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Abstract

It is known that the allele ancestral to the variation at a polymorphic nucleotide site cannot 

be assigned with certainty, and that the most frequently used method to assign the 

ancestral state – maximum parsimony – is prone to mis-inference. Estimates of counts of 

sites that have a certain number of copies of the derived allele (the unfolded site frequency

spectrum, uSFS) made by parsimony are therefore also biased. We previously developed 

a maximum likelihood method to estimate the uSFS for a focal species, using information 

from two outgroups and assuming simple models of nucleotide substitution. Here, we 

extend this approach to infer the uSFS, allowing multiple outgroups, potentially any 

phylogenetic tree topology and more complex models of nucleotide substitution. We find, 

however, that two outgroups and assuming the Kimura 2-parameter model is adequate for 

uSFS inference in most cases. We show that using parsimony for ancestral state inference

at a specific site seriously breaks down in two situations. The first is where the outgroups 

provide no information about the ancestral state of variation in the focal species. In this 

case, nucleotide variation will be under-estimated if such sites are removed from the data. 

The second is where the minor allele in the focal species agrees with the allelic state of the

outgroups. In this situation, parsimony tends to over-estimate the probability of the major 

allele being derived, because it fails to account for the fact that sites with a high frequency 

of the derived allele tend to be rare in most data sets. We present a method that corrects 

this deficiency, which is capable of providing unbiased estimates of ancestral state 

probabilities on a site-by-site basis and the uSFS.
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Introduction

Many population genetic and quantitative genetic analysis methods require the assignment

of ancestral versus derived states at polymorphic nucleotide sites. For example, Fay and 

Wu (2000) and Zeng et al. (2006) proposed statistics, H and E, that compare the numbers 

of high, intermediate and low frequency derived variants, and these can be used to 

distinguish between different modes of natural selection and demographic change. A 

number of methods have also been developed to infer selection and demographic change 

based on the complete distribution of counts of derived alleles across sites, the unfolded 

site frequency spectrum (uSFS) (e.g., Boyko et al. 2008; Schneider et al. 2011; Tataru et 

al. 2017).

The minor allele at a site or counts of numbers of minor alleles at a group of sites (the 

folded site frequency spectrum) can be observed directly from sequence polymorphism 

data. In contrast, the derived versus the ancestral allele at a site cannot be known with 

certainty, because at least one outgroup is required for inference, and there is the 

possibility of more than one mutation separating the focal species from the outgroup. This 

implies that the uSFS also cannot be known precisely. For the purpose of ancestral state 

inference, rule-based maximum parsimony using outgroup species is the most frequently 

applied method in molecular evolutionary genetics (e.g., Voight et al. 2006; Dreszer et al. 

2007; Keinan et al. 2007; Sabeti et al. 2007; Lohse et al. 2011; Langley et. 2012; 1000 

Genomes Project Consortium 2010, 2015; Schmidt et al. 2017). It has been recognized, 

however, that parsimony potentially produces misleading results (Felsensein 1981; Eyre-

Walker 1998; Collins et al. 1994). Of particular relevance here is that sites that have a low 

frequency of the derived allele are usually more common than sites that have a high 
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frequency of the derived allele. This implies that misinference tends to lead to upwardly 

biased counts of high frequency derived alleles (Baudry and Depaulis 2003; Hernandez et 

al. 2007).

There is a related problem concerning the assignment of ancestral states at polymorphic 

sites, which does not seem to have been addressed. If ancestral states are assigned site-

by-site, potentially useful information is ignored. For example, in Fig. 1 the single outgroup 

species (state G) is uninformative about the ancestral allele of the variants in the focal 

species (which must be T or A). It is more likely, however, that the ancestral allele is T, if 

sites with a high frequency of the derived allele are uncommon in the dataset as a whole 

(as is usually the case).

Matsumoto et al. (2015) pointed out that ancestral states are not observable, that a single 

best ancestral reconstruction is not advisable, and that assuming one can bias molecular 

evolutionary inference. This was developed by Jackson et al. (2017), who assigned the 

ancestral state probability at a focal site as the inferred probability of the node for the 

common ancestor of the focal species and the closest outgroup, obtained using PAML,  

Yang (2007), ignoring polymorphism data. This does not optimally weight information 

coming from the focal site itself and from the complete set of sites in the data.

Inference of ancestral states on a site-by-site basis has been problematical, but there has 

been progress in inferring the uSFS. Hernandez et al. (2007) developed a context-

dependent substitution model using a single outgroup to infer the ancestral state at a 

polymorphic site in a focal species, then implemented a step to correct for ancestral 

misidentification. Their simulations suggested, however, that the approach only partially 
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corrects for ancestral misidentification, depending on the divergence between the focal 

species and the outgroup.

Schneider et al. (2011) developed a probabilistic method to infer the uSFS on a site-by-site

basis, but did not use information from the frequencies of polymorphisms across all sites, 

so results from this method are biased. Keightley et al. (2016) developed a maximum 

likelihood (ML) method (ml­est­sfs) that addresses the deficiency in Schneider et al. 

(2011), and simulations suggested that it is capable of correctly inferring the uSFS. It uses 

a two-stage process, in which the evolutionary rates are estimated by ML, then, assuming 

the rates, estimates the uSFS elements by ML, while correctly weighting information from 

informative and uninformative sites. However, the method is limited to two outgroups, 

assumes simple substitution models (for one outgroup, the Kimura 2-parameter model and

for two outgroups, the Jukes-Cantor model), and is not readily scalable to more than two 

outgroups or more to complex substitution models. It is unknown whether more realistic 

substitution models and/or further outgroups significantly improves inference accuracy. 

Furthermore, it does not assign ancestral state probabilities on a site-by-site basis.

In this paper, we further develop the approach of Keightley et al. (2016), with the following 

objectives. 1. Estimate the uSFS, allowing several outgroups, potentially any tree topology,

and realistic nucleotide substitution models. 2. Infer ancestral state probabilities for each 

polymorphic site in the data. We evaluate the performance of new approach by 

simulations, apply it to data from the Drosophila Population Genomics Project (DPGP) as 

a test case, and re-infer the ancestral state probabilities for the 1000 Genomes Project in 

humans, which were previously inferred by a parsimony-related approach.
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Materials and Methods

Following Keightley et al. (2016), uSFS inference is carried out in two-steps. Evolutionary 

rate parameters are estimated in step 1, then in step 2 the uSFS is computed conditional 

on the evolutionary rate parameter estimates. Information from steps 1 and 2 is then 

combined in a third step to infer the ancestral state probability for each polymorphic site. 

Representation of the data and some definitions

Suppose we have sampled n gene copies at a set of sites from a population of a focal 

species. The uSFS we require to estimate therefore contains n - 1 elements, excluding the

elements where the ancestral or derived allele is fixed. We assume that a single gene 

copy at each site is known for one or more outgroup species, and the tree topology 

relating the species is known without error (Fig. 2). In the analysis we assume that the 

nucleotide variation within the focal species coalesces within the branch labeled b1. The 

consequences of violation of these assumptions is investigated in simulations. The 

observed nucleotide configuration for a site is the count of each of the four nucleotides in 

the focal species (labeled X, Y for a biallelic site), along with the state for each outgroup, 

represented by the presence of a single nucleotide A,C,G or T. Let the number of 

outgroups = no (in Fig. 1, no = 3), and denote the outgroups o1, o2...on. Assuming an 

unrooted tree (as in Fig. 2), the number of branches in the tree is therefore nB = 2no – 1.

Models of nucleotide substitution

The Jukes-Cantor model (JC), Kimura 2-parameter model (K2) and a model allowing six 
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symmetrical rates (R6; Fig. 3a) are considered. All substitution models require the 

estimation of evolutionary rates (= mean number of nucleotide changes per site) for each 

branch, K1..Kn
B
. The rates are the only parameters for the JC model. For the K2 model, an 

additional parameter, κ, specifies the rate of transition mutations relative to the rate of 

transversions. For the R6 model there are six symmetrical relative mutation rates, r1..r6,

∑
i=1

6

r i=1 (Fig. 3a), so five independent parameters, r1..r5, require to be estimated.

Estimation of rate parameters

Assuming the tree topology of Fig. 2, there are nB substitution rates, and these, along with 

parameters of the substitution model (i.e., κ for the K2 model or r1..r5 for the R6 model), are

estimated by maximum likelihood using the simplex algorithm for likelihood maximization 

(Nelder and Mead 1965). We checked convergence by picking starting values for the 

parameters from wide distributions, restarting the algorithm when convergence had 

apparently been achieved and checking that the same final maximum log likelihood was 

reached in multiple runs. Let φ be a vector specifying the model parameters, and let yi be 

a vector specifying the observed nucleotide configuration for the focal species and the 

outgroups at site i. Sites are assumed to evolve independently, so the overall likelihood of 

the data is the product of probabilities of the observed nucleotide configuration for each 

site:

L=∏
i=1

sites

p(y i ∣ ϕ) . (1)

The probability of the nucleotide configuration for each site is evaluated by summing the 
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probabilities for the ntree = 4no-1 possible unrooted trees, formed from all possible nucleotide 

combinations [A, T, G, C] at the unknown internal nodes along with the observed 

nucleotide configuration for the focal species and outgroups at the site (Fig. 2).

p(yi ∣ ϕ)=∑
j=1

ntree

ptree(c j ∣ ϕ) , (2)

where cj is a vector representing the observed nucleotide configuration for the focal 

species and the no outgroups along with the nucleotide states for the no – 1 internal nodes 

for tree j. If the focal species is polymorphic at a site, the probability for that site is 

computed as the average probability for each observed nucleotide (X, Y in Fig. 2).

The overall probability for a given tree is computed from the product of the probabilities of 

each branch (k = 1..nB), conditional on the nucleotide states x1,k and x2,k representing the 

ancestral and derived nucleotides of that branch, given the nucleotide states specified in 

cj.

ptree(c j ∣ ϕ)=∏
k=1

nB

pbranch (x1,k , x 2,k ∣ ϕ ). (3)

The probability for a branch depends on whether x1,k and x2,k differ from one another, the 

type of any difference (except in the case of the JC model), and the substitution rate 

parameters φ.
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Computation of pbranch

In computing the probability of observing nucleotides x1,k and x2,k on branch k, it is 

assumed that the number of nucleotide changes on the branch is Poisson distributed. 

Terms for more than two changes on a branch are disregarded. Let Kk be the evolutionary 

rate parameter for branch k, which is the mean number of changes for that branch.

  

1. JC model

(a) x1,k = x2,k: pbranch = e
−K k +

1
6

K k
2e

−Kk (4)

(b) x1,k ≠ x2,k: pbranch = 
1
3

K k e
−K k +

1
9

K k
2e

−Kk (5)

2. K2 model

(a) x1,k = x2,k: pbranch = e−K k +
1
2

K k
2e−Kk 2+κ

2

κ
2
+4κ+4

(6)

(b) x1,k ≠ x2,k, transition change: pbranch = K k e
−K k κ

κ+2
+ K k

2 e
−K k 1

κ
2
+4κ+4

(7)

(c) x1,k ≠ x2,k, transversion change: pbranch = K k e
−K k 1

κ+2
+ K k

2 e
−K k κ

κ2+4κ+4
(8)

3. R6 model (Fig. 3a)

(a) x1,k = x2,k: pbranch = p(0 changes) + p(2 changes)      (9)
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Taking the example of x1,k = x2,k = A:

p(0 changes) = e−2 Kk (r 1+r 2+r3) (10)

Note that r1, r2 and r3 are the relative rates for changes involving base A.

p(2 changes): 

The algorithm to compute the probability of observing the same ancestral and 

evolved base when two changes have occurred on a branch is illustrated by a 

simplified example where all relative rates in the model apart from two (r1 and r4) are 

zero (Fig. 3b).

For the case of x1,k = x2,k = A, the sequence of events must therefore be an A → T 

change followed by a T → A change. The probability of these events is obtained from:

∫
0

1

p (no mutation to time y) . p(A→T mutation). p (T→ A mutation between time y and 1)dy (11)

For the example illustrated in Fig. 3b, this is:

r 1
2

(r 1+r 2+ r 3)(r 1+ r 4+r 5)
∫
0

1

exp (−k1 y )k 1(1−y )k 2exp(−k 2(1−y ))dy , (12)

where k1 = 2Kk(r1 + r2 + r3) and k2 = 2Kk(r1 + r4 + r5). In this example the relative rates 

r2, r3  and r5 are all zero, but are included for completeness. Evaluation of the definite 
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integral in (12) gives a closed form expression:

k 1k 2exp(−k 2−k 1) (exp (k 2) − exp (k 1)k 2 + (k 1−1)exp(k 1))

k 2k 2−2k 1k 2+k 1k 1

(13)

The logic can be extended to allow all the relative rates to be non-zero.

(b) x1,k ≠ x2,k: pbranch = p(1 change) + p(2 changes)

p(1 change): Examine the example x1,k = A, x2,k = T.

p(1 change) = ( 2Kk r 1e(−2 Kk (r 1+ r2+r 3)) + 2Kk r 1e−2K k (r1+r 4+r5) )/2          (14)

p(2 changes): Examine the example x1,k = A, b2,k = C.

Assuming the configuration of relative rates shown in Fig. 3b (i.e.,only r1 and r4 are 

non-zero) and that A is the ancestral base and C is the evolved base. The sequence 

of events is therefore an A → T change followed by a T → C change. The probability 

of this event sequence is obtained from:

∫
0

1

p (no mutation to time y) . p(A→T mutation). p (T→C mutation between time y and 1)dy  (15)

For the example in Fig. 3b, this is:

r 1 r 4

(r 1+r 2+ r 3)(r 1+ r 4+r 5)
∫
0

1

exp (−k1 y )k 1(1−y )k 2exp(−k 2(1−y ))dy , (16)
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where k1 and k2 have the same meanings as above.

The algorithm can be extended to cases where the relative rates are all non-zero.

Computing uSFS elements

The ML approach described by Keightley et al. (2016) estimates the proportion of density, 

πj, attributable to the major allele being the ancestral allele versus the major allele being 

the derived allele for each uSFS element pair (indexed by j and n – j, where n is the 

number of gene copies sampled). We implemented this algorithm as follows, conditional 

on the ML estimate of the rate parameters, ϕ̂ (obtained by evaluating equation 1), which 

are therefore assumed to be known without error. For a uSFS containing n elements, n/2 

ML estimates require to be made. Assuming sites evolve independently (cf. equation 1), 

the likelihood of πj for the subset of sites (numbering sitesj) having j copies of the minor 

allele in the focal species is:

L(π j)=∏
i=1

sites j

[p(y i, 1 ∣ ϕ̂)π j+p (y i, 2 ∣ ϕ̂ )(1−π j )] ,
(17)

where the probability of the observed nucleotide configuration for the focal species and the

outgroups at the site is given by equation (2), evaluated with the major allele ( p(yi , 1∣ϕ̂) ) 

and the minor allele ( p(yi , 2∣ϕ̂) ) as the state of the focal species at that site (see Fig. 2).
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Computing ancestral state probabilities on a site-by-site basis

The probability of allele Xi versus allele Yi being ancestral at site i could be computed from 

their relative probabilities, i.e., p1=p(yi , 1 ∣ ϕ̂) and p2=p (y i, 2 ∣ ϕ̂ ) , but this only uses 

information from the estimated rate parameters. It does not incorporate information from 

the number of major versus minor copies at the site. For example, if the outgroup 

information were uninformative (as in Fig. 1), we would assign p1 = p2. If there are few sites

in the data set as a whole where the derived allele is at a high frequency, however, the 

estimated uSFS would tell us that A is more likely to be ancestral.

To infer the ancestral state probabilities for site i, information from the estimated rate 

parameters is augmented by the nearly independent information from the estimated uSFS 

(cf. Halligan et al. 2013). If there are j copies of the minor allele in the focal species at a 

site i, the probability of the major allele Xi being ancestral is:

p(Xi=ancestral )=
p1 π̂ j

p1 π̂ j+p2 (1−π̂ j )
(18)

As a check on this equation, it can be shown that the sums of the ancestral state 

probabilities recovers the estimated uSFS.

Simulations

We extended a simulation program described by Keightley et al. (2016). This simulates 

three outgroups for the topology illustrated in Fig. 2. Briefly, unlinked sites were simulated 

with four nucleotide states in a diploid population of size N = 100. The mutation rate per 
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site per generation was set to μ = θ/N, and the neutral genetic diversity, θ, typically set to 

0.01. The simulations allowed any variation within a population at a node of the 

phylogenetic tree (Fig. 2) to be passed to two ancestral sub-populations, which were 

formed by sampling chromosomes with replacement in one generation. We either 

simulated neutral sites, or a mixture of neutral and selectively constrained sites. If a 

mutation occurred at a selectively constrained site, its selection coefficient was s/2, where 

s is the difference in fitness between the homozygous mutant and the heterozygote. 

Fitness effects were multiplicative between and within loci.

1000 Genomes data

We downloaded variant calls from the phase3 release of the 1000 Genomes Project from 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ and extracted the 99 unrelated 

individuals from the Luhya in Webuye, Kenya (henceforth LWK) population. First, we 

restricted our analyses to sites that were fourfold degenerate in all transcripts of protein-

coding genes in humans according to Ensembl release 71. We used the 6-way EPO 

multiple alignments of primate species, available from ftp://ftp.ensembl.org/pub/release-

71/emf/ensembl-compara/epo_6_primate/ to determine the alleles in orangutans and 

macaques at each fourfold degenerate site, and to determine whether those sites were 

within a CpG in humans or either of the outgroup species. The EPO multiple alignments 

were first converted from .emf format to .maf format, and then specific regions were 

accessed using the WGAbed package (https://github.com/henryjuho/WGAbed). The data 

for the human ancestral alleles, as used by the 1000 Genomes Project (1000 Genomes 

Project Consortium, 2015), were downloaded from ftp://ftp.ensembl.org/pub/release-

74/fasta/ancestral_alleles/. 
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Sites were retained for analysis if there was no missing data in humans or either outgroup 

species.  Sites were further assigned to CpG and non-CpG categories. CpG sites were 

defined as sites that were CpG in their context in any of the three species: humans 

(including both REF and ALT alleles), orangutans or macaques. Non-CpG sites were 

defined as sites that were never CpG in their context in any of the same species, including 

both REF and ALT alleles in the human sample. Alleles at polymorphic sites were used to 

populate the unfolded site frequency spectrum following two methods. 1) Using the 

ancestral allele provided by the 1000 genomes project to polarize derived and ancestral 

variants. 2) using the ML method described in the present study.

Results

Simulation results

The method for uSFS inference allows several outgroups to be included in the analysis, 

but the extent of any benefit from including additional outgroups has been unknown. To 

investigate this, we simulated unlinked sites according to the tree topology shown in Fig. 2 

with three outgroups, recorded the “true” uSFS, and compared it to uSFSs estimated using

one, two or three outgroups. High derived allele frequency uSFS elements are expected to

be the most affected by misinference (Baudry and Depaulis 2003; Keightley et al. 2016), 

and contribute most strongly to estimates of positive selection, so we focused on the last 

uSFS element for polymorphic sites (element 19 of a 20 element uSFS). Our measures of 

bias and accuracy were the average deviations from the true uSFS elements and root 

mean-squared error (RMSE) for this element, respectively.
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For the case of all sites evolving neutrally, the results (Fig. 4) suggest that adding 

additional outgroups slightly increases the amount of bias (i.e., high frequency uSFS 

elements tend to be slightly under-estimated; Fig. 4b). This may be a consequence of 

violation of the assumption that the phylogenetic tree is known with certainty. The increase 

in bias is accompanied by reduced RMSE (Fig. 4a) if a second outgroup is added, but 

there is little benefit from adding a third outgroup. As expected, parsimony-based inference

leads to a seriously upwardly biased estimates of the frequency of high frequency derived 

alleles.

We then investigated accuracy and bias for the case of a fraction (C) of sites subject to 

moderately strong purifying selection (scaled selection strength Ns = 10). This is relevant 

for inferring the uSFS for non-neutral sites, such as nonsynonymous sites of protein-

coding genes, and for cases where there is variation in the mutation rate among sites 

leading to variation in the rate of substitution. Such variation violates an assumption of the 

uSFS inference method, and is therefore expected to cause the method to break down to 

some extent. As we previously observed (Keightley et al. 2016), the presence of variation 

in the rate of substitution leads to over-estimation of high derived allele frequency uSFS 

elements (Fig. 5a). The bias can be serious if there is only one outgroup, but is 

substantially reduced if a second outgroup is included. However, there is only a small 

additional benefit from adding a third outgroup. Variation about the observed values is 

lower, on average, if additional outgroups are included (i.e., RMSE is lower; Fig. 5b), but 

again adding a third outgroup is of little benefit compared to having just two. As expected, 

parsimony performs extremely poorly, overestimating the high frequency derived allele 

frequency.
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Analysis of DPGP phase 2 data

To assess the performance of the uSFS inference procedure in a more realistic situation, 

we analysed 4-fold-degenerate sites from the Rwandan sequences of the DPGP phase 2, 

which comprises 17 haploid genomes (provided by J. Campos). We compared the inferred

uSFSs obtained using D. simulans as the sole outgroup and using both D. simulans and 

D. yakuba as outgroups, and investigated the consequences of increasing the complexity 

of the substitution model. More complex substitution models fit the data much better (Table

1), largely driven by the approximately two-fold transition:transversion mutation bias, 

captured by the K2 model.

Although different nucleotide substitution models produce large differences in log 

likelihood, the estimated uSFS is appreciably different only between JC and K2 model, and

indistinguishable between the K2 and R6 models (Fig. 6a). Consistent with the simulation 

results, the inclusion of a second outgroup (D. yakuba) perceptibly reduced the high 

derived allele frequency uSFS elements, compared to using a single outgroup (D. 

simulans) (Fig. 6b). There is an uptick at the right hand side of the inferred uSFS, but it is 

unknown whether this is a consequence of mis-inference or ongoing positive selection on 

4-fold sites or positive selection on linked sites. Consistent with the simulations, parsimony

infers a substantially higher frequency of high frequency derived allele classes.

Analysis of 1000 Genomes data

SNP ancestral states inferred by the 1000 Genomes Project Consortium (2010; 2015) 

have been widely used (e.g., Mondal et al. 2015; Yang, and Slatkin 2016; Harris and 
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Pritchard 2017). In their 2015 paper, a heuristic approach was used to assign the ancestral

state based on the inferred human-chimp common ancestor and the human-chimp-

orangutan common ancestor. Allele frequency information was not incorporated. We re-

inferred the ancestral state at 4-fold-degenerate sites in the LWK population using the ML 

method presented here, and compared the resulting uSFSs (Fig. 7). Because uSFSs from 

the full dataset of 99 individuals (198 chromosomes) were difficult to visualise, we 

downsampled the LWK population to 25 randomly chosen individuals. The results from the 

full dataset are qualitatively similar to those from the downsampled data and are presented

in Fig S1. 

For non-CpG sites the uSFS produced using the 1000 Genomes Project’s ancestral states

and the uSFSs produced by our ML method broadly agreed (Fig. 7a). In contrast, for CpG 

sites, the results under the 1000 genomes method and the Jukes-Cantor substitution 

model depart from the Kimura 2-parameter model and the R6 model at the right hand side 

of the inferred uSFS (Fig. 7b). Under 1000 Genomes and JC, there is a pronounced uptick

at high frequency derived variants which is not present in the two more complex 

substitution models. 

CpG sites have a ~10-fold higher mutation rate than non CpG sites in humans, due to an 

elevation in the number of C → T and G → A transitions (Nachman and Crowell, 2000). 

This was borne out in the inferred branch lengths and the ratio of transition rate to 

transversion rate (κ) at the two classes of site. Under the R6 model, which is the best-

fitting model for both classes of site, the length of the branch between the Human-

Orangutan common ancestor and Humans was 0.0083 for non-CpG sites and 0.092 for 

CpG sites. Estimates of κ under the Kimura 2-paramter model were 4.2 and 8.3 for non-
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CpG and CpG sites, respectively, which are broadly in agreement with previous studies 

(e.g., Keightley et al. 2011).

Discussion

In this paper, we have generalized a method we developed for inferring the uSFS 

(Keightley et al. 2016) to allow the inclusion of multiple outgroup species and potentially 

any phylogenetic tree topology (although only topologies of the type illustrated in Fig. 2 

have been implemented in the software). We have also implemented three substitution 

models: the Jukes-Cantor (JC) and Kimura 2-parameter (K2) models, and the “R6” model 

with six symmetrical relative mutation rates. These models are nested. The K2 model 

gives the same likelihood as the JC model if the transition:transversion ratio parameter κ is

fixed at 1.  If the R6 parameters are constrained such that r3 = r4 (transition mutations) and 

r1 = r2 = r5 = r6 (transversion mutations) (see Fig. 3), the same maximum likelihood is 

obtained as the K2 model. Consistent with our previous results (Keightley et al. 2016), 

simulations suggest that the inclusion of a second outgroup generally increases the 

accuracy of uSFS inference, especially in the presence of variation in the rate of 

substitution among sites. The inclusion of a third outgroup did not, however, lead to a 

further improvement in uSFS inference accuracy. In the real data sets we have analyzed 

from Drosophila and humans, more complex substitution models gave substantially higher 

log likelihoods in stage 1 of the analysis (evolutionary rate parameter estimation), but this 

did not translate into a benefit in stage 2 (uSFS element inference) beyond the K2 model. 

The nucleotide substitutions models implemented are somewhat simplified in the sense 

that rates of change between pairs of nucleotides are symmetrical and these parameters 

do not vary between branches. It is possible that more complex models allowing these 
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complications would lead to a further improvement, given that such effects are common in 

real data. A further weakness we hope to address in the future is its non-context 

dependence of substitution model (so we cannot deal with hypermutable CpGs), and 

further development along the lines of, for example, Arndt et al. (2003) will be needed.

In the present study we divided the data from the 1000 genomes project into CpG and 

non-CpG sites, and inferred uSFSs separately for each class. At non-CpG sites there was 

a close agreement between the uSFS generated using the 1000 Genomes Project’s 

ancestral alleles to polarize variants and the uSFSs generated using the ML method. 

Parsimony is a more justifiable method of reconstructing ancestral states when the amount

of change is small over the evolutionary time being considered, because it assumes a 

priori that change is unlikely (Felsenstein, 1981). In contrast, parsimony is likely to be less 

accurate at CpG sites, which have a ~10-fold higher rate of evolution. Our results bear this

out. The uSFSs for CpG sites differed in the frequency of high frequency derived variants 

between the 1000 Genomes and the K2 and R6 models. These are the class of variants 

where the greatest probability of misinference is expected. The JC model more closely 

mirrored the 1000 Genomes Project uSFS, which may be because it was unable to 

capture the ratio between transition rate and transversion rate at CpG sites, which is ~two-

fold more extreme compared to non-CpG sites.

We have also addressed the problem of calculating ancestral state probabilities for 

polymorphic sites on a site-by-site basis. In doing so, we take into account both the 

nucleotide substitution parameter estimates (which determine the frequencies of multiple 

hits) and the frequencies of derived versus ancestral alleles at other sites in the data. 

There are two main situations where this can make a significant difference compared to 
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using of parsimony. The first concerns sites where the outgroups are different in state from

the focal species. These sites are frequently removed from the analysis (e.g., Keinan et al.

2007; Sabeti et al. 2007; Langley et. 2012; 1000 Genomes Project Consortium 2010; 

2015), but will lead to an under-representation of polymorphic sites, especially sites that 

have a low frequency of the derived allele, which tend to be the most common. The 

second situation concerns to the bias of parsimony, leading to over-estimation of the 

frequency of sites with a high frequency of the derived allele. Consider the two 

configurations of nucleotides at a site of focal species and two outgroups shown in Fig. 8. 

This is one of a large number of sites generated by simulation for which the uSFS has 

been estimated. At the site in question, there are 19 As and 1 T in the 20 gene copies 

sampled. In the left-hand panel (Fig. 8a), the two outgroups are state A.  By parsimony, the

ancestral allele of the variation in the focal species would therefore be assigned as A. If the

branch length b1 (Fig. 2) is 0.05, and using only information from the inferred substitution 

rates (i.e., using the relative values of p1 and p2 calculated using equation 2), p(A = 

ancestral) is 0.98. Taking into account the fact that high frequency derived allele sites are 

rare in the data set as a whole, and applying equation (18), base A  is even more strongly 

supported as the ancestral allele, i.e.,  p(A = ancestral) >0.99. This illustrates that 

parsimony is a good approximation for sites likely to have a low number of derived gene 

copies. The outcome is different for Fig. 8b, where the two outgroups have the same state 

as the minor allele of the focal species. By parsimony, the ancestral allele would be 

assigned C, implying that we are certain the site has 19 copies of the derived allele. Using 

only information from substitution rate parameters and applying equation (2), p(A = 

ancestral) is 0.016, which is close to the result using parsimony. Taking into account other 

sites in the data, which tell us that sites having 19 derived allele copies are uncommon, 

and applying equation (18),  p(A = ancestral) is 0.14. Thus, we are a lot less certain that 
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the derived allele is A at this site. This probability rises (drops) if the outgroups are more 

distant (closer) to the focal species. 
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Figure 1. A site has n = 5 gene copies in a focal species. The major and minor alleles are 

T and A, respectively. The single outgroup (state G) is uninformative about the ancestral 

state of the variation in the focal species.
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Figure 2. Representation of the data for uSFS and ancestral state inference. 

Polymorphism within the focal species (nucleotides X, Y) is assumed to coalesce within 

branch b1. There are three outgroups, two unknown internal nodes and five branches in 

this tree. The root of the tree is not identifiable, therefore branch b5 extends from outgroup 

3 to the node of b3 and b4.
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Figure 3. A The R6 model. B A simplified version of the R6 model used to illustrate the 

computation of probabilities of different numbers of changes on a branch, where all rates 

except r1 and r4 are zero.

A

B

25

A C

G T

r1

r2

r
3

r
4

r
5

r
6

A C

T

r
1 r

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 30, 2018. ; https://doi.org/10.1101/257246doi: bioRxiv preprint 

https://doi.org/10.1101/257246


Figure 4. Effect of adding additional outgroups. Simulation results showing A the 

percentage bias = average deviation from the true uSFS, and B root mean squared error 

for uSFS element 19, as a function of divergence, K3, from a third outgroup. There were 

100,000 sites simulated in 360 replicates replicate under the JC model, and K1 = 0.1 and 

K2 =  0.1. There were 20 gene copies sampled at each site in the focal species. Blue, red, 

yellow, green = results from uSFS inference with 1, 2 and 3 outgroups and parsimony, 

respectively.
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Figure 5. Effect of presence of selectively constrained sites on uSFS inference. Simulation

results showing (A) the percentage bias and (B) root mean squared error for uSFS 

element 19 as a function of the fraction of constrained sites. There were 10,000 sites 

simulated in 3,600 replicates under the JC model with three outgroups, and K1 = 0.1, K2 =  

0.15 and K3 = 0.15. There were 20 gene copies sampled at each site in the focal species. 

Blue, red, yellow, green = results from uSFS inference with 1, 2 and 3 outgroups and 

parsimony, respectively.
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Figure 6. Analysis of 4-fold-degenerate sites of DPGP phase 2. (A) uSFSs estimated 

assuming three different substitution models. (B) uSFSs estimated using the method 

described in this paper based on one outgroup (D. simulans) or two outgroups (D. 

simulans and D. yakuba) along with the uSFS inferred using parsimony.
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Figure 7. uSFSs inferred by the 1000 Genomes Project and by the methods described in 

this paper for three nucleotide substitution models. (A) non-CpG sites. (B) CpG sites.

l0465
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Figure 8. Example of a polymorphic site where 20 gene copies are sampled in a focal 

species and two outgroups have different nucleotide states.

        (a) (b)
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Table 1. Differences between log likelihood of simpler models and the R6 model. The data 

analyzed are 4-fold-degenerate sites from the Rwandan sequences of DPGP phase 2, 

using D. simulans and D. yakuba as outgroups.

Model ΔLog likelihood

Jukes-Cantor -13,000

Kimura 2-parameter -1,400

R6 0
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