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Over 60 years ago Waddington proposed an epigenetic landscape model of cellular differentiation,
whereby cell-fate transitions are modelled as canalization events, with stable cell states occupy-
ing the basins or attractor states1, 2. A key ingredient of this landscape is the energy potential, or
height3, which correlates with cell-potency. To date, very few explicit biophysical models for esti-
mating single-cell potency have been proposed. Using 9 independent experiments, encompassing
over 6,600 high-quality single-cell RNA-Seq profiles, we here demonstrate that single-cell potency
can be approximated as the graph entropy of a Markov Chain process on a model signaling net-
work. Our analysis highlights that other proposed single-cell potency measures are not robust,
whilst also revealing that integration with orthogonal systems-level information improves potency
estimates. Thus, this study provides a foundation for an improved systems-level understanding of
single-cell potency, which may have profound implications for the discovery of novel stem-and pro-
genitor cell phenotypes.

According to Waddington’s epigenetic landscape model of cellular differentiation, human embryonic
stem cells (hESCs) occupy the highest attractor state within this landscape, owing to their pluripotency,
with terminally differentiated cells occupying the lowest lying basins. Quantifying the energy potential, or
potency, of single-cells is a task of critical importance, as this is necessary to allow explicit construction of
Waddington landscapes2, 4, but also to provide an unbiased means of identifying novel stem or progenitor
cell phenotypes.
Given that mRNA expression levels of genes inform on the activity of transcription factors and signaling
pathways which control cell potency9, it is reasonable to assume that potency is encoded by the genome-
wide transcriptomic profile of the cell5–8. Following this rationale, a number of explicit potency models
based on biological principles have been proposed6–8. For instance, SLICE7 defines potency in terms of a
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Shannon entropy over gene expression derived gene-ontology activity estimates, which in effect measures
the relative activation profile of different biological processes in a cell. StemID6 computes a genome-wide
transcriptomic entropy which measures how uniformly expressed the genes are. SCENT8 models potency
in terms of the entropy-rate of a diffusion process10 on a signaling network, which measures how efficiently
signaling can diffuse over the whole network. Here, we introduce a novel single-cell potency measure,
called Markov-Chain Entropy (MCE) (Fig.1A, Online Methods). Like SCENT, MCE integrates the
RNA-Seq profile of the single-cell with a model (protein-protein) interaction network, but differs from
SCENT in that it models potency as the graph entropy of an optimized Markov Chain process whose
invariant measure is the observed steady-state gene expression profile (Fig.1A, Online Methods).
To assess the ability of MCE to measure single-cell potency and to benchmark it to previously proposed
measures, we devised an objective evaluation framework: we reasoned that an objective performance
criterion is the ability to discriminate single cells that should differ significantly in terms of potency, for
instance, when comparing pluripotent to non-pluripotent cell populations, or between cells at the start and
end points of time-course differentiation experiments. Thus, building on recent advances in single-cell
RNA-Seq (scRNA-Seq) technology3, 11–13, we assembled a collection of 9 scRNA-Seq experiments,
encompassing a total of approximately 6700 high-quality scRNA-Seq profiles, from which we devised 11
independent objective comparisons between cell-types that ought to differ in terms of potency (Online
Methods, Table S1 in SI). To each of these datasets, we applied the three previously proposed single-cell
potency models (StemID6, SLICE7 , SCENT8), as well as MCE.
We first considered a time-course differentiation experiment in which hESCs were induced to differentiate
into cortical neural progenitors and finally into neurons over a 54-day period, with scRNA-Seq mea-
surements taken at 6 time points, encompassing a total of 2684 single-cells14. While MCE and SCENT
showed the expected gradual decrease of potency with differentiation time point, StemID exhibited a less
significant pattern, whilst SLICE did not exhibit a decrease (Fig.2A). Comparing hESCs to cortical neural
progenitors and then to differentiated neurons separately, revealed that the potency measures in SCENT
and MCE could discriminate cells with almost perfect accuracy (Fig.2A-B, Table S2). As expected the
difference in potency between progenitors and neurons was less strong, but still significantly stronger than
the differences predicted by StemID or SLICE (Fig.2A-B, Table S2). As assessed over the 11 independent
comparisons (Table S1 in SI), we observed that the MCE and SCENT potency measures outperformed
the other two (SLICE and StemID), also when adjusted for cell-cycle phase (Fig.2B-C, Table S2-S3 in
SI, Online Methods). In 9/11 comparisons, MCE and SCENT were better than StemID, and in all 11
better than SLICE. The better performance of MCE and SCENT was statistically significant under a paired
Wilcoxon test over the 11 comparisons (Fig.2B-C).
Since potency is also a property of a cell population8, 15, any robust measure of single-cell potency should,
in principle, also work for bulk samples since a bulk RNA-Seq profile is effectively an average over
single-cells5. We observed that only SCENT and MCE exhibited a robust performance on bulk-samples
(Table S4 in SI), in line with the results obtained on scRNA-Seq data. Thus, based on the comparative
analysis performed here, we conclude that SCENT and MCE currently provide the more robust measures
of cell-potency, and therefore advocate their use for explicit, unbiased, construction of Waddington land-
scapes. As an example, we used MCE on the Chu1 et al. dataset (Table S1 in SI, Online Methods) in
combination with t-stochastic neighborhood embedding (t-SNE) to construct a Waddington epigenetic
landscape encompassing 4 attractor states, representing pluripotent hESCs and multipotent (i.e. non-
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pluripotent) progenitors from the 3 main germ layers: ectoderm, mesoderm and endoderm (Fig.1B). We
also generated 3-dimensional representations for (i) an embryonic time-course differentiation experiment
of mouse hepatoblasts into hepatocytes and cholangiocytes (Yang et al., Table S1 in SI), which correctly
predicted separation after embryonic day-13 (Fig.3A), and (ii) for a 30-day time course differentiation
experiment of neural progenitor cells into neurons (Wang et al., Table S1 in SI), where MCE correctly
predicted a gradual decrease in potency (Fig.3B).
In order to understand the increased robustness of MCE and SCENT over StemID and SLICE, we note
that both MCE and SCENT integrate the scRNA-Seq data with orthogonal connectivity information as
derived from a protein-protein interaction network8 (Fig.1A, Online Methods). While such networks
are mere caricatures of the complex spatially and temporally dependent signaling processes that take
place in a cell, it is plausible that potency is encoded by specific robust features of such networks (e.g.
the difference in connectivity between a hub and a low-degree node). As shown by us previously in
the context of SCENT, its robustness as a potency measure derives from it being encoded by a subtle
positive correlation between the RNA-Seq profile of a sample (be it a single cell or bulk) and the connec-
tivity profile as defined in a PPI network8. Under this model, cells that express higher levels of highly
connected genes (i.e. network “hubs”) will exhibit higher potency. We further demonstrated that such
genes encode not only stemness genes but importantly also mRNA splicing factors and genes encoding
mitochondrial ribosomal proteins8, consistent with studies demonstrating that mitochondrial activity and
splicing rate influence stemness and differentiation16–23. Here we verified that the network is a critical
feature underlying the robustness of MCE as a potency measure (Fig.4A-C, Fig.S1 in SI) and that this is
partly driven by the correlation between transcritome and connectome (Fig.4D-E, Fig.S1 in SI). Thus,
the increased robustness of MCE/SCENT owes to three separate properties: (i) the relative connectivity
between hubs and low-degree nodes in a network is a robust feature of such networks, (ii) big changes in
gene expression, specially at hubs, will have a larger influence on the MCE/SCENT estimates, and the
larger changes in mRNA expression are more likely to be robust, and (iii) MCE/SCENT are computed
genome-wide over a large number of genes, which renders them robust to the potentially large numbers of
dropouts in scRNA-Seq data13.
We end by noting that the correct ordering of single-cell potency by MCE/SCENT was achieved for each
cell individually, starting out from a purely model-driven approach, without using any prior biological
information (e.g. known marker genes, sampling timepoint) and without using information from other
cells (i.e. no feature selection was done, nor is clustering used to group cells). This is in stark contrast to
most single-cell algorithms24–32, whose main aim is to infer cell-lineage trajectories from time-course
differentiation experiments, and which all use either prior information (e.g. known marker gene expression,
timepoint), or heuristics that lack strong biological justification, to assign cells to potency states. We
therefore propose that future single-cell analysis algorithms should focus more on developing and testing
improved in-silico models of cell-potency, as this is a key step towards a more accurate and unbiased
reconstruction of Waddington landscapes4.
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Figure 1. Markov-Chain Entropy for quantifying single-cell
potency in Waddington’s landscape. A) The key assumption
underlying the estimation of Markov-Chain-Entropy (MCE) is that the
measured gene expression profile xxx = (x1, . . . ,xn) of a cell q is the end
result of an unknown Markovian signaling process in the cell, which
however we can try to estimate by using a network model of signaling
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maximizing the Shannon entropy of the Markov process. Having
estimated MCE for each single cell, we can then sort them according to
their MCE, which we posit is a proxy for cell potency. B) An example
of a Waddington epigenetic landscape for the Chu1 et al. data set (Table
S1 in SI), depicting 4 main attractor states, representing hESCs
(pluripotent), neural progenitor cells (NPCs, ectoderm, multipotent),
mesoderm progenitors (MPs, mesoderm, multipotent) and definite
endoderm progenitor cells (DECs, endoderm, multipotent). The MCE
values of over 1000 single cells representing these 4 cell-types are
represented above the attractor states.
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Figure 2. Comparison of discrimination accuracy of single-cell
potency measures across scRNA-Seq datasets. A) For a scRNA-Seq
dataset profiling over 2600 cells in a time course differentiation of
hESCs (day-0) to cortical neural progenitors (day 26) and finally to
terminally differentiated neurons (day-54), we show corresponding
violin plots of the predicted potencies at each measured timepoint, and
for the 4 different potency measures (SLICE, StemID, MCE and
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below violins. B) Left panel: Barplots compare the Area Under the
Curves (AUCs) of the four different single-cell potency measures across
11 independent comparisons drawn from 9 independent scRNA-Seq
experiments. The AUCs reflect the measure’s discrimination accuracy of
single cells that ought to differ in terms of differentiation potential, and
can be derived from the statistic of a Wilcoxon rank sum test. See Table
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panel: Heatmap of meta-analysis P-values comparing single-cell
potency measures to each other. P-values estimated from a paired
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phase, i.e. using only the cells with the lowest cycling scores in each
comparison group.
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Figure 4. Integration with network information underpins the
association of MCE with cell-potency. A) Violin plots of the observed
MCE values for neural progenitor cells (NPCs) and terminally
differentiated neurons (scRNA-Seq data from Wang et al). P-value
derives from a one-tailed Wilcoxon rank sum test. B) As A), but now for
a random permutation of the expression values over the network,
leading to a reduced discrimination accuracy. C). Comparison of the
Area Under the Curve (AUC) discrimination measure for the observed
case (depicted in A)) and for 100 distinct permutations. P-value is an
empirical one comparing the observed AUC to those from the 100
permutations. D) MCE (y-axis) is approximated reasonably well by the
Pearson Correlation Coefficient (PCC) between the transcriptome and
connectivity/degree profile of the network (x-axis). R2 value is given. E)
Boxplots of t-statistics of differential expression between NPCs and
neurons (y-axis) against node-degree (x-axis), with larger degrees
binned into equal sized groups. Green dashed line denotes the line t=0.
Red line is that of a linear regression. PCC is the Pearson Correlation
between the t-statistics and node-degree. We also give the P-value for
the linear regression.
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Online Methods

Single cell and bulk RNA-Seq datasets
In total, we used single-cell RNA-Seq datasets (scRNA-Seq) derived from 9 independent studies. Two

of these studies contained matched bulk RNA-Seq data. From all of these scRNA-Seq studies, we devised
11 independent analyses, comparing in each one cells of high potency to cells of low potency, assessing the
different potency measures in their ability to discriminate these cell-types. In the case of bulk RNA-Seq
data, we devised 5 independent comparisons from the two studies with bulk RNA-Seq data. Table S1 in
SI gives a brief summary of the 11 independent comparisons performed on scRNA-Seq data and the 5
performed using bulk RNA-Seq data. A more detailed description of the datasets is listed below:

• Chu et al. datasets 1-4:
These datasets were derived from Ref. 33. There are four experiments named Chu1, Chu2, Chu3
and Chu4. Chu1 dataset contains scRNA-Seq data for 1018 single cells, which is composed of
374 hESCs (human embryonic stem cells, 212 from H1 cell line and 162 from H9 cell line), 173
NPCs (neuronal progenitor cells, ectoderm derivatives), 138 DECs (definitive endoderm cells,
endoderm derivatives), 105 ECs (endothelial cells, mesoderm progenitors/derivatives), 69 TBs
(trophoblast-like cells, extraembryonic derivatives) and 159 HFFs (human foreskin fibroblasts). The
hESCs are pluripotent (n = 374) and the others are non-pluripotent (n = 644). Chu2 dataset is a time
course differentiation of single cells, in which hESCs were induced to differentiate into DECs, via a
mesoendoderm intermediate. The time points cover before induction at t = 0h (n = 92) and after
induction at t = 12h (n = 102), t = 24h (n = 66), t = 36h (n = 172), t = 72h (n = 138) and t = 96h
(n = 188). There are 758 single cells in total. Chu3 dataset is from bulk samples. There are 19 bulk
samples, which have 7 samples for hESCs, 2 for NPCs, 2 for TBs, 3 for HFFs, 3 for ECs (mesoderm
progenitors) and 2 for DECs. Chu4 is the time-course experiment of 15 bulk samples, consisting of 3
samples for each of five time points (12h, 24h, 36h, 72h and 96h). Normalized data was downloaded
from GEO under accession number GSE75748 (files: GSE75748-bulk-cell-type-ec.csv, GSE75748-
sc-cell-type-ec.csv, GSE75748-bulk-time-course-ec.csv, GSE75748-sc-time-course-ec.csv).

• Trapnell et al. dataset:
This scRNA-Seq dataset was derived from Ref. 24. It represents a time-course differentiation
experiment of human myoblasts into human skeletal muscle cells. Human myoblasts were induced
at t = 0h (n = 96). Samples were also taken at t = 24h (n = 96), t = 48h (n = 96) and t = 96h
(n = 84) after induction. There are 372 single cells in total. Normalized data was downloaded from
GEO under accession number GSE52529 (file: GSE52529-fpkm-matrix.txt).

• Treutlein et al. dataset:
This dataset was derived from Ref. 34. The experiment took samples from the developing mouse
lung epithelium at embryonic days E14.5 (n = 45), E16.5 (n = 27), E18.5 (n = 83) and adulthood
(n = 46), totalling 201 single cells. Normalized data was downloaded from GEO under accession
number GSE52583 (file: GSE52583.Rda).

• SemrauRB and SemrauSS datasets:
The two datasets named SemrauRB and SemrauSS were derived from Ref. 35, a study of retinoic
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acid driven differentiation of pluripotent mESCs to lineage commitment. SemrauRB used a recently
developed Single Cell RNA Barcoding and Sequencing method (SCRB-seq), and consists of 425
single cell samples taken at 9 time points during mouse embryonic differentiation. There were 53
single cells taken at 0h. After all-trans retinoic acid (RA) exposure, 73 samples were taken at 6h,
49 samples at 12h, 27 samples at 24h, 72 samples at 36h, 43 samples at 48h, 54 samples at 60h,
29 samples at 72h and 25 samples at 96h. To increase cell numbers, 0-12h were considered to be
pluripotent. SemrauSS uses a different scRNA-Seq technology (SMART-seq). A total of 292 single
cells were taken at four time points (75 samples at 0h, 75 samples at 12h, 81 samples at 24h and 61
samples at 48h). Normalized data was downloaded from GEO under accession number GSE79578
(files: GSM2098545-scrbseq-2i.txt, GSM2098550-scrbseq-48h.txt, GSM2098555-smartseq-12h.txt,
GSM2098546-scrbseq-6h.txt, GSM2098551-scrbseq-60h.txt, GSM2098556-smartseq-24h.txt, GSM2098547-
scrbseq-12h.txt, GSM2098552-scrbseq-72h.txt, GSM2098557-smartseq-48h.txt, GSM2098548-
scrbseq-24h.txt, GSM2098553-scrbseq-96h.txt, GSM2098549-scrbseq-36h.txt, GSM2098554-smartseq-
2i.txt).

• Wang et al. dataset:
This dataset was derived from Ref. 36, a study of non-directed differentiation over a 30-day period of
neural progenitor cells (NPCs) into developing neurons, with the NPCs derived from hESCs. After
quality control, there were 483 usable single cell samples describing the differentiation from neural
progenitor cells (NPCs at day 0) to neurons and other differentiated cell-types. Cell numbers were
80 at day 0, 78 at day 1, 85 at day 5, 80 at day 7, 79 at day 10 and 81 at day 30. Normalized data
was downloaded from GEO under accession number GSE102066 (file: GSE102066-normalized-
counts.experiment1.DataMatrix.txt).

• Yang et al. dataset:
This scRNA-Seq dataset was derived from Ref. 37, a study of differentiation of mouse hepatoblasts
into hepatocytes and cholangiocytes. After quality control, 447 single-cell samples taken during
embryonic development. There are 54 single-cells at embryonic day 10.5 (E10.5), 70 at E11.5, 41 at
E12.5, 65 at E13.5, 70 at 14.5, 77 at 15.5 and 70 at E17.5. Normalized data was downloaded from
GEO under accession number GSE90047 (file: GSE90047-Single-cell-RNA-seq-TPM.txt).

• Yao et al. datasets 1-2:
This scRNA-Seq dataset (Yao1)was obtained by using a method based on multiplexed single-cell
RNA-seq (CelSeq) and unique molecular identifiers (UMI)14. Cel-Seq was used to profile cells at
multiple time points (days 0, 12, 19, 26, 40, and 54) in a study of differentiation of hESCs into
cortical and non-cortical progenitor and finally into neurons. After quality control, there were 2684
single-cells: 40 hESCs, 504 collected at day-12, 278 at day-19, 595 at day-26, 502 at day-40 and 765
at day-54. Progenitor expansion into neurons occured at day-26. Normalized data was downloaded
from GEO under accession number GSE86977 (file: GSE86977-UMI-20K.2684.csv). In addition,
we also analysed a matched bulk RNA-Seq dataset (Yao2) from the same study, encompassing a
total of 33 samples: 5 hESC samples (day-0), 3 samples at day-6, 4 samples at day-9, 6 samples at
day-12, 5 samples at day-19, 6 samples at day-26 and 4 samples at day-54. Normalized data was
downloaded from GEO under accession number GSE86985 (file: GSE86985-trueseq.tpm.csv).
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Further processing and quality control analysis
We used the following general procedure to further assess quality and further normalize the provided

scRNA-Seq data. First, in all cases, we computed the coverage per single-cell, i.e. the number of genes
with normalized counts (e.g. TPM/FPKM) above zero. Any single-cell with less than 10% coverage was
removed. Next, we quantile normalized (QN) the resulting dataset to remove potential batch effects. For
most datasets, we then renormalized the minimum read count to 1, i.e. any normalized count less than 1
was renormalized to 1. We justify this on the basis that the normalized counts of 1 and 0 are effectively
indistinguishable. The threshold of 1 was derived by inspection of the distribution of normalized counts.
After QN, we log2-transformed the data with an offset value of 0.1 added before log-transformation. The
offset was added in order to ensure that the minimum value after log-transformation would not be 0, but a
non-zero value (typically log2 1.1≈ 0.13). We did not want zeroes in our final matrix to avoid singularities
in the computation of the signalling entropy rate used in SCENT. The log-transformation was done to
stabilize the variance and regularize the effects of outliers. Next, in the case of human data, we mapped
gene symbols to Entrez gene IDs (if not annotated to Entrez gene IDs already), and finally averaged any
entry mapping to the same Entrez gene ID. In the case of mouse, we first obtained the human homologs
using the annotationTools Bioconductor package (http://www.bioconductor.org) and finally mapped to
human Entrez gene IDs. The typical range of a resulting data matrix was then typically 0.13 to approx. 16.

We note that the Yao1 scRNA-Seq dataset used CelSeq-technology and UMIs, and was normalized
using a different procedure as described in Ref. 14. For this dataset, we therefore used a slightly different
choice of thresholds. First, the data downloaded was already on a log-scale, but still with a few significant
outliers: thus, we regularized the data further by setting any values larger than 16 to 16. We then performed
QN and finally any value less than 1 was set to a value of 0.1 (in order to remove zeroes from the data
matrix).

The above procedure resulted in data matrices defined over human Entrez gene IDs and single-cells
of following dimensions: Chu1 (18935 genes, 1018 single-cells), Chu2 (18935 genes, 758 single-cells),
Chu3 (18935 genes, 19 bulk samples), Chu4 (18935 genes, 15 bulk samples), Trapnell (22351 genes,
372 single cells), Treutlein (12413 genes, 201 single-cells), SemrauRB (13755 genes, 425 single-cells),
SemrauSS (13663 genes, 292 single-cells), WangNPC (8242 genes, 483 single-cells), YangML (16119
genes, 447 single-cells), Yao1 (22113 genes, 2684 single-cells), Yao2 (19659 genes, 33 bulk samples).

Evaluation framework
In order to compare the different potency measures (described in the next subsections), we assessed

their ability to discriminate single cells (and bulk samples) that ought to differ substantially in terms of their
potencies. We reasoned that potency measures which would fail to discriminate such cell-types would be
less preferable than those that are more robust. For each of the studies, we therefore devised comparisons
between cell-types (or bulk samples) where typically we would expect to see a big difference in potency,
so that it is reasonable to assume that higher AUC (discriminatory ability) and more significant P-values
(as derived using one-tailed Wilcoxon rank sum tests) would indicate better potency measures. For the
scRNA-Seq datasets, we devised a total of 11 independent comparisons, where the specific cell-types being
compared and the corresponding cell numbers are given in Table S1 in SI. Below we briefly summarise
the comparisons.

In Chu1, we chose to compare the pluripotent hESCs to all progenitor and non-pluripotent cell-
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types. In Chu2, we compared the hESCs at time 0 to the final timepoint (96h) corresponding to definite
mesoderm/endoderm (i.e. non pluripotent). For the corresponding bulk sets Chu3 and Chu4, we chose the
same groups, although for Chu4 only 12h and 24h were available to represent the pluripotent state, so for
Chu4 we compared 12h/24h to 72h/96h, which yielded 6 samples in each group. Only using 12h and 96h
would result in too few samples. We also note that the transition to the definite mesoendoderm occurs
at 72h and beyond. In Trapnell, we compared the myoblasts at 0h to the differentiated skeletal muscle
cells at 72h. In Treutlein, we compared embryonic day E14 to the adult differentiated cells. In SemrauRB,
we compared cells at 0 and 12h to those harvested at 96h. We combined cells at 0h and 12h due to the
treatment effect at 12h, not making 0h cells directly comparable to the rest. In SemrauSS, we compared
cells at 0h to 48h. In WangNPC, we compared neural progenitors at 0 and 1 days, to differentiated neural
cells at 30 days. We deemed safe to bunch together 0 and 1 day cells as differentiation occured much later
in the assay and to increase cell numbers for the more potent NPC phenotype. In YangML, we compared
embryonic day 10 (E10) to E17 single-cells. In Yao1, we devised 3 separate comparisons, because in this
study there were many single-cells and because the nature of the experiment allowed precise definition of 3
potency states: hESCs at day-0, cortical and non-cortical progenitors at day-26 and differentiated neurons
at 54-days. Thus, in Yao1a we compared day-0 to day-26, in Yao1b, we compared day-0 to day-54, and in
Yao1c we compared day-26 to day-54. For the corresponding bulk sample study, Yao2, we also performed
3 comparisons, but in order to increase sample numbers we considered the pluripotent state to also includ
day-9 samples, which is justified based on the findings of the original publication14.

Adjusting for cell-cycle phase
Differences in cell potency between groups could be confounded by differences in the proportion

of cycling vs non-cycling cells. For each single-cell we thus computed two cell-cycle scores (one for
the G1-S and the other for the G2-M phase), using the procedure described in Ref. 8, 38. Because the
relation between potency and cell-cycle scores could be highly non-linear (as described in Ref. 8), linear
adjustment procedures are inappropriate. Another approach to compare potency of cell-types, adjusted for
cell-cycle, would be to set a threshold on the scores and only use cells with cell cycle scores below a given
threshold. However, these thresholds may be study specific, and we found that if we were to use the same
threshold for all studies, that this may lead for specific studies to highly unequal numbers of low-cycling
cells in each comparison group, or to effectively no cells in a given group. For instance, in some studies
we find that all single hESCs exhibit relatively high cycling scores. This indicates that disentangling
cell-cycle effects and potency is extremely difficult, if not impossible, and may also be strongly dependent
on the experimental details (e.g. culture conditions of cells etc.). Thus, we decided on a different approach
which would allow us to compare cell-types, whilst adjusting for cell-cycle phase as much as possible.
Specifically, for each study and cell-type of interest, we chose a lower quantile of cell-cycle scores based
on the scores of all cells within that cell-type. Doing so, ensures that we are comparing sufficient numbers
of single cells within each group, but also that we are using the lowest-cycling cells within each group.
The quantiles were chosen to ensure sufficent numbers of cells in each comparison group. We note that
since there are two cell-cycle scores, that we performed this operation on G1-S and G2-M separately,
subsequently only using the single-cells that were in the lower defined quantile for both phases. Thus,
absolute cell numbers could be low for some studies, but with the chosen quantiles enough cells were being
compared to achieve potential statistical significance. The quantiles chosen, the number of low-cycling
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single-cells in each comparison group and the results obtained are listed in Table S3 in SI.

Markov-Chain Entropy
We here describe the construction of Markov-Chain Entropy to represent the potency of a sample

with a scRNA-Seq or bulk RNA-Seq profile. The construction requires two inputs, i.e. the normalized
RNA-Seq profile and a fully connected signalling interaction network between the genes defined in the
profile. For the network, we use the protein-protein interaction network. Specifically, we use the one with
8434 genes as used in Ref. 8. Given a network/graph G = {V,E} with nV nodes in V and nE edges in E,
we model signaling as a particle on the network and let it do discrete time Markov transition. Denote
the transition probability matrix as P = {pi j}, where i, j = 1, . . . ,nE . We set pi j = 0 if there is no edge
between two different nodes i and j. pppii can be nonzero, and is the probability of the particle staying
at node iii. We assume the network has a steady state with invariant distribution πππ = (π1, . . . ,πnV ) after
the particle walks for long enough time. As we shall see below, the invariant measure or steady-state
probabilities will be determined from the sample’s gene expression profile.

The Markov-Chain Entropy (MCE) of the Markov transition on network G is defined as

MCE =− ∑
(i, j)∈Ē

πi pi j log(πi pi j), (1)

where the summation is only for the terms pi j > 0, and Ē is the union set of E and all (i, i) self-loop edges.
MCE can be split into two terms as

MCE =−∑
i

πi ∑
j∈N (i)

pi j log pi j−∑
i

πi logπi, (2)

where N (i) contains all the neighbors of node i including i itself.
The first term in Eq. (2) is named as the edge entropy (similar to but not the same as the average local

entropy/signalling entropy in Ref. 8, 39), and the second term is called the node entropy. Since πi pi j

means the probability (or information flow or actual interaction) transmitted from i to j along the directed
edge (i, j) in E, MCE is indeed the whole entropy of the information flow induced by the Markov chain
on the graph or network G, rather than the entropy rate8, 39). Thus it can be thought as a measurement of
the heterogeneity of a network in terms of actual interactions. The more homogeneous of interactions
the graph is, the bigger its MCE grows. We think that this intuition can be utilized to characterize the
stemness of cells.

Computing MCE from single-cell RNA-seq dataset
Denote the dataset as X = {xxx(1),xxx(2), . . . ,xxx(n)}, where n is the sample size and xxx(i) is a length-nV

column vector for gene expressions. nV is not only the number of genes in consideration but also the
counts of nodes in the gene network.

Choosing gene network
To compute the MCE, we must use the gene regulatory network (GRN) as the background. There

exist many methods to estimate the GRN from gene expression dataset, like Graphical Lasso40, 41, iterative
clean-up calculation42, 43, information theoretic approaches44 and so on. However, generally, a large
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number of samples are needed to infer the direct edges accurately. The usual scRNA-seq datasets contain
only from tens to hundreds samples, which are extremely few compared to thousands of genes. Thus in this
work, we use the PPI network instead of gene regulatory network. The maximum connected component
between PPI and the genes in dataset is denoted as A, which is the adjacency matrix used in the next steps.

Computing MCE for each sample
As mentioned above, we denote the 0-1 adjacency matrix of the PPI network as A, whose diagonal

elements are also set to be 1s. For convenience, we still use X as the data matrix, and the size of A is
nV ×nV . We have two assumptions before calculating the MCE for a single-cell sample xxx:

1 The normalized gene expression πππ = xxx/||xxx||L1 is the invariant distribution of a discrete time Markov
transition matrix P on the gene network A;

2 Among all the possible transition matrix P with invariant distribution πππ and topology A, we choose
the one with the largest entropy.

That means the MCE problem can be formulated as

MCE(xxx) =max
pi j≥0

− ∑
(i, j)∈Ē

πi pi j log(πi pi j) (3)

s.t. ∑
j∈N (i)

pi j = 1, i = 1, . . . ,nV ,

∑
i∈N ( j)

πi pi j = π j, j = 1, . . . ,nV ,

where the summation is only for the elements (i, j) ∈ Ē satisfying Ai j = 1, and N (i) includes node i and
all its neighbors.

Because πππ is known (so is the node entropy), the above can be written into a standard convex
optimization problem for edge entropy:

min
pi j>0

∑
(i, j)∈Ē

πi pi j log(pi j) (4)

s.t. P111 = 111,

πππP = πππ,

where P = (pi j)nV×nV has the same topology as A and variables only are located at the position of 1s in
A. Though the problem Eq. (4) is convex with linear constraints, there are about O(n2

V ) variables, which
means to find an almost million-dimension optimizer for one cell! It sounds like infeasible for the first
look, but luckily we can change the variables into its Lagrangian multipliers and solve it practically like:

L (pi j,λλλ ,µµµ) = ∑
(i, j)∈Ē

πi pi j log(pi j)−∑
i

λi( ∑
j∈N (i)

pi j−1)−∑
j

µ j( ∑
i∈N ( j)

πi pi j−π j). (5)
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Calculate the first derivations of (5) we get

πi log pi j +πi−λi−πiµ j = 0, (i, j) ∈ Ē, i, j = 1, . . . ,nV , (6)

∑
j∈N (i)

pi j = 1, i = 1, . . . ,nV , (7)

∑
i∈N ( j)

πi pi j = π j, j = 1, . . . ,nV , (8)

where only the terms pi j ≥ 0 corresponding to Ai j = 1 are used in the equations. Denote αi = exp(λi/πi),
β j = exp(µ j− 1) and pi j = αiβ jai j, then we have transformed the optimization problem into solving
nonlinear equations.

αi ∑

j∈N (i)
β j = 1, i = 1, . . . ,nV ,

β j ∑

i∈N ( j)
πiαi = π j, j = 1, . . . ,nV .

(9)

There are fortunately 2nV nonlinear equations corresponding to 2nV variables.
We propose an iteration method to solve the equations (9) as

(1) ααα(n) = 1./(Aβββ
(n−1));

(2) βββ
(n) = πππ./(B′ααα(n)),

where A is the adjacency matrix, B is got by multiplying each element in row i of A by πi (i.e. bi j = πiai j),
and “./” means division by elements. With a proper initial point βββ

(0), we can do the iteration until
(ααα(n),βββ (n)) converging into a fixed point (ααα∗,βββ ∗). Then the MCE of a single-cell sample can be
calculated as

MCE(xxx) =− ∑
(i, j)∈Ē

πi pi j log(α∗i )− ∑
(i, j)∈Ē

πi pi j log(β ∗j )−∑
i

πi logπi

=−∑
i

πi logα
∗
i −∑

j
π j logβ

∗
j −∑

i
πi logπi

=−∑
i

πi log(α∗i β
∗
i πi). (10)

Normalization of MCE
To normalize the MCE into [0,1], we should compute the maximum possible MCE of all the networks

with topology A. According to the formation of MCE in Eq. (1), the maximum is reached when πi ∼ di

and pi j = 1/di, where di is the degree of node i (including i itself). Denote d = ∑i di which is equal to the
count of nonzero terms in A. Thus we have

maxMCE = log(d), (11)

and the normalized MCE is computed as

MCE =
MCE

maxMCE
. (12)
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Other entropy indices
Signalling entropy

Signalling entropy (SR) was proposed in Ref. 5, 8, 39. When computing SR, the PPI network should
be provided too, while the weights on edges are supposed to be proportional to the normalized expression
levels of the genes, which means wi j ∼ xix j. Transition matrix P has entries

pi j =
x j

∑k∈N (i) xk
=

x j

(Ax)i
, (13)

where N (i) means the neighbors of node i and A is the PPI adjacency matrix. With detailed balance
condition and invariant measure πππ computed from P as πi = xi(Ax)i/(xxx′Axxx), signalling entropy is defined
and calculated as

Sr(xxx) =−∑
i

πi ∑
j∈N (i)

pi j log pi j. (14)

To normalize the signalling entropy, maximun entropy is computed by

maxSr = logλ , (15)

where λ is the largest eigenvalue of adjacency matrix A. Normalized entropy rate is defined as

SR(xxx) =
Sr(xxx)
maxSr

. (16)

The main difference between SR and MCE are:

(1) The adjacent matrix A has zero diagonal elements in SR, while it has ones in MCE. The basis of SR
is interaction between proteins through the law of mass action, while the basis of MCE is a Markov
transition on the gene regulatory network. The particle in MCE has the probability to stay in one
node which is much meaningful.

(2) For MCE, we optimize the entropy to get the most possible transition matrix with fixed invariant
measure. Maximum entropy means the most possible case, while the weight of stochastic matrix P
in SR is computed by law of mass action which is a determined method.

StemID
Grün et al. proposed the StemID algorithm to estimate differentiation potency of single cells in Ref. 6.

It does not use a PPI network, but has to cluster the cells into groups. StemID computes a score s for each
cluster as

∆Ek = median j∈k(E j)−min
l
(median j∈l(E j)), (17)

sk = lk ·∆Ek, (18)

where k labels a cluster, lk is the number of significant links, E j is the entropy of cell j defined as
E j = −∑

N
i=1 pi, j logN pi, j, N is the total number of genes and pi, j is the normalized number of reads

mapping to gene i in cell j.

18/19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/257220doi: bioRxiv preprint 

https://doi.org/10.1101/257220
http://creativecommons.org/licenses/by-nc-nd/4.0/


To compare fairly and objectively to other entropy indices like SR and MCE, we take E j as the potency
estimate from StemID for each cell, which is much like the node entropy defined in Eq. (2) and just like
the comparison done in Ref. 8. Importantly, we note that the computation of StemID was performed on
the normalized (unlogged) counts, after quantile normalization. This is line with how it was recommended
to compute StemID in the original paper6.

SLICE
SLICE was another entropy based index proposed in Ref. 7. It first clusters genes into m functional

groups according to GO-terms. Then for each cell j, SLICE computes the entropy of the active distribution
of the groups as H j = E[−∑

m
k=1 p j,k log p j,k], where p j,k is the activity score of group k in cell j and the

expectation is taken over a number of bootstraps. We computed SLICE as described in Ref. 8 using the
R-functions provided by Guo et al.7. We note that, as with StemID, the computation of SLICE entropy
is supposed to be done on the unlogged normalized counts. Thus, we used the downloaded normalized
count data matrices and only performed quantile normalization before estimating SLICE entropy. The
expression threshold parameter in SLICE was set to 1 (default value) for all studies, expect for Yao1 where
the data was already regularized (logged) and where we used a threshold of 0.1. We note that in the Yao1
study data had been renormalized by subsampling single-cells to 20,000 UMIs14.

Construction of the landscape
We construct an illustrative landscape in Fig. 1B of the main text.
Firstly, X and Y axes are the first two coordinates computed by t-SNE45. t-SNE is a dimension reduction

tool used widely in many subjects now. It can make different clusters of cells more separated and thus
more clear to be observed in low dimensions. The z-axis is MCE value. In the tSNE-MCE figure, higher
cells are more pluripotent as they have higher entropy.

To plot an illustrative potential landscape, we use a function like

f (x,y) =1− 4− y
4

(
e−80(x− 1

8 )
2
+ e−40(x− 3

8 )
2
+ e−60(x− 3

4 )
2
)
− y

4
e−40(x− 9

16 )
2
,

h(x,y) =8 f (x,y)+ y,

and plot the height values of h(x,y) for (x,y) ∈ [0,1]× [−1,4]. The idea of constructing such landscape
function is to make it a Gaussian mixture in x-direction but linear in y-direction.

At last, we put the surface at the right place in the tSNE-MCE figure. We have to mention that the
landscape is an illustration like Waddington’s in order to show how cells differentiate from stem cells to
others although their MCEs are the actual values based on our method from the data. Our purpose is to
show high MCE indeed presents the cell’s pluripotent ability.
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