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Abstract

Many disease risk loci identified in genome-wide association studies are present in non-
coding regions of the genome. It is hypothesized that these variants affect complex traits by
acting as expression quantitative trait loci (eQTLs) that influence expression of nearby genes.
This indicates that many causal variants for complex traits are likely to be causal variants
for gene expression. Hence, identifying causal variants for gene expression is important for
elucidating the genetic basis of not only gene expression but also complex traits. However,
detecting causal variants is challenging due to complex genetic correlation among variants known
as linkage disequilibrium (LD) and the presence of multiple causal variants within a locus.
Although several fine-mapping approaches have been developed to overcome these challenges,
they may produce large sets of putative causal variants when true causal variants are in high LD
with many non-causal variants. In eQTL studies, there is an additional source of information
that can be used to improve fine-mapping called allele-specific expression (ASE) that measures
imbalance in gene expression due to different alleles. In this work, we develop a novel statistical
method that leverages both ASE and eQTL information to detect causal variants that regulate
gene expression. We illustrate through simulations and application to the Genotype-Tissue
Expression (GTEx) dataset that our method identifies the true causal variants with higher
specificity than an approach that uses only eQTL information. In the GTEx dataset, our
method achieves the median reduction rate of 11% in the number of putative causal variants.
Contact: JaeHoonSul@mednet.ucla.edu, eeskin@cs.ucla.edu

1 Introduction

Understanding the regulation of gene expression by genetic variants is essential for identifying
the biological mechanisms of gene expression and complex traits. In expression quantitative trait
loci (eQTL) studies, a statistical test is performed to find genetic variants called eQTLs that are
significantly correlated with gene expression. Identifying eQTLs is critical in genetic studies not
only because they influence gene expression but also because they are enriched in disease risk loci
[1, 2, 3, 4, 5]. In recent years, many studies have identified eQTLs in different organisms and tissues
[6, 7, 8, 9, 10].

Once eQTLs are identified, the next step is to isolate the causal variants that influence gene
expression. In genetics, causal variants are variants that are responsible for the observed peak
of association. Not all eQTLs are causal, and identifying causal variants from several candidate
variants is called fine-mapping. Fine-mapping in eQTL studies has two main challenges. The first
challenge is the complex LD structure present in human genome. If a region of the genome contains
many genetic variants that are highly correlated (or “in high LD”) with each other, non-causal
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genetic variants close to a causal variant appear to be correlated with gene expression [11, 12, 13].
The second challenge is that there may be multiple causal variants in a region [14, 15], increasing
the complexity of fine-mapping algorithms. A few fine-mapping approaches have been developed
to address these challenges [16, 17, 18, 19, 20, 21, 22]. These methods attempt to calculate a
posterior probability for each variant and select a set of variants called a “causal set” that contains
all causal variants with high probability (e.g., 95%), while minimizing the number of variants in the
causal set. Minimizing the causal set size reduces the number of variants that need to be validated
using biological assays. Although these previous methods are accurate in including all true causal
variants in the causal set, they may also include many non-causal variants in regions with high LD,
which increases the cost of biological validation.

In addition to eQTL data, there is another source of information called allele-specific expression
(ASE) that we can utilize to identify genetic variants that regulate gene expression [23, 24, 25, 26,
27, 28]. An individual has ASE for a specific gene if the amount of gene expression from one
haplotype is greater or smaller than that from the other haplotype (“allelic imbalance”) [29, 30].
Cis-regulatory variants that cause ASE may be identified by finding association between the ASE
status and heterozygous status of a variant across individuals [31, 26]. For example, if an individual
has a heterozygous genotype at a causal variant, we expect the amount of gene expression from two
alleles to be different. On the other hand, if an individual has a homozygous genotype at a causal
variant, we expect the amount of gene expression to be balanced among two alleles (Figure 1A).
Because causal variants for ASE change expression levels of a gene in an allele-specific manner,
they provide insight into the regulation of gene expression. It has also been shown that ASE is
enriched in eQTLs [32], indicating that genetic variants causing changes in total gene expression
are also likely to cause ASE. Several studies have combined eQTL and ASE data to improve the
power of eQTL studies, which leads to identification of additional eQTLs [33, 34, 35]. However,
these methods often focus on improving power rather than reducing the number of putative causal
variants and fail to take multiple causal variants into account.

In this paper, we propose a method that combines both eQTL and ASE information of genetic
variants to improve fine-mapping in eQTL studies. We first compute an eQTL statistic for total
expression and an ASE statistic for allele-specific expression, and we then aggregate the two statis-
tics utilizing meta-analysis. The meta-analysis statistic is then incorporated into a fine-mapping
approach for GWAS called CAVIAR [18], which takes into account the LD structure among genetic
variants and incorporates multiple causal variants. Our simulation results show that our method
identifies causal variants with the correct true positive rate or sensitivity, and more importantly, it
generates causal sets that are noticeably smaller than sets generated using only the eQTL statistics.
This means that our approach includes fewer non-casual variants, yielding higher specificity. We
apply our method to the RNA-seq data from ten tissues in the Genotype-Tissue Expression (GTEx)
dataset [8, 10] and find that the causal set size is also reduced when compared to an approach that
only uses eQTL statistics.

2 Results

2.1 Method overview

The main goal of fine-mapping methods is to identify a small set of variants that include all true
causal variants with high probability. A naive approach would be to conduct an eQTL mapping
and to use these statistics as input to fine-mapping algorithms for GWAS such as CAVIAR [18].
Our method improves this fine-mapping algorithm by including ASE signals derived from RNA-seq
data. In ASE association mapping, we are interested in finding genetic variants that are associated
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Figure 1: A) Individuals 1 and 3 have balanced expression, and individual 2 has ASE. The first
variant fits this pattern of ASE status across individuals the best among the three variants shown.
B and C) Manhattan plots for gene ENSG00000115705 showing -log10 p-values for eQTL and ASE
statistics respectively. The heatmap below the eQTL plot shows pairwise correlation of genotypes,
and the heatmap below the ASE plot shows pairwise correlation of heterozygosity.
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with a significant difference in expression between two haplotypes. This is different from eQTL
mapping, which identifies genetic variants associated with a significant difference in total expression.
Thus, the ASE analysis may provide additional information on which variants are causal by using
the expression difference between the two haplotypes, which is not captured in the eQTL mapping.

In terms of a statistic for each analysis, an eQTL analysis computes a statistic that measures
correlation between total expression levels of a gene and genotypes of a variant. On the other
hand, an ASE analysis computes a statistic that measures correlation between ASE status (e.g.,
0 for balanced expression and 1 for allelic imbalance) and heterozygous status of a variant (e.g.,
0 for homozygous genotype and 1 for heterozygous genotype). In Figure 1A, individual 2 who
has a heterozygous genotype at the causal variant has allelic imbalance, while other individuals
with homozygous genotypes have balanced expression. The causal variant would have a higher
ASE statistic than any of the other non-causal variants if it truly affects the gene expression. We
compute the ASE statistic as discussed in the Methods section.

Because ASE statistics measure cis-regulatory strength of variants, they can be used to improve
fine-mapping. For example, a certain gene may contain many highly correlated genetic variants
with low p-values using eQTL mapping (Figure 1B), which makes it difficult to pinpoint causal
variants. In this case, ASE statistics may provide more information on which of those variants are
more likely to be causal (Figure 1C). Hence, by combining eQTL and ASE statistics, we can detect
the true causal variants more accurately.

Given these two different statistics, we assume that causal variants in the eQTL analysis also
cause changes in ASE status. This assumption is likely to be valid because an allele that increases
the total expression level of a gene causes an individual with a heterozygous genotype to have a
different relative contribution from two alleles to the total expression level (or ASE). With this
assumption, we combine eQTL and ASE summary statistics of variants in close proximity to a gene
by performing meta-analysis on the two statistics. Meta-analysis is a popular statistical approach
that combines results of multiple studies to increase statistical power. In GWAS, meta-analysis
has discovered many associations that were not identified by each individual study. We perform
meta-analysis between the ASE and eQTL statistics to better identify causal variants that influence
gene expression.

To improve identification of causal variants from these statistics, we extend the previous fine-
mapping framework for GWAS called CAVIAR[18]. CAVIAR takes as input a set of summary
statistics for variants in a locus and a pairwise correlation matrix between these variants calculated
from genotype data. Using this data, CAVIAR identifies a subset of variants that contains all causal
variants with probability ρ. We refer to this set as the ρ causal set, and this can be interpreted as a
confidence interval on the set. We extend the CAVIAR framework to incorporate both eQTL and
ASE data as discussed in the Methods section. By integrating these two types of data, our method
attempts to reduce the size of the causal set, increasing specificity compared to the traditional
CAVIAR approach that uses only eQTL data.

2.2 Meta-analysis achieves correct recall rate

We generate simulated data to assess the performance of our approach. In this simulation, we
use real genotypes from the whole blood tissue in the GTEx dataset that contains 325 samples.
For each gene, we identify the top 50 genetic variants with the highest eQTL statistics. We use
these top 50 genetic variants to calculate pairwise correlation matrices as described in the Methods
section. We then choose one causal variant randomly from the 50 variants and assign an effect
size to this variant such that we have 50% power to detect its association. Given this effect size
for the causal variant, we generate an eQTL statistic for the causal variant and eQTL statistics
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Figure 2: Recall rate comparison of our approach using meta-statistics (“eQTL+ASE”) and the
previous approach using eQTL statistics (“eQTL”). Recall rate should be close to the designated
95% sensitivity level. Recall rate is measured for one, two, and three causal variants, and in two
power levels; A) 50% power to detect causal variants and B) 80% power.

for the remaining variants by using their genotype correlation (LD) to the causal variant and by
assuming that the statistics follow the multivariate normal distribution (MVN). Using the same
effect size and implanted causal variant, we generate an ASE statistic for the causal variant and
ASE statistics for the rest of the variants by using their heterozygosity correlation to the causal
variant and the same MVN assumption. We combine these simulated statistics into a meta-analyzed
statistic (“meta-statistic”), which we use as input to our fine-mapping framework. For comparison,
we apply our approach using only the simulated eQTL statistics. We also generate simulations
where the number of causal variants is 2 and 3 and the power to detect a causal variant is 80%.
We use 1,000 randomly chosen genes for these simulations.

One important metric to measure the performance of fine-mapping approaches is determining
how well they identify implanted causal variants. For this measure, we define recall rate to be the
proportion of genes in which all true causal variants are included in the causal set generated from
the fine-mapping approaches. Since our method and the original CAVIAR method are designed
to include all causal variants with 95% probability in their causal sets, their recall rate should be
close to 95%. Simulation results show that our method has the correct recall rate for all numbers
of causal variants and power levels (50% and 80%) for detecting a causal variant (Figure 2). The
original CAVIAR method that uses only eQTL statistics achieves very similar recall rates as our
method. These results demonstrate that our method detects all of true causal variants accurately
even when there are several causal variants near a gene and when the power to detect a causal
variant is not very high.

2.3 Meta-analysis reduces the size of causal set

A naive approach to improve recall rate would be to include as many variants as possible in the
causal set. For instance, if we include all variants near a gene in the causal set, the recall rate would
always be 1, as the causal set is guaranteed to contain all causal variants. This, however, would not
be cost effective because downstream validation of these variants using functional assays is often
costly. Therefore, the size of the causal set needs to be minimized while retaining high recall rate.
While previous fine-mapping approaches such as CAVIAR attempt to minimize the causal set size,
they may not accurately differentiate between causal and non-causal variants if they are in regions
of high LD. Our method incorporates additional information about causal variants, ASE statistics,
into our fine-mapping framework to improve our ability to determine whether variants are causal
or not.
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Figure 3: The distribution of causal set sizes in our simulation. We consider three scenarios where
we have A) one causal variant, B) two causal variants, and C) three causal variants. The power
to detect causal variants is 50% in all scenarios. “eQTL+ASE” shows the set size of our approach
that uses meta-statistics while “eQTL” shows the set size of the previous approach using eQTL
statistics.

We compare the size of the causal set between our approach and the original CAVIAR approach
in the following manner. For each gene, we calculate the reduction rate as r̄ = (NeQTL −NMeta) /NeQTL

where NMeta is the size of the causal set from our meta-analysis approach and NeQTL is the size of
the causal set from the original CAVIAR approach using only eQTL statistics. A positive reduction
rate means our approach has the smaller causal set size than the original CAVIAR approach, while
a negative reduction rate means it has the larger causal set. We compute the median reduction
rate, which is the median of reduction rates among all genes.

Using the same simulation data as in the previous recall rate simulation, we show that the size
of the causal set from our approach is noticeably smaller than that from the CAVIAR approach
that uses only eQTL statistics (Figure 3). The median reduction rate is 24%, 31%, and 27% when
the number of causal variants is 1, 2, and 3, respectively at 50% power to detect causal variants.
At 80% power to detect causal variants, the median reduction rate is 27%, 31%, and 29% when
the number of causal variants is 1, 2, and 3, respectively. This result also shows that we can
achieve high reduction rates when there are multiple causal variants in a locus (Figure 3). This is
advantageous because it is harder to predict causal variants when there are several causal variants
that may have high LD with other non-causal variants. By incorporating information about causal
variants for ASE, our framework is able to exclude non-causal variants from the causal set, reducing
the causal set size.

2.4 Different effect sizes yield modest decrease in reduction rate

As our method utilizes fixed effect meta-analysis to combine eQTL and ASE statistics, it assumes
that effect sizes in the eQTL studies and ASE studies are the same. To measure the performance of
our approach when this assumption is violated, we consider scenarios where the true effect size in
eQTL studies is not equal to that in ASE studies. Using the same 1000 randomly chosen genes from
the previous simulation, we fix the effect size of the eQTL summary statistics to 5.2 (50% power)
and vary the effect size of ASE summary statistics from 2.0 to 4.0. Then, using the same simulation
framework, we generate ASE summary statistics and eQTL summary statistics. We observe that
the median reduction rate decreases as the fixed effect assumption is further violated, which is
expected (Figure 4A). The results also show that as long as ASE effect size is not prohibitively low
compared to that of eQTL, our framework can yield a positive reduction rate; for all numbers of
causal variants, the reduction rate is positive when the ASE effect size is greater than 2.0 (38%
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of eQTL effect size). Although we decrease the effect size of the ASE summary statistics in these
simulations, the argument is symmetric, and decreasing the eQTL statistics should have similar
results. In real data, although effect sizes of eQTL and ASE are unknown, it is very unlikely to
observe such a large discrepancy between the two effect sizes. This also means that we expect
slightly reduced reduction rate in real data compared to those observed in simulation (Figure 3) as
there may be some genes in which effect sizes of eQTL and ASE are not exactly the same. However,
in most cases, we expect to observe a positive reduction rate.
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Figure 4: A) Median reduction rate using simulated data with different effect sizes between eQTL
and ASE statistics. eQTL effect sizes are fixed at 5.2 while ASE effect sizes range from 2.0 to 4.0.
B) The distribution of causal set sizes from the GTEx data for our approach using meta-statistics
(“eQTL+ASE”) and the previous approach using only eQTL statistics (“eQTL”).

2.5 Meta-analysis improves fine-mapping in GTEx data

We then apply our approach to the RNA-seq data from GTEx [10]. We applied the framework to
ten randomly selected tissues, ranging in sample sizes from 101 to 491. Unlike simulated data, real
ASE data is not perfect, as it contains mapping errors and non-negligible noises that may reduce
ASE signals significantly for certain genes. In particular, a small number of reads overlapping
a certain gene may make it difficult to correctly identify individuals with ASE. This gene may
contain very low ASE statistics for many genetic variants even though those genetic variants have
high eQTL statistics. Our method may not behave correctly for this problematic gene, and hence
we require individuals to have at least 20 reads mapped to each gene. While this requirement
increases the quality of ASE calls for each individual, it may reduce the number of genes for which
this method can be applied in tissues with small sample sizes (Table 1).

We set the recall rate of our method and the original CAVIAR approach to 95%, meaning that
both approaches generate causal sets that include all causal variants with 95% probability. Results
show that our approach is effective at reducing the causal sets generated by the original CAVIAR
approach. The median reduction rate across tissues is 11%, and the median reduction rate for each
tissue ranges from 9% to 11% (Table 1). Our method achieves similar reduction rates for all tissues,
even those with small sample sizes. Across tissues, the reduction rate is positive for 80% of genes,
which indicates that our approach is able to reduce the causal sets for a majority of genes. The
distribution of causal set size using the two sets of statistics is shown in Figure 4.

In this analysis, we identify ASE status of each individual by binarizing the ASE data with an
empirically determined threshold (see Methods section). Instead of using the fixed threshold to
determine the ASE status, we also binarized ASE using a binomial test in the thyroid tissue (see
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Table 1: Our method reduction rate for 10 GTEx tissues. Let (r̄) indicate the median
reduction rate, N indicates the sample size, and M indicate number of genes.

Tissue r̄ N M

Adipose Subcutaneous 0.11 385 4023
Artery Aorta 0.11 267 2842
Brain Caudate Basal Ganglia 0.11 144 1272
Brain Hippocampus 0.10 111 680
Heart Atrial Appendage 0.11 264 1907
Cells EBV-transformed Lymphocytes 0.09 117 470
Muscle Skeletal 0.11 491 3414
Thyroid 0.10 399 1470
Uterus 0.09 101 600
Whole Blood 0.11 369 3452

Methods section). When using the data from the binomial test in our fine-mapping framework, we
observe a slight decrease in median reduction rate (from 10% to 9.4%). Furthermore, the number
of genes for which the fine-mapping could be applied decreases from 1470 to 1344. This decrease is
due to a decrease in the number of individuals with ASE for some genes. Therefore, we recommend
using the empirically determined threshold to identify individuals with ASE.

3 Discussion

We developed a novel fine-mapping approach for eQTL studies that utilizes ASE information from
RNA-seq data. Based on the insight that causal variants for total gene expression also influence
gene expression in an allele-specific manner, we developed a new statistic that aggregates ASE
and eQTL statistics through a fixed effect meta-analysis. We then incorporated the meta-analysis
statistic into the fine-mapping algorithm for GWAS called CAVIAR, which takes into account LD
structure among variants and multiple causal variants in a region. We used simulations to show that
our approach achieves the correct recall rate and reduces the causal set size considerably compared
to the fine-mapping approach that uses only eQTL statistics. We also show through simulations
that our method is effective at reducing causal set size even when the fixed effect assumption is not
met. When applying our method to the GTEx data set, we observed the median of 11% reduction
rate in causal set size across the ten tissues studied. These results demonstrate that eQTL and
ASE statistics may be integrated to improve fine-mapping and to effectively reduce the number of
variants tested in downstream studies.

While this method is not the first to combine ASE and eQTL data to identify cis-regulatory
variants, it is unique in that it uses ASE and eQTL data to perform fine-mapping while taking LD
and multiple causal variants into account. The majority of methods that combine ASE and eQTL
data focus on improving power to detect cis-regulatory variants rather than improving specificity
of causal sets [33, 34]. Additionally, other methods compute a marginal likelihood for each variant
instead of modeling the entire locus, making them unable to account for LD structure and multiple
causal variants within each locus [33, 34, 35]. Therefore, these methods often rely on using a
threshold to isolate a set of putative causal variants. They are suboptimal, as they can potentially
identify many non-causal variants in LD with causal variants or fail to identify true causal variants
[18, 36].
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One key advantage of our approach is that we do not need to obtain additional data. Researchers
can perform ASE calling on existing RNA-seq data to identify the ASE status of individuals for
all genes and apply our approach using available total gene expression data and ASE calling data.
Hence, our approach enables more accurate detection of causal variants regulating gene expression
without the need for additional experiments.

One of the difficulties in identifying causal variants using ASE information is accurate iden-
tification of ASE calls from RNA-seq data. Previous studies have shown that noise caused by
mapping errors, small numbers of reads, or inconsistencies between two variants used to call ASE
in one locus can impact our ability to accurately detect ASE [37, 38, 32]. These problematic ASE
calls may adversely affect our fine-mapping algorithm, and hence in addition to correcting for these
when quantifying reads, we attempt to reduce them in our analysis by requiring individuals to have
at least 20 reads mapped to a gene. We expect that ASE calling algorithms will improve in the
near future, and better algorithms will enable more accurate identification of the ASE status of
individuals and allow our method to perform fine-mapping in a greater number of genes.

4 Methods

4.1 Overview of CAVIAR generative model

Let S = [s1, s2, · · · sm] indicate the observed marginal statistics (e.g., z-scores) for a set of m
variants, where si is the observed marginal statistic of i-th variant. We assume the computed
marginal statistics follow an MVN distribution [18],

(S|Λ) ∼ N (ΣΛ,Σ) , (1)

where Σ is the LD matrix between pairs of variants and Λ = [λ1, λ2, · · ·λm] is a vector of the true
effect sizes [18]. Let C = [c1, c2, · · · cm] be a vector of zeros and ones that indicate the causal status
of each variant. We define the prior probability on Λ for a given C as:

(Λ|C) ∼ N (0,Σc) , (2)

where Σc = σ2diag(C), and σ is a constant which indicates the variance of our prior over the true
effect sizes. Similar to prior studies, we set σ to 5.2 [18, 22, 39].

The posterior predictive distribution (Equation 3) is also MVN, and we can use this distribution
to compute the joint likelihood of the marginal statistics given a causal status.

(S|C) ∼ N (0,Σ + ΣΣcΣ) , (3)

Given a set of possible causal statuses C, the posterior probability of a causal status C∗ ∈ C
can be expressed as P (C∗|S) = P (S|C∗)P (C∗)∑

C∈C P (S|C)P (C) . Using this fine-mapping framework, we can

compute the posterior probability of causal status. Unfortunately, considering all possible causal
sets is computationally intractable. To make this feasible, we assume that the maximum number
of causal variants within a region is six [18, 22, 39]. We also use a greedy algorithm that eliminates
the need to consider all possible subsets. To identify the minimal ρ causal set, at each iteration of
the greedy algorithm, we select the variant that increases the total posterior probability the most.
Variants are added until the posterior probability of the causal set is at least ρ fraction of the total
posterior probability of the data.
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4.2 Computing eQTL association statistics

Let Y be the normalized total expression values for n individuals in a single gene, and let Xi be
the normalized genotypes of variant i for all individuals. Suppose Y = µ+ βiXi + ε, where µ is the
phenotypic mean in the population, βi is the effect size of variant i, and ε models environmental and
measurement noise. We use the maximum likelihood estimates µ̂ = 1

n1TY and β̂i = (XT
i Xi)

−1XT
i Y .

The error can be calculated as ε̂ = Y − µ̂1 − β̂iXi, and the standard deviation is calculated as

σ̂ =
√

ε̂T ε̂
n−2 . Using these, the association statistic for variant i is calculated as sEi = β̂i

σ̂

√
n.

Assuming that we have enough individuals, the marginal statistics have the same posterior
predictive distribution used by CAVIAR (Equation 3). The distribution of the eQTL summary
statistics given a causal status is as follows:

(SE |C) ∼ N
(
0,ΣE + ΣEΣcΣ

E
)
, (4)

where SE is a vector of the observed marginal statistics for a gene and ΣE is the LD matrix between
pairs of variants in the eQTL study.

4.3 Computing ASE association statistics

Using phased genotype data, ASE status for a gene in an individual can be directly computed from
RNA-seq data by using heterozygous coding SNPs to map reads to one of the haplotypes. The
proportion of reads mapping to each haplotype can be used as a proxy for relative contribution from
each haplotype to total expression. The read mapping was performed by the GTEx consortium
and accounts for genotyping error, reference bias, and other sources of technical variation [32]. Let
c1 and c2 indicate the number of reads supporting the first and second haplotype, respectively. We
calculate the allelic ratio (AR) for an individual as AR = c1

c1+c2
. We consider an individual to have

ASE for a gene when the allelic ratio is less than .35 or greater than .65; otherwise, we label the gene
in the individual as having balanced expression. This threshold was obtained empirically in [31].
We compare this binarization framework to one using a binomial test for each individual. If the
allelic ratio for an individual is significantly different from 0.5, the individual is labeled as having
ASE. Otherwise, the individual is labeled as having balanced expression. The p-values for each
individual are adjusted for multiple hypothesis testing using the Benjamini-Hochberg procedure.

If an individual is heterozygous for a causal variant, we expect the expression from each allele
to be different. On the other hand, if an individual is homozygous for a causal variant, we expect
the expression for each allele to be comparable. ASE association statistics measure the correlation
between ASE status (e.g., 0 for balance expression and 1 for allelic imbalance) and heterozygous
status of a variant (e.g. 0 for homozygous genotype and 1 for heterozygous genotype).

The association statistics are calculated in a way similar to case and control GWAS association
statistics. Let n1

2 be the number of individuals with ASE in the study, and let n2
2 be the number

of individuals with balanced expression in the study. Let p1 be the proportion of individuals with
ASE who are heterozygous for the SNP. Let p2 be the proportion of individuals with balanced
expression who are heterozygous for the SNP. The difference between these two proportions is also
normally distributed. Under the null hypothesis (p1 = p2), we have:

p̂1 − p̂2 ∼ N(0, p1(1−p1)n1
+ p2(1−p2)

n2
). (5)

Let p be the frequency of heterozygous individuals in the population. With the simplifying as-
sumption used in standard GWAS with unequal case and control size that p1(1−p1)

n1
+ p2(1−p2)

n2
≈
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p(1−p)(n1+n2)
n1n2

, the null hypothesis becomes p̂1−p̂2 ∼ N(0, p(1−p)(n1+n2)
n1n2

). We set the ASE association
statistic to be:

s = (p̂1−p̂2)√
2p̂(1−p̂)

√
2n1n2

(n1+n2)
, (6)

which follows the standard normal distribution.
We assume that the ASE summary statistics follow MVN, and the marginal statistics have the
same posterior predictive distribution used by CAVIAR. We compute the heterozygosity matrix
from genotype data for all variants in that locus. Thus, similar to the posterior predictive of
CAVIAR (Equation 3) we have:

(SA|C) ∼ N
(
0,ΣA + ΣAΣcΣ

A
)
, (7)

where SA is the observed marginal statistics for the gene we are interested and ΣA is the heterozy-
gosity matrix.

4.4 Utilizing fixed-effect meta-analysis

Since we assume that ASE and eQTL studies have the same causal variants, we perform a fixed effect
meta-analysis. The computed combined marginal statistics SM can be calculated as SM = SA+SE

√
2

.

This combined statistic is the sum of two Gaussian random variables. Therefore, the posterior
predictive can be expressed as follows:

(SM |C) ∼ N
(
0, 12(ΣE + ΣA) + 1

2(σ2aΣ
AΣcΣ

A + σ2eΣ
EΣcΣ

E)
)
, (8)

Since it is possible for ASE and eQTL summary statistics to be in different directions in the real
data, we calculate two meta statistics, SM1 = SA+SE

√
2

and SM2 = SA−SE
√
2

. We perform fine-mapping

using each set of meta-analysis statistics separately and choose the smallest causal set.

4.5 Calculating pairwise correlation matrices

To calculate pairwise correlation matrices, we use genotype data from the whole blood tissue in
GTEx (Release v6, dbGaP Accession phs000424.v6.p1 available at: http://www.gtexportal.org)
that contains 325 samples. For each gene, we compute the eQTL statistic for every cis variant
within 1MB from the transcription start site and identify the top 50 genetic variants with the
highest eQTL statistics. We use these top 50 genetic variants to compute the pairwise correlation
matrices. For eQTL statistics, we calculated ΣE as the pairwise correlation matrices between
genotypes of individuals. For ASE statistics, we calculated ΣA as the pairwise correlation between
the heterozygosity calls of individuals. Since the statistics are normally distributed, we calculated
the meta-analysis correlation matrix as ΣM = 1

2(ΣE + ΣA)

4.6 Generating simulated datasets

Given a genotype LD matrix (ΣE) and a heterozygosity LD matrix (ΣA) for a gene and a vector
C that indicates the causal status of each SNP (e.g., 0 when the variant is not causal and 1 when
the variant is causal), we can simulate the association statistics by sampling SE ∼ N(λcΣ

EC,ΣE)
and SA ∼ N(λcΣ

AC,ΣA), where λc is the non-centrality parameter (NCP). We set λc such that
we have the desired power. We first set the power level to 50% and 80% for both ASE and eQTL
statistics. Simulations at these power levels indicate that our fine-mapping method is effective for
the strongest eQTL loci. We then explore a larger range of power in Section 2.4 and show that

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 31, 2018. ; https://doi.org/10.1101/257279doi: bioRxiv preprint 

https://doi.org/10.1101/257279


our method can also reduce causal set size in loci with lower power. We calculate the simulated
statistics for the meta-analysis in two ways: 1) SM1 = SA+SE

√
2

and 2) SM2 = SA−SE
√
2

. We perform

one simulation for each gene in the GTEx data to observe a natural range of correlation between
variants. Simulations to generate SE , SA, SM1, and SM2 were performed for up to three causal
variants.

4.7 Application to GTEx data

To measure the total expression level of each gene, RNA-seq data was aligned to hg19 using Tophat
v1.4.1 [40] and gene-level expression quantification was performed using RNA-SeQC [41] according
to the GTEx protocol [8]. Reads were assigned to each allele of an individual using personalized
genomes and the official GTEx protocol described in [32]. To reduce the affect of noise in ASE
calls, we require individuals to have at least 20 reads mapped to each gene. For genotype data, we
used the Illumina OMNI 5M SNP Array. To increase eQTL discovery power, we used genotypes
that were imputed from the 1000 Genomes Project Phase I version 3 reference panel using the
IMPUTE2 software [42].

We apply this framework to genes with at least one significant eQTL identified in the GTEx data
set and at least one heterozygous variant in the coding region. The significant eQTL requirement
restricts the set of genes tested to those likely to be regulated by cis-regulatory variants. The
heterozygous variant in the coding region is used to call ASE. For each gene, we selected the top 50
variants that have the highest eQTL statistics. We calculate the meta statistics and heterozygosity
matrix for these variants, which we use as input to our fine-mapping framework. In some cases,
the eQTL statistic and the ASE statistic have different signs. In these cases, the statistics cancel
each other out in SM1. Therefore, we calculate SM2, and run CAVIAR on both sets of summary
statistics. We take the minimum of these two data sets.
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