.07, ps≤0.005) and in right lateral VTC for 10 

numbers (Figure 3b, n-nc, F(2,48)=4.05, p=0.01).  11 

Together, these analyses reveal that the increase in word and character information in 12 

lateral VTC appears to be driven by both increases in within-character-domain similarity as 13 

well as increases in dissimilarity (distinctiveness) across domains. 14 
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Which voxels drive development of distributed responses for words and characters in lateral 1 

VTC? 2 

We observed that the largest development of word and character information is in the 3 

left lateral VTC. As the lateral VTC contains the visual word form area (VWFA), this raises 4 

the question whether the development of the VWFA, which responds more strongly to 5 

characters and words vs. the other domains, is what drives the development of word and 6 

character information in lateral VTC. Alternatively, it may be that development of the entire 7 

lateral VTC including non-selective voxels increases word and character information. 8 

To test these hypotheses, we examined classification performance separately for 9 

selective and non-selective voxels for pseudowords and characters within the lateral VTC, 10 

respectively. The first hypothesis predicts that information in selective voxels, but not non-11 

selective voxels will increase across development. The second predicts that information in 12 

both types of voxels will increase. Selective voxels were defined in each subject and 13 

hemisphere as in prior studies (Golarai et al., 2010; Golarai et al., 2017; Weiner & Grill-14 

Spector, 2010) as voxels that responded more strongly to the preferred stimulus compared to 15 

other stimuli. In our analyses, we separately considered voxels in lateral VTC that were word-16 

selective (pseudowords>non-words, t>3, voxel-level), and character-selective 17 

(pseudowords+numbers> non-characters, t>3, voxel level). Non-selective voxels were defined 18 

as the remaining lateral VTC voxels. We then examined if the WTA classifier can (i) classify 19 

word and character information from the selective and non-selective voxels and (ii) if there is 20 

differential development of information across the two voxel types. 21 

Results are consistent with the second hypothesis. First, significant development of 22 

word information occurred in both selective and non-selective voxels (main effect of age, 23 

F(2,42)=5.39, p=0.008, 3-way rmANOVA with factors of age group, hemisphere, voxel type 24 

(selective/non-selective), and no age group × voxel type interaction, F(2,42)=0.26, p=0.77) 25 

left hemisphere: Figure 4a; right hemisphere: Figure S4a). Second, similar results were 26 

obtained for character classification (Figure 4d, Figure S4d, main effect of age, 27 

F(2,47)=12.79, p<0.001 3-way rmANOVA with factors of age group, hemisphere, voxel type 28 

(selective/non-selective), and no age group × voxel type interaction, F(2,47)=2.13, p=0.13). 29 

However, conclusions from this analysis need to be considered with caution, as: (1) results 30 

may depend on the threshold used to define selectivity, (2) selective and non-selective voxel 31 

subsets are of vastly different set sizes (Figure 4a,d-legend), and (3) classification 32 

performance from these subsets is substantially lower than from all lateral VTC (Figure 4a,d, 33 

gray lines). Therefore, we sought to conduct a principled analysis that compares information 34 

in a systematic manner across threshold levels and percentage of lateral VTC voxels.  35 

First, we tested if selective voxels drive decoding performance using a flexible 36 

approach in which we systematically varied the threshold. Thus, we sorted each subject’s 37 

lateral VTC voxels based on their selectivity to words (descending t-value for the contrast 38 

pseudowords>non-words) and tested classification performance as a function of number of 39 

voxels. Second, we tested if discriminative rather than selective voxels drive decoding 40 

performance. We reasoned that not only voxels with positive selectivity to words, but also 41 

voxels with negative selectivity to words may be informative. Thus, we sorted each subject’s 42 

lateral VTC voxels based on their absolute t-value (i.e., either positive or negative preference 43 

to words) from the greatest to least in magnitude. 44 

 45 
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 1 

Analysis by word selectivity revealed that in all age groups, word classification 2 

performance gradually increased as more voxels with progressively lower word-selectivity 3 

were added. Additionally, at all thresholds, classification in adults was higher than in children. 4 

Performance in both hemispheres was maximal when all lateral VTC voxels were included 5 

(Figure 4b, Figure S4b). Maximal decoding of pseudowords was significantly higher in 6 

adults compared to children (Figure 4b, Figure S4b, main effect of age group, F(2,48)=5.34, 7 

p=0.008, 2-way rmANOVA with factors of age group, hemisphere on estimated maximum 8 
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decoding, voxels sorted by selectivity) in the left (Figure 4b), but not in the right hemisphere 1 

(Figure S4b, age group × hemisphere interaction, F(2,48)=6.55, p=0.003). 2 

Analysis by discriminability revealed that word classification from discriminative 3 

voxels yielded maximal performance using just ~35% of lateral VTC voxels (Figure 4c, 4 

Figure S4c). Across age groups and hemispheres performance plateaued for a range of 30-5 

60% of voxels. Including additional voxels reduced performance.  6 

Surprisingly, pseudoword classification from the entire lateral VTC was substantially 7 

lower than the maximal classification from the discriminative subset of voxels (all ps≤0.005, 8 

Figure 4c, Figure S4c). For example, in 5-9 year olds, maximal classification using 9 

36%±31% of discriminative voxels was 77%±6%, but performance dropped to 40%±7% 10 

using the entire left lateral VTC. The difference was even more pronounced in the right 11 

hemisphere: in 5-9 year olds maximal classification using 36%±21% of discriminative voxels 12 

was 64%±8%, but performance dropped to 32%± 8% for the entire right lateral VTC. The 13 

threshold of defining discriminative voxels (absolute t-value corresponding to the percentage 14 

of voxels that yielded maximal classification) did not differ significantly across age groups 15 

(no significant effect of age group, F(2,44)=0.15, p=0.86, 2-way rmANOVA on threshold 16 

absolute t-values with factors age group, hemisphere). 17 

 18 

Critically, classification of word information from discriminative voxels developed: 19 

decoding was significantly higher in adults compared to children (Figure 4c, Figure S4c 20 

main effect of age, F(2,48)=7.46, p=0.002, 2-way rmANOVA on maximum word 21 

classification with factors age group, hemisphere). However, there was no significant 22 

development of word information in the remainder of lateral VTC voxels after the 23 

discriminative voxels that achieved highest classification were removed (no significant effect 24 

of age group, F(2,44)=0.48, p=0.62, rmANOVA with factor age group, hemisphere on non-25 

discriminative voxels). Maximum classification from discriminative voxels was higher in 26 

adults compared to both 5-9 and 10-12 year-old children in both hemispheres (post-hoc t-27 

tests, all p<0.02). The number of discriminative voxels yielding maximal word classification 28 

differed across hemispheres in adults, but not in children (age group × hemisphere interaction, 29 

F(2,37)=5.05, p=0.01, 2-way rmANOVA). In adults, highest classification was achieved 30 

using 51%±29 of discriminative left lateral VTC voxels vs. 24%±17% of right lateral VTC 31 

voxels.  32 

We observed similar patterns of results when varying the percentage of character-33 

selective (Figure 4e, Figure S4e) and character-discriminative voxels from lateral VTC 34 

(Figure 4f, Figure S4f). In contrast, there were no significant differences across age groups in 35 

decoding number information from lateral VTC using either number-selective or number-36 

discriminative voxels (all Fs<1.5, ps>0.23, Figure S5).  37 

 38 

These analyses lead to a surprising insight: development of word information results 39 

from developmental increases in the distinctiveness of distributed responses to pseudowords 40 

as compared to other stimuli in lateral VTC. This suggests that both voxels with the strongest 41 

positive preference to pseudowords (and characters) and those with the most negative 42 

preference contribute to word information. However, voxels with no preference (either 43 

positive or negative to pseudowords) do not contribute to classification and in fact adding 44 

many of them decreases information.  45 

 46 

 47 
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Does word and character information in lateral VTC predict reading ability? 1 

We reasoned that if VTC development affects reading ability, participants with more 2 

informative representations (i.e., those whose VTC produced better classification) would also 3 

read better. Thus, we examined if there is a correlation between reading performance 4 

(assessed with the Woodcock Reading Mastery Test, WRMT) outside the scanner with word 5 

and character classification performance from distributed lateral VTC responses. The WRMT 6 

tests reading accuracy by scoring how many words or pseudowords of increasing difficulty 7 

subjects can read until they make 4 consecutive errors. 8 

 9 
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Consistent with our hypothesis, WRMT performance was significantly correlated with 1 

both character classification from left lateral VTC (r=.60, p<0.001; also significant after 2 

partialling out age, r=.36, p<0.03, Figure 5a) and word classification from left lateral VTC 3 

(r=.58, p<.001; after partialling out age r=.22, p=0.19). In contrast, there was no significant 4 

correlation between WRMT performance and either word or character classification from 5 

medial VTC in either hemisphere (rs≤.27, ps>0.1). There was also no significant correlation 6 

between WRMT performance and word classification in the right lateral VTC (r=.19, 7 

p=0.45), and the correlation between WRMT performance and character classification in right 8 

lateral VTC (r=.33, p<0.05), was not significant after factoring out age (r=-0.08, p=0.64). 9 

Together, these results suggest that development of character and word information in left 10 

lateral VTC correlates with reading ability. 11 

 12 

As our analyses of information in VTC reveal that discriminative voxels drive the 13 

development of character and word information in left lateral VTC, we next tested if 14 

discriminative voxels better predict reading performance than the remaining lateral VTC 15 

voxels. Results reveal that reading ability was significantly correlated with classification of 16 

characters based on the top 30% discriminative voxels (r=.67, p<0.001, also significant when 17 

partialling out age r=.52, p< 0.001, Figure 5b). In contrast, there was no significant 18 

correlation between WRMT and character classification of the non-discriminative lateral VTC 19 

voxels (r=.27, p=0.11, Figure 5c). Furthermore, the former correlation was significantly 20 

higher than the latter (Fisher transform, p=0.03). Likewise, WRMT was correlated with word 21 

classification based on the 30% left lateral VTC voxels which were most discriminative for 22 

pseudowords (r= .57, p<0.001; after partialling out age r=.28, p=0.1), but there was no 23 

significant correlation between WRMT and the left lateral VTC excluding these 24 

discriminative voxels (r=.27, p=0.11). 25 

Finally, we determined which of discriminative voxels, those with positive or those 26 

with negative preference, predict reading performance. Results indicate that WMRT 27 

performance was significantly correlated with classification from voxels with positive 28 

preference to characters (r=.67, p<0.001; significant after partialling out age, r=.44, p=0.007, 29 

Figure 5d), but not with those with negative preference (r=.14, p=0.44, Figure 5e). Similarly, 30 

WRMT performance was correlated with classification based on voxels with positive 31 

preference to words (r=.54, p<0.001, after partialling out age, r=.31, p=0.07), but not with 32 

those with negative preference (r=.25, p=0.15). In other words, reading ability is predicted by 33 

distributed information from voxels with positive preference (that is, are selective) to 34 

characters and words within the top 30% discriminative voxels. Critically, this relationship 35 

dissolves when these selective voxels are excluded. 36 

 In sum, these analyses reveal that development of a subset of voxels rather than the 37 

entire left lateral VTC, best correlates with reading performance. This suggests that 38 

development of reading ability is guided by neural development that is both anatomically 39 

specific (left lateral VTC) and functionally specific (discriminative voxels), and is largely 40 

driven by the word- and character-selective voxels. 41 

 42 

Discussion 43 

Reading is a complex process requiring years of practice until it is mastered. The 44 

present study investigated how learning to read during childhood affects the development of 45 

distributed representations of characters and words across VTC. Our study is the first to show 46 
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that distributed responses in left lateral VTC become more distinctive and informative after 1 

age 5, and crucially that this development is linked to reading ability. This conclusion is 2 

supported by 4 observations: First, character and word information in distributed VTC 3 

responses increase from age 5 to adulthood in an anatomical and hemispheric specific 4 

manner. The most prominent development occurs in left lateral VTC compared to right lateral 5 

VTC or medial VTC, bilaterally. Second, development of character information occurs even 6 

as information for the domains of bodies, objects, and places do not develop significantly, 7 

indicating a differential development of domain information in VTC (Golarai et al., 2007, 8 

2010; Golarai et al., 2017). Third, developmental increases in information regarding 9 

words/characters are due to development of distributed responses across the subset of 10 

discriminative word/character voxels within lateral VTC. Fourth, even as information in VTC 11 

develops in both voxels with positive and negative preference to characters/words, it is the 12 

development of selective voxels with positive preference that predicts reading ability. These 13 

findings have important implications for both developmental theories and understanding the 14 

neural bases of reading disabilities, which we detail below. 15 

Notably, the anatomical specificity of development of word/character information in 16 

distributed VTC responses is consistent with the predictions of the eccentricity bias (Malach, 17 

Levy, & Hasson, 2002) and graded hemispheric specialization theories (Behrmann & Plaut, 18 

2015). The former is supported by data showing that word information develops in lateral 19 

VTC, which shows a foveal bias in both children and adults (Weiner et al., 2014), but not in 20 

medial VTC, which shows a peripheral bias. The latter is supported by data revealing a more 21 

prominent development of word/character information in the left than right lateral VTC. 22 

According to this theory, when children learn to read, processing of letters and words depends 23 

more on the left hemisphere because of left lateralization of language areas in other parts of 24 

the brain which is present in infancy (Dehaene-Lambertz, Dehaene, & Hertz-Pannier, 2002). 25 

In our data, the 5-9 year olds do now show lateralization of information for characters, words, 26 

or numbers in VTC (Figure 2), and lateralization increases with age. This suggests the 27 

possibility that left-lateralized top-down influences of language areas (Behrmann & Plaut, 28 

2015; Dehaene-Lambertz et al., 2002), as well as white matter changes across development 29 

(Takeuchi et al., 2016; Yeatman et al., 2012), generate lateralized distributed representations 30 

within VTC in adulthood.  31 

Another novel aspect of our study is its data-driven, computational approach, which 32 

enabled us to quantify which voxels are informative and contribute to behavior. This approach 33 

revealed that (i) development of a subset of discriminative voxels within lateral VTC is what 34 

increases both word and character information from age 5 to adulthood, and (ii) 35 

discriminative voxels contain more information than the entire lateral VTC (Figure 4). These 36 

findings show for the first time that development of literacy affects a larger set of neuronal 37 

populations within VTC, not only just the VWFA (Ben-Shachar et al., 2011; Cantlon et al., 38 

2011; Dehaene et al., 2010). This finding has important implications for assessment of the 39 

neural bases of reading disabilities as it suggests that future investigations should consider 40 

examining functional differences and atypical development across VTC beyond the VWFA.  41 

Crucially, our results show that the amount of character and word information in 42 

lateral VTC predicts reading performance. First, within lateral VTC, discriminative voxels, 43 

but not the rest of lateral VTC, predict reading ability. Second, within the set of discriminative 44 
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voxels, information distributed across voxels with positive preference (i.e., selective voxels) 1 

rather than negative preference predicts reading ability.  2 

These findings have two important implications. First, our data advance understanding 3 

of the neural basis of reading ability by providing for the first time a neural mechanism 4 

explaining why reading ability improves. Notably we found that neural development is driven 5 

both by increased within-domain similarity of distributed responses as well as increased 6 

between-domain distinctiveness (Figure 3). Together these developments lead to increased 7 

information about words in the left lateral VTC, which, in turn, improves reading ability. 8 

Second, our innovative approach provides a new computational and data-driven 9 

method to assess which voxels (features) within distributed patterns contribute to behavior. 10 

By combing brain and behavioral measurements we show that distributed information across 11 

the subset of word/character selective voxels predicts reading ability even as distributed 12 

responses across a broader set of discriminative lateral VTC voxels shows substantial neural 13 

development. This observation highlights that information in distributed neural responses 14 

does not guarantee that it is behaviorally relevant. Importantly, our new approach can be 15 

applied broadly across the brain to evaluate the contribution of distributed responses to 16 

behavior, and resolves outstanding debates about the utility of MVPA for fMRI data (Dubois, 17 

de Berker, & Tsao, 2015; Norman, Polyn, Detre, & Haxby, 2006). Together, our data 18 

underscores that it is necessary to combine brain and behavioral measurements to understand 19 

the impact of distributed information on behavior, and provides empirical support for the 20 

domain-specific view that the left VWFA is critical for reading (Gaillard et al., 2006). 21 

Our data also generate new questions for future research. First, why does word 22 

information develop more than number information in lateral VTC even as both types of 23 

stimuli are learned during school years? It is possible that differences in holistic processing 24 

of words vs numbers underlie differences in development of distributed responses to these 25 

stimuli. For example, as an adult it is difficult for you not to read the entire pseudoword ‘Sib’ 26 

in Figure 1a; in contrast, you have likely processed separately each digit of ’1453’ in Figure 27 

1a to infer its quantity. Holistic processing of words may be accomplished via spatial 28 

integration by large and foveal population receptive fields (pRFs), in word-selective voxels in 29 

left lateral VTC, which continue to develop after age 5 (Gomez et al., 2018). However, if 30 

processing of numbers does not involve the same spatial integration as words, number pRFs, 31 

and in turn, distributed representations to numbers may show lesser development. 32 

Second, what features of word/character information develop? Does learning to read 33 

affect the tuning to characters, orthographic information, lexical information, and/or the 34 

tuning to the statistics of the language (e.g., bigram frequency, Binder et al., 2006; Vinckier et 35 

al., 2007; Glezer, Jiang and Riesenhuber, 2009; Taylor, Rastle and Davis, 2014)? This 36 

question can be addressed in the future using fMRI-adaptation (Grill-Spector et al., 1999; 37 

Natu et al., 2016; Nordt, Hoehl, & Weigelt, 2016). 38 

Third, how does the development of word/character information affect development of 39 

information to other categories? Our data show that as domain information for characters 40 

develops in VTC, there is no development of information for the domains of bodies, objects, 41 
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and places. However, consistent with prior research (Golarai et al., 2017) we found 1 

developmental increases in domain information to faces. One possibility is that development 2 

of face and word information occur in tandem, but are independent from each other. Another 3 

possibility, suggested by developmental theories (Behrmann & Plaut, 2015; Dehaene, Cohen, 4 

Morais, & Kolinsky, 2015) is that competition on foveal resources for faces and words, 5 

produces an interactive development across domains, resulting in the left lateralization of 6 

word information and the right lateralization of face information (Behrmann & Plaut, 2015; 7 

Dehaene et al., 2015). Future longitudinal research can examine if and how this competition 8 

may shape VTC responses. 9 

Finally, is there a critical period in which development of distributed patterns in VTC 10 

can occur, or is this flexibility maintained throughout the lifespan? Studies of people who 11 

gained literacy in adulthood show lesser changes in VWFA response amplitudes with literacy 12 

as compared with people who gained literacy as children (Dehaene et al., 2010, 2015). 13 

Additionally, research in non-human primates reveal that extensive symbol training leads to 14 

development of regions selective to trained symbols in juvenile, but not adult macaque 15 

monkeys (Srihasam, Mandeville, Morocz, Sullivan, & Livingstone, 2012). These data suggest 16 

that distributed representations to characters and symbols may be more malleable in 17 

childhood than adulthood. This hypothesis can be examined in future longitudinal 18 

investigations.  19 

 In sum, our data show that not only the amount of word information in VTC increases 20 

as children learn to read in an anatomical- and hemisphere-specific way, but also that this 21 

development is correlated with reading ability. These findings suggest that development of 22 

distributed responses to words and characters may be influenced both by foveal biases and 23 

interactions with left-lateralized language areas, consequently, they have important 24 

implications for both developmental theories and for understanding reading disabilities. 25 

 26 

Methods 27 

Participants 28 

66 participants including 20 children (ages 5-9 years), 15 preteens (ages 10-12 years), and 31 29 

adults (ages, 22-28 years) participated in this study. Data of 5 children, 1 preteen, and 5 adults 30 

were excluded because participants had motion values larger than 2.1 voxels in one or more 31 

of the three runs; data of 2 children were excluded because they completed less than 3 fMRI 32 

runs; and data from 1 child and 1 preteen were excluded because they fell asleep during fMRI. 33 

In total, we report data from 51 participants including 12 children (ages 5-9 years; 11 female), 34 

13 preteens (ages 10-12 years; 6 female), and 26 adults (ages, 22-28 years; 10 female). 35 

Participants had normal or corrected-to normal vision and were healthy and typical. The study 36 

protocol was approved by the Stanford Internal Review Board on Human Subjects Research. 37 

Adult participants and parents of the participating children gave written consent to study 38 

participation and children gave written assent. 39 

Participants underwent anatomical and functional MRIs. Prior to MRI, children were trained 40 

in a scanner stimulator. Children were invited to MRI sessions only after having successfully 41 

completed the scanner simulator training. After completion of MRIs, subjects participated in 42 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 22, 2018. ; https://doi.org/10.1101/257055doi: bioRxiv preprint 

https://doi.org/10.1101/257055
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

behavioral tests outside the scanner. Different measurements were performed on different 1 

days.  2 

MRI data acquisition 3 

MRI data were collected at the Stanford Center for Cognitive and Neurobiological Imaging 4 

using a 3T Signa scanner (GE Healthcare) and a custom-built phase-array 32-channel receive-5 

only head coil. 6 

Anatomical MRI 7 

Whole-brain, high-resolution anatomical scans were acquired using T1-weighted quantitative 8 

MRI (qMRI, Mezer et al., 2013), using a spoiled gradient echo sequence with multiple flip 9 

angles (α = 4, 10, 20, and 30°; TR=14 ms; TE=2.4 ms. Voxel size= 0.8mm × 0.8mm × 1mm, 10 

resampled to 1mm
3
 isotropic. Additionally, we acquired T1-calibration scans using spin-echo 11 

inversion recovery with an echo-planar imaging read-out, spectral spatial fat suppression, and 12 

a slab inversion pulse (TR=3 s, echo time=minimum full, 2×acceleration, inplane 13 

resolution=2 mm
2
; slice thickness= 4 mm).  14 

Functional MRI 15 

fMRI data were obtained with a multi-slice EPI sequence (multiplexing factor=3; 48 slices 16 

oriented parallel to the parieto-occipital sulcus; TR=1s; TE=30ms; flip angle=76°; FOV = 192 17 

mm; 2.4mm isotropic voxels; one-shot T2*-sensitive gradient echo sequence).  18 

fMRI 5 domain/10 category localizer 19 

Participants completed 3 runs of the fMRI experiment. Each run lasted 5 min and 24 s. During 20 

fMRI participants viewed images from five domains, each consisting of two categories: 21 

characters (pseudowords and numbers), faces (adult and child faces), bodies (headless bodies 22 

and limbs), objects (cars and guitars), and places (houses and corridors) as in our prior studies 23 

(Stigliani, Weiner, & Grill-Spector, 2015). Pseudowords are the same as in (Glezer et al., 24 

2009; Glezer, Kim, Rule, Jiang, & Riesenhuber, 2015) and have similar bi-gram and trigram 25 

frequency as typical English words. Images were grayscale and contained a phase-scrambled 26 

background generated from randomly selected images (Figure 1a). Images were presented at 27 

a rate of 2Hz, in 4s trials, and did not repeat. Image trials were intermixed with gray 28 

luminance screen baseline trials. Trials were counterbalanced across categories and baseline.  29 

Task: Participants were instructed to view the images as they fixated on a central dot, and 30 

press a button when an image with only the phase-scrambled background appeared. These 31 

images appeared randomly 0, 1, or 2 times within a trial.  32 

Data analysis  33 

Data were analyzed using MATLAB 2012b and mrVista (http://github.com/vistalab) as in 34 

previous publications(Gomez, Barnett, et al., 2017; Natu et al., 2016; Stigliani et al., 2015).  35 

Anatomical data analysis 36 

An artificial T1-weighted anatomy was generated from qMRI data using mrQ 37 

(https://github.com/mezera/mrQ). Brain anatomy was segmented into gray-white matter with 38 

FreeSurfer 5.3 (https://surfer.nmr.mgh.harvard.edu/), and manually-corrected to generate 39 

cortical surface reconstructions of each participant.  40 
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Anatomical definition of lateral and medial ventral temporal cortex 1 

Lateral and medial ventral temporal cortex (VTC) were individually defined on each 2 

participant’s inflated cortical surface in each hemisphere as in previous publications (Weiner 3 

& Grill-Spector, 2010) (Figure 1b). VTC definition: anterior border: anterior tip of the mid 4 

fusiform sulcus (MFS) which aligned with the posterior end of the hippocampus; posterior 5 

border: posterior transverse collateral sulcus (ptCoS); lateral VTC: extended from the inferior 6 

temporal gyrus (ITG) to the MFS; medial VTC: extended from the MFS to the medial border 7 

of the collateral sulcus (CoS). VTC ROIs were drawn by BJ, divided into the lateral and 8 

medial part by MN, and checked by KGS.  9 

fMRI data analysis 10 

Data were processed aligned to each participant’s native brain anatomy and were not spatially 11 

smoothed. We motion-corrected data within a run and then across runs. Subjects with 3 runs 12 

with motion < 2.1 voxels were included in the analysis. After exclusion of 8 children, 2 13 

preteens, and 5 adults, there were no significant differences in motion either within or 14 

between runs across age groups (Figure 1c). The time courses of each voxel were 15 

transformed into percentage signal change and a general linear model (GLM) was fit to each 16 

voxel to estimate the contribution of each of the 10 conditions.  17 

Multivoxel Pattern Analysis 18 

In each anatomical ROI, multivoxel patterns (MVPs) for each category were represented as a 19 

vector of response amplitudes estimated from the GLM in each voxel. These values were 20 

transformed to z-scores by subtracting in each voxel its mean voxel response and dividing 21 

by: √𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝐿𝑀 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
𝑑𝑓⁄  (df=degrees of freedom). To evaluate similarity between 22 

MVPs we calculated all pair-wise correlations between MVP pairs resulting in a 10x10 cross-23 

covariance matrix, referred to as representational similarity matrix (RSM, Kriegeskorte, 24 

2008). Each cell in the RSM reflects the average correlation among 3 permutations of MVP 25 

pairs (run 1&2, run 2&3, and run 1&3).  26 

Winner-take-all classifier 27 

To evaluate category information in MVPs we used an independent winner-take-all (WTA) 28 

classifier. We implemented two versions of the WTA classifier. The first, evaluated domain 29 

information (characters/faces/bodies/objects/places, chance level 20%). The second, evaluated 30 

category information (pseudowords, numbers, adult faces, child faces, headless bodies, limbs, 31 

cars, guitars, corridors, buildings, change level 10%). The classifier was trained in each 32 

subject and ROI with data from one run and tested how well it predicted the stimulus of 33 

interest the subject viewed from MVPs from each of the other two runs. This resulted in six 34 

training and testing combinations per condition. We averaged across these combinations for 35 

each subject, and then averaged across subjects of each age group.  36 

Information in selective and non-selective voxels in lateral VTC 37 

We compared classification performance in selective and non-selective voxels using two 38 

analyses (1) lateral VTC character-selective (words+numbers> faces, bodies, objects, places, 39 

t>3, voxel level) vs. the remaining voxels, which we refer to as non-character-selective 40 

voxels, and (2) lateral VTC word-selective (words > numbers, faces, bodies, objects, places, 41 

t>3, voxel level) vs. the remaining voxels which we refer to as non-word-selective voxels.  42 
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Information in systematically increasing proportions of lateral VTC voxels 1 

We tested how the number of voxels within lateral VTC voxels affects classification in two 2 

analyses using different voxel sortings. Analyses were performed for both word classification 3 

and character classification as described above. Sorting 1: voxels were sorted by selectivity– 4 

from highest to lowest t-value for the relevant contrast. Sorting 2: voxels were sorted by 5 

distinctiveness– from highest to lowest absolute t-value for the relevant contrast. After sorting 6 

of voxels, analyses were identical: We calculated classification performance for increasing 7 

portions of lateral VTC voxels according to each sorting, starting with 10% of voxels, 8 

increasing by increments of 10%, up to all voxels. 9 

To compare classification across age groups, we fitted each subject’s classification 10 

performance as a function of number of voxels a quadratic function, then determined its 11 

maximum. Statistical analyses determined if the maximal classification significantly varied 12 

across age groups using rmANOVAs on the estimated classification maxima. Due to 13 

numerical fitting, the estimated maximum could exceed 100% even as classification 14 

performance cannot exceed 100%. Thus, we performed a control analysis in which we 15 

rectified the maximum value to 100%. Results did not significantly differ from the original 16 

analysis.  17 

Assessing reading ability 18 

A subset of 7 children, 11 preteens, and 19 adults also completed the word identification and 19 

word attack tests from the Woodcock Reading Mastery Test (WRMT) outside the scanner. In 20 

the word identification task, participants were instructed to read a list of words as accurately 21 

as possible. In the word attack task, were instructed to read a list of pseudowords as 22 

accurately as possible. Tests do not have a time limit, but end when the participant makes four 23 

consecutive errors or has completed reading the list.  24 

Reading score: 100
𝑤𝑜𝑟𝑑𝑠 𝑟𝑒𝑎𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠
 25 

Relating reading ability to word and character information in VTC  26 

We measured if there was a significant correlation between participant’s reading ability as 27 

measured by the WRMT and information in lateral VTC. Correlations were measured 28 

between each reading test score (word identification/word attack test) and each classification 29 

(character/ word) from lateral VTC. Significant correlations were followed with a subsequent 30 

analysis in which age was included as a factor. We report if correlations remained significant 31 

if age is partialled out of the correlation. 32 

Since analyses of information in lateral VTC revealed that a subset of voxels in VTC 33 

contribute to either character or word information, we performed correlation analyses between 34 

reading and subsets of lateral VTC voxels: (1) entire lateral VTC, (2) 30% of most 35 

discriminative lateral VTC voxels, which yielded best word classification (Figure 4), and (3) 36 

the remaining nonword-distinctive lateral VTC voxels (Figure 4). The same analyses were 37 

done for 30% of lateral VTC voxels that where most discriminative for characters (Figure 4, 38 

Figure S4). We evaluated if the correlations in (2) and (3) were significantly different and 39 

within (2) if information in most or least selective voxels correlated with reading ability.  40 

 41 

 42 
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Statistical analyses 1 

Unless otherwise noted, statistical analyses included the whole sample (5-9, n = 12; 10-12, n 2 

= 13; 22-28, n = 26). Statistical analyses were done using MATLAB 2015a. Outliers in 3 

boxplots are defined as values that were more than 1.5 times away from the interquartile 4 

range from the top or bottom of the box and are indicated by black dots.  5 

In analyses related to Figure 1c we tested if age groups differed significantly in the amount of 6 

motion during scanning using a repeated measures analysis of variance (rmANOVA) with 7 

factors of age group (5-9/10-12/22-28) and motion type (within-run motion, between-run 8 

motion). Similarly, in analyses related to Figure 1d we tested in each partition (lateral VTC, 9 

medial VTC) if there were statistically significant between group differences in the number of 10 

voxels using ANOVAs with the factor age group (5-9/10-12/22-28). The same procedure was 11 

applied for analyses related to Figure 1e, in which we tested the statistical significance of the 12 

number of word-selective voxels across groups. 13 

In analyses related to Figure 2 we first tested if classification performance for characters was 14 

significantly different from chance level (20%) in each age group using one-sample t-tests. 15 

Next, we tested for significant differences in classification performance using a 3-way 16 

rmANOVA with factors of age group (5-9/10-12/22-28), partition (lateral VTC/medial VTC), 17 

and hemisphere (left/right). Similar analyses were run for classification performance for 18 

character types, i.e. for pseudoword and number classification. Here, classification 19 

performance was tested against the chance level of 10%. Significant differences in decoding 20 

performance were tested using a 4-way rmANOVA with factors of age group (5-9/10-12/22-21 

28), character type (numbers/pseudowords), partition (lateral VTC/medial VTC), and 22 

hemisphere (left/right). To follow up on significant interactions between character type and 23 

age group we conducted separate 3-way rmANOVAs on number and pseudoword 24 

classification with factors of age group (5-9/10-12/22-28), partition (lateral VTC/medial 25 

VTC) and hemisphere (left/right). To further follow up on the significant effect of age, we 26 

directly compared classification performance for words across age groups using post-hoc t-27 

tests. 28 

In analyses related to Figure 3 we first tested if the mean within-domain correlations for 29 

pseudowords and numbers across partitions and hemispheres were significantly different from 30 

zero using one-sample t-tests. Next, we tested for significant differences of correlations using 31 

3 rmANOVAs. The rmANOVAs tested correlations (i) within the domain of characters (w-w; 32 

b-n) with factors of age group (5-9/10-12/22-28), partition (lateral VTC/medial VTC), 33 

hemisphere (left/right), and character type (w-w/n-n), (ii) across character types (w-n), with 34 

factors of age group (5-9/10-12/22-28), partition (lateral VTC/medial VTC), and hemisphere 35 

(left/right) and (iii) between-domains (w-nw; n-nn) including the factors of age group (5-9/10-36 

12/22-28), partition (lateral VTC/medial VTC), hemisphere (left/right), and character type (w-37 

nw/n-nn). Furthermore, we tested for each character type in each partition and hemisphere if 38 

there was a significant effect of age group (1-way ANOVAs with the factor of age group (5-39 

9/10-12/22-28)) to follow up on significant interactions revealed in rmANOVAs measured 40 

above. Significant effects of age are shown in Figure 3 with asterisks.  41 

In analyses related to Figure 4a we tested differences in word classification in lateral VTC in 42 

word-selective and non-selective voxels using a 3-way rmANOVA with factors of age group 43 

(5-9/10-12/22-28), hemisphere (left/right), and voxel type (selective/non-selective).  44 
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In analyses related to Figure 4b we compared the estimated maximal classification 1 

performance by populations of voxels sorted by selectivity using a 2-way rmANOVA with 2 

factors of age group (5-9/10-12/22-28) and hemisphere (left/right). Same analyses were 3 

conducted on classification performance on voxels sorted voxels by distinctiveness for the 4 

data shown in Figure 4c. Corresponding analyses were performed for character classification 5 

in character-selective and non-selective voxels in Figure 4d-f. We further tested if word 6 

information developed also in the remainder of non-selective/non discriminative voxels. Thus, 7 

we ran an additional rmANOVA with factors of age group (5-9/10-12/22-28) and hemisphere 8 

(left/right) on word decoding in the remaining voxels (i.e. the lateral VTC voxels except the 9 

set of voxels which generated the maximal classification). In four subjects, classification 10 

performance was identical for all voxel set sizes exceeding 10% of the lateral VTC. For these 11 

subjects, we included the minimal set (10% of voxels) as the ones achieving maximal 12 

classification, and tested classification in the remaining 90% of voxels. 13 

In analyses related to Figure 5 we tested if reading scores (WRMT) are correlated with 14 

classification performance for words and/or characters by calculating the Pearson correlation 15 

coefficient between these values and their significance. If correlations were found to be 16 

significant, we performed an additional partial correlation analysis to control for the effect of 17 

age. We also tested if correlations between reading scores and classification in different 18 

subsets of lateral VTC voxels (30% of most discriminative lateral VTC voxels vs the 19 

remaining non- discriminative lateral VTC voxels) differed significantly using 20 

(http://quantpsy.org/corrtest/corrtest2.htm), which includes converting the correlation 21 

coefficients into z-scores using Fisher's r-to-z transformation. 22 

Analysis of V1 MVPs 23 

V1 was defined using data from a separate retinotopic mapping experiment. A subset of 24 

participants comprising 8 children ages 5-9, 12 children ages 10-12, and 19 adults took part in 25 

a retinotopic mapping experiment using black and white checkerboard bars (width = 2
o
 of 26 

visual angle, length = 14
o
) which changed contrast at a rate of 2Hz, that swept across the 27 

screen. During retinotopic mapping subjects were instructed to fixate on a central stimulus 28 

and perform a color exchange task. Subjects’ fixations were monitored with an eye tracker. 29 

Checkerboard bars swept the visual field in 8 different configurations in each run (4 30 

orientations: 0
o
, 45

o
, 90

o
, 135

o
, each orientation was swept in 2 directions that were 31 

orthogonal to the bar). Same as (Dumoulin & Wandell, 2008; Weiner & Grill-Spector, 2011). 32 

We used checkerboard stimuli as they are the most ubiquitous stimuli that is used for 33 

population receptive field (pRF) mapping, and do not require cognitive processing that may 34 

differ across age groups. Subjects participated in 4 such runs, each run lasted 3 minutes and 35 

24 seconds. Retinotopic data were collected on the same scanner as the main experiment and 36 

at the same resolution, with a 16-channel surface coil, acceleration factor x 2, and 28 slices. 37 

After fitting the pRF model (Dumoulin & Wandell, 2008) with a compressive spatial 38 

summation (Kay, Winawer, Mezer, & Wandell, 2013) in each voxel, maps of pRF phase and 39 

eccentricity were projected onto an the inflated cortical surface of each subject’s brain. V1 40 

was defined in each hemisphere as the visual field map containing a hemifield representation 41 

in which the horizontal meridian occupied the calcarine sulcus, the lower vertical meridian 42 

occupied the upper lip of the calcarine and the upper visual meridian occupied the lower lip of 43 

the calcarine. 44 
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After defining V1 we performed MVPA and classification analyses on V1 of each 1 

hemisphere. This analysis tested whether category information in VTC was beyond low-level 2 

information that could be extracted from V1 MVPs. Results shown in Figure S1b indicate 3 

that the domain information in VTC is significantly higher than V1 (main effect of area, 4 

F(2,72)=142.1, p<0.001; lateral VTC > V1, t(38)=16.32, p<0.001; medial VTC > V1, 5 

t(38)=10.13, p<0.001). 6 

 7 

Data and software availability 8 

All code relevant to data analysis for the main findings (Figures 1-5) will be available on 9 

github.com/VPNL. Any source data relevant to these analyses will also be made available 10 

upon request. The majority of the code used in this study was derived from scripts and 11 

functions available through the open-source vistasoft code library: 12 

https://github.com/vistalab/vistasoft 13 
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