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Abstract 

While tandem mass spectrometry can now detect post-translational modifications (PTM) at the 

proteome scale, reported modification sites are often incomplete and include false positives. 

Computational approaches can complement these datasets by additional predictions, but most 

available tools are tailored for single modifications and each tool uses different features for 

prediction. We developed an R package called PTMscape which predicts modifications sites across 

the proteome based on a unified and comprehensive set of descriptors of the physico-chemical 

microenvironment of modified sites, with additional downstream analysis modules to test 

enrichment of individual or pairs of modifications in functional protein regions. PTMscape is 

generic in the ability to process any major modifications, such as phosphorylation and 

ubiquitination, while achieving the sensitivity and specificity comparable to single-PTM methods 

and outperforming other multi-PTM tools. Maintaining generalizability of the framework, we 

expanded proteome-wide coverage of five major modifications affecting different residues by 

prediction and performed combinatorial analysis for spatial co-occurrence of pairs of those 

modifications. This analysis revealed potential modification hotspots and crosstalk among multiple 

PTMs in key protein domains such as histone, protein kinase, and RNA recognition motifs, 

spanning various biological processes such as RNA processing, DNA damage response, signal 

transduction, and regulation of cell cycle. These results provide a proteome-scale analysis of 

crosstalk among major PTMs and can be easily extended to other modifications.  
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Introduction 

Protein post-translational modifications (PTMs) regulate cellular functions in various ways: 

catalyzing enzymatic activities, conferring substrate specificity to control allosteric interactions, 

mediating interactions with other molecules such as DNA, co-factors, and lipids, and localizing 

proteins to organelles1. With advances in enrichment techniques for PTMs, high-resolution mass 

spectrometry (MS) has now become the method of choice to experimentally detect and quantify 

major modifications at a proteome scale2. A wealth of PTM data arising from tandem MS/MS 

experiments has been curated and shared in public databases such as PhosphoSitePlus (PSP)3, 

PHOSIDA4, and Uniprot5, and some major modifications such as phosphorylation and 

ubiquitination have been mapped for multiple species. For instance, as of December 2017, the PSP 

database described ~240,000 phosphorylation and ~22,000 ubiquitination sites for >20,000 

different human proteins.  

A comprehensive map of diverse modifications can help us infer not only the role of 

individual PTMs, but also the complex code of different modifications localized to the same 

protein jointly modulating biochemical functions through positive and negative regulatory 

interactions, also known as the PTM crosstalk6. A well-known example for such crosstalk is the 

tumor suppressor gene p53 whose abundant and diverse modifications affect the protein’s activity 

and subsequent cancer formation.7-9 p53 has at least 20 known phosphorylation sites and multiple 

modifications including acetylation, ubiquitination, methylation, and O-GlcNAc sites. Therefore, a 

critical first step is to map modification sites across the entire proteome in an unbiased manner, 

attaching confidence scores that allow removal of false-positive identifications and incorrect site 

localizations.  

However, even for major PTMs, including acetylation, methylation, and glycosylation, 

experiments with new enrichment techniques10 often identify novel modification sites, implying 
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that we have not yet reached the coverage to provide the total modification landscape. While 

experimental efforts are slowly completing this landscape, there is a growing need for statistical 

frameworks that integrate these diverse modifications at proteome-scale into a unified, 

comprehensive PTM map with a minimal number of false positives. In addition, such a map should 

annotate each modification type by predictive descriptors such as physicochemical properties, 

protein structure information, and sequence motif information such as position specific amino acid 

propensity (PSAAP).  

In the literature, there already exists a plethora of computational prediction methods for 

major modifications, where the majority of methods relies on complex machine learning algorithms 

in combination with sequence-level scoring functions that test for single types of modifications.11 

The prediction methods vary by the type of algorithms, the use of adjacent residues around 

candidate sites, the use of three dimensional structure information, and specificity with respect to 

kinase families (in the case of phosphorylation). Recently, a number of prediction tools has also 

been reported for ubiquitination12-14 or arginine methylation15, in which predictions are made based 

on amino acid properties rather than sequence characteristics due to the lack of clear motifs.  

Although these tools provide small-scale predictions in a user-friendly web interface, only 

a few tools provide batch prediction capability for the whole proteome due to high computational 

burden by non-linear prediction algorithms – and are therefore incapable of extracting examples 

like that of p53 in a comprehensive, genome-wide manner. Moreover, each single PTM prediction 

tool uses a different set of descriptors (predictive features) and the models are trained using 

different training PTM data, often leaving the user no freedom to provide input to the construction 

of the prediction models. More importantly, as these methods rely on non-linear prediction 

algorithms such as SVM with the radial kernel, it remains elusive how each descriptor or a 

combination of descriptors contributes to the probability of PTM events, challenging the 

interpretation of the best predictors. Other omnibus tools such as ModPred16 perform batch 
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predictions for multiple modifications, but their prediction has limited sensitivity in the whole 

proteome scale (see below). In addition, the tools’ predictions are made from a pre-trained model 

which the user cannot modify or rebuild. Further, whole proteome-scale predictions are very time 

consuming in a standard computing environment, precluding the execution of such analysis for lay 

users.  

To address these limitations and enable researchers to map a variety of modification types 

across the proteome, here we present PTMscape, a unified, highly sensitive and specific framework 

for high confidence PTM predictions in whole proteome scale. PTMscape has several key advances. 

First, it is generically applicable to any PTMs and enables the user to train and test predictions 

using a comprehensive set of descriptors, while operating both at the whole proteome scale and in a 

time-efficient manner. Unlike most existing tools, PTMscape provides a full set of precompiled 

features and facilitates the construction of new training and test data, allowing the user to control 

the model building process. With these resources, PTMscape achieves prediction accuracy 

comparable to the best single-modification tools currently available. Second, PTMscape performs 

further downstream statistical enrichment analysis of individual modifications and their crosstalk 

within protein domains and within function categories. Third, PTMscape offers model training and 

prediction for large-scale prediction via local installation of the software. PTMscape is packaged 

for the popular R environment (http://cran.r-project.org) and the user can take full control to create 

appropriate training and test data for an entire proteome.  

To our knowledge, PTMscape is the first open-source, comprehensive statistical 

framework of this kind. To demonstrate the utility of this tool, we applied PTMscape to ~17,000 

human protein sequences and predicted ~39,000 additional post-translational modifications of five 

different types, revealing the potential hotspots of extensive crosstalk among the modifications.  
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Results 

 

PTMscape uses linear SVMs and a comprehensive set of predictors to evaluate five major 

modification types 

In PTMscape, we advocate the SVM with linear kernel to perform linear classification to make 

prediction for each candidate site into a modified site or an unmodified one, while the prediction 

algorithm can be easily replaced by other methods such as SVM with non-linear kernels or neural 

networks. In contrast to PTMscape, most prediction tools use SVM with a radial kernel, a non-

linear classification method for flexible and sensitive classification. The rationale for our choice of 

a linear kernel lies in the ability to interpret the resulting weight coefficients. Although the non-

linear classifier is the more sensitive than the linear counterpart, the decision boundaries of the 

SVM with a non-linear kernel are too complex for easy interpretation. In addition, a non-linear 

classification method can be easily over-fitted. In contrast, the linear SVM has the advantage that 

the optimized weight coefficients directly inform on the contribution of each descriptor to the 

likelihood of the PTM status.  

To evaluate the performance of overall predictions, we first assembled and evaluated a 

comprehensive set of descriptors which we derived from literature survey. In this initial analysis, 

we aimed to learn how well the positive sites, i.e. modified sites detected in experiments collected 

in the PSP database, can be differentiated from the negative sites, i.e. sites not reported in the PTM 

database, and what information (descriptor) is useful to predict each PTM type.  

 We compiled descriptors of physicochemical properties in the microenvironment of 

modification sites from three different sources. The first source consisted of 538 amino acid 

indexes, which have been previously used in prediction methods, e.g. for ubiquitination13,17. The 

indexes consisted of physicochemical properties for each amino acid,18 including, for example, 
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hydrophobicity, propensity to be in secondary structures, free energy change, and residue volume. 

A large number of these properties were highly correlated with one another. Therefore, we grouped 

the normalized properties into 53 clusters and used their average values as a representative value 

for each cluster (see Methods). The second source included residue-specific properties such as 

access to surface area, half sphere exposure, and the probability of being positioned in secondary 

structures such as coils, sheets, and helix computed by SPIDER3 software19. This information was 

obtained based on the secondary structure assignment to the protein sequence. The last source was 

the position specific amino acid propensity (PSAAP) matrix computed for each modification based 

on experimentally acquired sites (deemed positives).11 The final 173 predictors comprised six 

categories including the average amino acid indexes, four secondary structure features, and the 

PSAAP scores.  

 Using PTMscape, we computed these properties for all proteins in the human proteome, for 

window sizes of 11, 15, and 25 amino acids where the center position contained the modified 

residue. SPIDER3 was able to assign individual residues to secondary structures for approximately 

17,000 proteins, and we perform all our proteome-scale predictions within this set. Following the 

convention in other publications,12, 17, 20-22 we reduced sequence redundancy by removing highly 

similar sequences, resulting in a total of ~10,700 human sequences considered (see Methods). We 

focused on five different modifications affecting five different residues:  phosphorylation (S, T, Y), 

ubiquitination (K), SUMOylation (K), acetylation (K), and methylation (K, R). We evaluated the 

performance of PTMscape’s linear SVM classifier for each of the different modification types 

using 10-fold cross-validation. In the cross-validation, a model was trained on nine folds of the data 

and tested on the remaining, randomly chosen one-fold, and the same was iteratively applied to all 

ten folds.  

Table 1 shows the overall prediction performance of linear SVMs across the five different 

modifications. The area under the curve (AUC) for the receiver-operating characteristic (ROC) was 
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the highest for arginine methylation and lysine SUMOylation (0.79), whereas it was the lowest for 

lysine ubiquitination (0.64) and acetylation (0.66), for all window sizes (Supplementary Figure 1). 

As expected, the modifications known to have clear global sequence motifs were better predicted 

than those without a sequence motif, and we discuss this point below. For most modifications, the 

prediction models using the wide 25 amino acid window performed the best (Supplementary 

Table 1), albeit by a small margin. Hence, we used the 25 amino acid windows hereafter.  

Here the AUC was computed treating all candidate sites not reported in the PSP database 

as negatives, which should have been the sites which are not modified rather than undetected sites. 

The assumption, i.e. no detection equals no modification, is currently the only option for 

construction of a negative set and objective evaluation of proteome-scale predictions. For the 

reasons discussed above, it is likely that many of these negative sites will be unveiled as positives 

by future experiments. Therefore, the sensitivity, i.e. the prediction of true positives, calculated 

here is likely underestimated and better than what is reported in Table 1.  

The importance of specificity cannot be overstated in view of the prediction capability 

across different methods in major PTMs. To investigate the root cause of lagging AUC values 

across most prediction methods, we studied the decision boundaries separating positives and 

negatives in the feature space more carefully in the context of whole proteome-scale prediction. 

Figure 1 shows the plots of Partial Least Squares – Discriminant Analysis, a useful tool for 

projecting high-dimensional data in a supervised way to separate the groups, across all five 

modifications using all the descriptors we collected. The figure shows that, with the exception of 

lysine/arginine methylation and SUMOylation, it is difficult to detect a large number of additional 

true sites at high specificity based on these features. It is likely due to this challenge that many 

existing methods resorted to complex non-linear prediction methods, attempting to find the sub-

space in the feature set that confers increased likelihood of a given PTM event. Nevertheless, the 

poor overall separation of positives and negatives suggests that it is of paramount importance to 
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maintain a stringent level of specificity in predictions, even at the expense of the sizeable loss in 

sensitivity. This explains why we choose a score threshold associated with very high specificity 

rule (99%) in our predictions below.  

 

Linear SVM is comparable to the best prediction algorithms of individual modifications 

Next, we benchmarked the prediction performance of PTMscape’s linear SVM against the 

algorithms leading in prediction of phosphorylation and ubiquitination, the two modifications most 

widely studied by mass spectrometry-based proteomics. For phosphorylation, PTMscape’s linear 

SVM compared very well with the latest kinase-independent phosphorylation prediction tool called 

PhosphoSVM, which outperforms the majority of global phosphorylation prediction tools.22 Using 

PhosphoSVM’s test data consisting of 9,688 serine, 2,919 threonine, and 1,269 tyrosine positive 

sites on 2,545, 1,499, and 805 protein sequences, we trained PTMscape’s linear SVMs using 

predictive variables computed for 25 amino acid windows with 10-fold cross-validation. This setup 

was identical to that used by PhosphoSVM. Therefore, the only difference between the two 

methods was that our classifier (predictor) used more features for prediction and a simpler kernel 

than that of PhosphoSVM. Notably, PTMscape and PhosphoSVM showed similar performance 

with the exception of serine phosphorylation, where the AUC was greater by 0.03 in PhosphoSVM 

(Table 2).  

 PTMscape’s linear SVM classifier also compared very well with the most state-of-the-art 

ubiquitination prediction tool called ESA-UbiSite.17 ESA-UbiSite uses an evolutionary screening 

algorithm coupled to SVM with non-linear kernel to address the lack of true negatives by 

iteratively updating the modification status of negative sites in the model-training phase. Using the 

training data and the high-confidence test data provided by ESA-UbiSite, PTMscape achieved an 

AUC of 0.82, comparable to the second best algorithm ESA-SVM-PCPs (AUC 0.83) but worse 

than the best method ESA-UbiSite (AUC 0.95). It is possible that this difference in AUC most 
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likely arose from the specificity calculation, as the test data is very small with only 645 positive 

sites on 379 proteins. Therefore, although the evolutionary screening algorithm for identifying 

better negative sites makes valuable contribution, the calculation of AUC remains to be evaluated 

on a larger test set.  

 Next, we show that PTMscape outperforms ModPred, which is one of the few available 

generic tools for modification prediction.16 Unfortunately, it was practically infeasible to directly 

compare PTMscape and ModPred using the same training and test data because we are unable to 

build the new prediction models for cross-validation within their framework. Therefore, we ran 

ModPred provided by the developers to predict phosphorylation, ubiquitination, SUMOylation, 

acetylation, and methylation on ~12,000 nun-redundant protein sequences used in our 10-fold 

cross-validation scheme, and compared their performance with that of PTMscape. This implies that 

we made predictions on some of the proteins which were used for training data in ModPred, giving 

the method a potential advantage over PTMscape. ModPred performed the best with serine 

phosphorylation at an AUC of 0.74 (Supplementary Table 2) followed by threonine/tyrosine 

phosphorylation, arginine methylation and lysine acetylation with AUC ranging from 0.65 to 0.7. 

ModPred performed poorly for other lysine modifications (AUC<=0.6). In contrast, the AUCs of 

PTMscape were better, ranging from 0.64 to 0.74 across all modifications (Supplementary Table 

2).  

 

PTMscape’s predictions associated with protein domains and functions  

Next, we used PTMscape’s comprehensive descriptor set and linear SVM classification to map five 

major modifications at proteome scale in a unified statistical framework. We used two-fold cross-

prediction (see Methods) so that the training data and the test data are completely independent. 

Predictions were made on the total human proteome, comprising ~17,000 sequences. The 

predictions were made at score thresholds associated with 99% specificity, in contrast to the 
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conventional choice giving the best Matthew’s correlation or F-measure, to ensure a low false 

positive rate account for the varying range of AUCs.  

Table 3 shows the experimentally detected sites available in the PSP database (254,116 

PTM sites) and the sites newly predicted by PTMscape, which amount to a total of 38,857 new 

sites. As expected, the number of newly predicted sites compared to the experimentally detected 

sites varied across the modifications. For modifications with proteome-wide experimental coverage, 

e.g. phosphorylation and ubiquitination, newly predicted sites accounted for <14% of the sites 

known from PSP. By contrast, for modifications with incomplete proteome-wide coverage, e.g. 

SUMOylation and methylation, PTMscape predicted 85~139% new sites even at 99% specificity. 

Notably, while lysine SUMOylation23-25 and lysine/arginine methylation had the most consistent 

global sequence motifs (Figure 2A), they also had many sites with predictive properties that have 

been unreported in the literature so far, suggesting that our knowledge of these modifications is still 

incomplete.  

Several lines of evidence supported the validity of the PTMscape predictions. First, 

sequence motifs calculated from PTMscape predicted sites were similar to those calculated from 

experimental data alone (Supplementary Figure 2). Further, the protein domains showed a similar 

enrichment in modifications arising either from PTMscape predictions or experimental (PSP) data, 

with the exception of small differences for domains enriched for lysine/arginine methylation and 

lysine SUMOylation (Supplementary Figure 3). This difference is perhaps due to the low 

experimental coverage of these modifications. Therefore, we are confident that PTMscape provides 

accurate and biologically relevant predictions for protein modification sites to complement 

available experimental data.  

 Next, we examined modification-enriched proteins and their domains in detail. To do so, 

we mapped experimental and newly predicted sites to 487 most frequent protein domain families as 

defined by the Pfam database26. More than 159 of these domain families showed statistically 
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significant enrichment of specific types of modifications (q-value < 0.05). Supplementary Figure 

4A shows the heatmap of domain enrichment scores of all five modifications (-log10 of p-values). 

The domain families with the most statistically significant enrichment include protein kinase 

domain, zinc finger-C2H2 domain, RNA recognition motif, and histone domain (Supplementary 

Table 3). Protein kinases are often phosphorylated themselves as part of a signal transduction 

cascade, however, other modifications, such as ubiquitination, as also well-known to affect the 

kinase’s function.27 Both zinc finger domains and RNA recognition motifs bind nucleic acids, and 

abundant SUMOylation and phosphorylation events have been described.28, 29 Finally, the histone 

modification ‘code’ is well-known, covering methylation, ubiquitination, and acetylation, for 

example. 30, 31 

 We then tested the enrichment of biological functions in the proteins harboring in-domain 

modifications (GeneMania, q-value < 10-20 only).32 Figure 3A shows that mRNA splicing, 

spliceosome, RNA processing were the most significantly enriched in the domains with 

modifications of lysine and arginine residues, i.e. SUMOylation, ubiquitination, and methylation – 

consistent with the enrichment in nucleic acid binding domains. In comparison, functions in signal 

transduction, DNA damage response, regulation of cell cycle, immune response, and growth factor 

responses were enriched in domains with a variety of modifications and affected different residues. 

Proteins whose domains accumulated threonine and tyrosine phosphorylation sites, and also lysine 

ubiquitination and acetylation often function in regulation of cell cycle, various receptor signaling 

pathways, and protein kinase activities – consistent with the abundant role of phosphorylation in 

signaling cascades. This landscape illustrates the co-existence of different modifications on the 

same protein, such as those for p53 mentioned above, and these proteins can have many essential 

biological functions. We further explored the modifications that co-occurred in local 

neighborhoods of protein sequences in a later section.  
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Highly predictive features of individual modifications  

In addition to its robust performance, the advantage of PTMscape’s linear SVM is the 

straightforward inference of the most predictive properties for specific modification types, as 

extracted from the 173 total predictors. This interpretation is possible because the linear kernel in 

SVM requires that the decision boundaries be linearly associated with each variable, therefore 

naturally allowing us to describe the variables as positively or negatively associated with the 

modification.  

 Figure 2 (B-E) shows weight coefficients of the SVM predictors for all modification types. 

The amino acid indexes were the strongest predictors for phosphorylation, ubiquitination, 

acetylation and methylation (Figure 2B). In general, high hydrophobicity, partition coefficients, 

low solubility, low probability to be in an alpha helix/helix terminus, and propensity to be in a 

domain linker tended to be positively predictive of these modifications. These descriptors are often 

found in membrane proteins and link to a biased amino acid composition. However, other 

predictors varied for the different modifications. For example, hydrophobicity and amino acid 

composition of intracellular proteins were positively predictive only for phosphorylation, but in no 

other modifications. By contrast, the propensity of amino acids to be positioned in beta sheets and 

the properties associated with helical ends (e.g. chain reversal) were positively predictive for 

several lysine modifications, such as SUMOylation, ubiquitination, and acetylation.  

Solvent accessibility and secondary structure showed different patterns for different 

modification types (Figure 2C). For example, tyrosine – but not serine or threonine - 

phosphorylation was more likely in sequences with poor solvent accessibility, i.e. in a pocket shape. 

This result is consistent with the known higher similarity of serine and threonine phosphorylation 

compared to tyrosine phosphorylation.33 Lysines modified by ubiquitin, SUMO or acetylation were 

negatively associated with solvent accessibility. Further, the residues in coiled coils tended to be 
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phosphorylated, arginine methylated, or SUMOylated (Figures 2D and 2E). Residues in helices 

tended to be acetylated, methylated, or SUMOylated.  

 Lastly, PTMscape identified sequence motifs matching those known from literature. The 

corresponding PSAAP scores were predictive for those modifications with clear sequence motifs, 

i.e. lysine and arginine methylation, SUMOylation, and serine/threonine phosphorylation. The 

sequence logo plots for the experimentally detected and newly predicted sites show the relative 

strength of the motifs (Figure 2A). The best examples are the ΨKxE consensus motif for 

SUMOylation34 and GAR consensus motif for arginine methylation,35 and proline at +1 position of 

serine/threonine phosphorylation.36 By contrast, there were no clear consensus motifs that could 

globally predict ubiquitination, lysine acetylation, and tyrosine phosphorylation, as has been 

demonstrated in previous work.33, 37 

 

A global map of candidates for modification crosstalk 

PTMscape’s unified, proteome-scale prediction scheme allows us to move towards systematic 

analysis of modification hotspots and their possible causal interactions. Such interactions among 

modifications are also known as crosstalk.38 Here, we define positive crosstalk as instances in 

which several modifications of the same or different type localize to the same sequence region 

(within five amino acids), but they do not affect the same residue. Many of these modifications 

might occur simultaneously, e.g. ubiquitination often affects multiple lysine residues within the 

same structural neighborhood. Positively ‘interacting’ modifications might also have temporal or 

even causal relationships: one modification might trigger another modification of the same protein 

within the same sequence neighborhood. For example, phosphorylation often triggers subsequent 

SUMOylation, e.g. as is found for heat shock transcription factor HSF1for its serine and lysine 

residues at positions 303 and 298, respectively.39 The p53 tumor suppressor protein can be 
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activated through phosphorylation of serine 46, which promotes acetylation at lysine 382 through 

positive crosstalk.40, 41  

In comparison, we define negative crosstalk as events in which the same residue is targeted 

by multiple modifications. In our study, such negative crosstalk can occur only for lysine residues: 

for example, lysine can be acetylated, methylated, SUMOylated, or ubiquitinated. However, since 

these modifications are chemically largely exclusive, we assume that only one can occur at a given 

time. Therefore, negative crosstalk represents cases in which the modifications ‘compete’ for the 

same residue in a temporal or causal manner. Such negative cross occurs, for example, for lysine 

382 in p53 mentioned above in which acetylation then competes with methylation.42 

  Using the combined set of experimental and predicted modifications derived from 

PTMscape and the PSP database, we first examined hotspots of potential negative crosstalk. For 

example, there are 532,420 lysine residues in total across the human proteins considered here, 

which are candidates for ubiquitination, SUMOylation, acetylation, and methylation. Of these, 

9,511 lysines (1.8%) had a PTMscape score above the threshold for two or more different 

modifications, i.e. their sequence context suggested that indeed, multiple modifications compete for 

the same lysine. As neither PSP nor PTMscape provides temporal resolution for the different 

modifications, it remains to future research to resolve their causal relationships.  

 We then tested for enrichment of these negative crosstalk sites with respect to common 

protein domains and biological functions (Supplementary Figure 4B, Supplementary Table 4). 

Histone and tubulin domains showed the most pronounced enrichment of lysine residues with 

multiple modifications. Further, several zinc finger domain families and the RNA recognition motif 

were enriched in negative crosstalk sites for SUMOylation and ubiquitination. Proteins harboring 

negative crosstalk for acetylation and ubiquitination were involved in processes including DNA 

damage response, RNA processing, immune response, and signaling cascades (GeneMania q-value 
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<10-10); the proteins with negative crosstalk for SUMOylation and ubiquitination specifically had 

enrichment of mRNA processing and kinase signaling pathways (Figure 3B).  

 Positive crosstalk, i.e. the statistically significant accumulation of several modifications 

within the same immediate sequence neighborhood, was much more frequent than negative 

crosstalk. Since testing all possible combinations of modifications is statistically infeasible, we 

focused on evolutionarily conserved pairs of modifications43. Supplementary Figure 4C shows 

the landscape of complex interplay of 80 domain families with statistically significant enrichment 

of their combined occurrence (Fisher exact test, q-value < 0.05, see Methods). When testing for 

enrichments for combinations of phosphorylation, acetylation, and ubiquitination, we found that 

positive crosstalk events had similar biases as the individual modifications, i.e. they were enriched 

in domain families such as histone and linker histone, ubiquitin, tubulin, protein kinase domains, 

and the RNA recognition motif, and in functions such as mRNA processing and RNA splicing 

(Figure 3C, GeneMania q-value < 10-10). Protein kinase activity, regulation of peptide hormones, 

receptor signaling pathways were enriched in the crosstalk sites among phosphorylation, 

acetylation, ubiquitination and SUMOylation events. The full landscape of domain-level and 

function-level enrichment of crosstalk is provided in Supplementary Table 4. 

 

Discussion 

In this work, we developed a new computational tool called PTMscape for generic, unified 

prediction of protein modifications at whole-proteome scale. To the best our knowledge, PTMscape 

is equipped with the most comprehensive set of predictors and uses a fast and robust machine-

learning algorithm whose results are easily interpretable for their biological meaning. We 

demonstrate PTMscape through the example of five post-translational modifications analyzed 

across the entire human proteome.  
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 PTMscape moves beyond existing tools for in silico prediction of modifications in several 

ways. First and most importantly, it is generic and can be used for any type of the ~200 currently 

known modifications as long as there is training data, such as the data from a single mass 

spectrometry analysis with enrichment of the given PTM. Second, PTMscape is easy to use at 

proteome scale as it is installed locally. This feature also allows the user to customize the analysis 

with respect to the types of modifications that are analyzed, the background sequence file, the types 

of predictors to be evaluated and, most importantly, the experimental data that is used for training. 

Therefore, PTMscape provides a tool for the expert user who needs a large-scale, comprehensive 

analysis in the most flexible format.  Finally, PTMscape provides substantial additional information 

that will help interpretation of the results. It evaluates the modification’s microenvironment, 

including the physicochemical properties, site-specific secondary structure properties, and motifs 

within the sequence neighborhood. PTMscape also includes less commonly used predictors, such 

as the accessible surface area or secondary structures. Including analysis of such features of the 

protein three-dimensional structure proved to be highly valuable in particular for modifications 

such as ubiquitin that lack a defined sequence motif.44, 45 

 These aspects also illustrate future extensions that address some of PTMscape’s current 

limitations. For example, for statistically robust analysis, a few thousands of experimentally 

detected sites need to be available. In particular, for modifications that target a wide range of 

sequences without the presence of a global motif, such as ubiquitin mentioned above, the training 

data needs to include a wide range of diverse sites. However, for many modifications, such as O-

linked glycosylation, available data is limited at the moment. Therefore, future extensions of 

PTMscape will address this challenge by exploring additional predictive feature variables extracted 

from external data, such as information on protein-protein interaction data or features pertaining to 

each residue’s position in the protein structure as obtained from experiments or modeling – moving 

beyond the current sequence-based prediction. Similarly, future extension might also use windows 
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surrounding possible modification sites based on structural similarity, rather than sequence 

proximity, or pursue simultaneous prediction of such multiple modifications in a single model, 

incorporating the domain and other structural information.6, 46  
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Methods 

Overview of the workflow 

PTMscape is a command line-based tool written in R (http:/cran.r-project.org), and it is provided 

through a GitHub repository, at https://github.com/ginnyintifa/PTMscape under Apache 2.0 

license. PTMscape builds sub-sequence windows centered at known or candidate PTM sites. It 

encompasses a comprehensive set of features describing modification events, which are used as 

training and test data in the linear kernel SVM library called liblinear47. The prediction output is 

further annotated with domain and sub-cellular information. Finally, PTMscape offers statistical 

tests for the enrichment of protein domains in individual PTM sites and co-occurrence of any two 

types of PTM events (crosstalk). 

 

Source data 

From Uniprot Swiss-Prot database, we downloaded 20,201 canonical human proteins (as of August 

2017).5 Experimentally validated PTM sites corresponding to five PTM types (Table 3) were 

gathered from PhosphoSitePlus database3. A total of 538 numerical indices representing various 

physicochemical and biomedical properties for 20 amino acids were retrieved from AAindex.18 

Position specific secondary structural features, accessible surface area (ASA) and half sphere 

exposure (HSE) of each residue were predicted with the SPIDER3 tool.19 Information on protein 

domain families were obtained from the Pfam using the command line tool.26 

 

Removal of sequence redundancy  

To obtain a set of non-redundant proteins for classifier performance evaluation, we used the CD-

HIT software48 at similarity level 0.3 to reduce the redundancy of the whole proteome (sets of 

proteins containing at least one modifiable residue for respective modification). As a result, 
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prediction of phosphorylation on serine (S) site was conducted for 11,490 non-redundant sequences 

which contained at least one serine. Similarly, we have 12,188, 11,986, 12,222 and 11,872 non-

redundant sequences for analysis of PTMs on threonine (T), tyrosine (Y), lysine (K), and arginine 

(R) respectively.  

 

Amino acid index dimension reduction 

To reduce feature dimension and minimize correlation within the indices, we hierarchically 

clustered the features downloaded from amino acid index into 53 clusters using dynamic tree cut 

algorithm49, each summarizing a group of similar physicochemical properties for the amino acids 

such as hydrophobicity, eccentricity size, solubility etc. Detailed information on the clusters is 

described in Supplementary Table 5.  For each window, we calculated the average property of 

each cluster (excluding the center site). Note that all other features below were position specific 

around the modified residue (-12, -11, …, -2, -1, +1, +2, …, 12). 

 

Position specific structural features 

SPIDER3 is a sequence-based prediction tool of local and non-local structural features for proteins 

using Long Short-Term Memory Spider.19 Prediction output includes probabilities of three 

secondary structures (helix, strand, and coil), ASA and HSE. For each flanking residue in a 

window, we extracted four features, namely p_Coil, p_Helix, ASA and HSE. Under the default 

mode, we constructed 96 dimensional position-specific structural features.  

 

Position specific amino acid propensity (PSAAP) 

PSAAPs were derived from the frequency of each amino acid in each of the 24 positions within all 

the windows centered with positive PTM sites (excluding the center residue). Therefore, the matrix 

is composed of 20 rows and 24 columns. Each column records the probability of 20 amino acids 
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appearing in the corresponding position based on the observed frequency in the positive sites. For 

instance, for position j, column j can be expressed in the following vector: 

(𝑎!! , 𝑎!! ,… 𝑎!" ,… , 𝑎!"!)! 

𝑎!" represents the probability of amino acid i appears in the j-th position. 

𝑎!" =   
#  !"#$%  !"#$  !  !"  !"#$%$"&  !  

#  !"#$%!&  !"#$%&#&#'  !"#$%$&'  !"#$! 

Note that 𝑎!"!"
!!! = 1, 𝑓𝑜𝑟    𝑗 = 1, 2,… 24.   

 

Feature data generation 

The data generation module maps protein identifiers and positions of experimentally determined 

PTM sites (positive sites) to any protein sequences in the user-provided FASTA file, and computes 

average AA specific features for the k-mer window centered surrounding each candidate site 

(default k = 25, having 12 amino acids on both sides of each site). The feature variables used in the 

default mode include 53 clusters of physiochemical properties derived from the AAindex database, 

96 (24x4) position specific structure properties generated by SPIDER3, and 24 dimensional 

features formed by position specific amino acid propensity (PSAAP). We refer to the resulting data 

as the feature data. The program also generates feature data for windows that contain negative sites, 

i.e. sites without experimental evidence for their modification.  

 

Support vector machine with linear kernel 

PTMscape uses support vector machine (SVM)50 with linear kernel, to achieve the best 

classification of modification sites while avoiding over-training. Moreover, linear SVM provides 

easy interpretation of how each property contributes to the decision function of the SVM. In a 

linear kernel setting, the classification is achieved by solving the following problem: 
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min
𝒘,!,𝜹

  
1
2
𝑾!𝑾 + 𝐶 𝛿!

!

!!!

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜    𝑦! 𝑾!𝑿! + 𝑏 ≥ 1 −   𝛿! 

𝛿!   ≥ 0  , 𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝑖 

where 𝑦! equals to 1 or -1 representing the class label of support vector 𝑿!,   𝑾 represents the 

weight coefficient for each feature. 𝐶 is the soft margin tuning parameter. The model fitting is 

performed using liblinear library. During training, we used L2-regularized L2-loss support vector 

classification (-s 2). To obtain the probability score in addition to the classification labels from each 

prediction, we modified the code of liblinear as suggested in the FAQ page 

(https://www.csie.ntu.edu.tw/~cjlin/liblinear/FAQ.html). 

 

Prediction performance metrics 

At a given score threshold, we recorded the true positives (TF), true negatives (TN), false positives 

(FP) and false negatives (FN). The performance metrics were defined as: 

  

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =   
2  ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×  𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 

𝑀𝐶𝐶 =   
𝑇𝑃  ×  𝑇𝑁 − 𝐹𝑃  ×  𝐹𝑁

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

where MCC denotes Matthew’s correlation coefficient. 
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Evaluation of the classifier performance with 10-fold cross validation 

To evaluate the performance of the classifier unbiasedly, we implemented a 10-fold cross 

validation scheme. For each PTM type, we first randomly sampled the same number of negative 

and the positive windows and randomly divided both sets (positive and negative) into ten folds. 

Each time we assembled nine out of the ten folds as a training dataset and used the remaining one 

fold as a validation dataset. Therefore, training and testing was performed on independent datasets. 

The performance metrics such as Area Under Curve (AUC) and Matthew’s Correlation Coefficient 

(MCC) were calculated by taking the average of the ten iterations. 

 

Predictions with PhosphoSVM and ESA-Ubisite 

To benchmark our tool against PhosphoSVM, we used the data retrieved from their web portal at 

http://sysbio.unl.edu/PhosphoSVM/download.php. PTMscape extracted features for 9,688, 2,919, 

and 1,269 positive PTM sites (on 2,545, 1,499, and 805 proteins) for serine, threonine and tyrosine 

phosphorylation, respectively. Then 10-fold cross validation was conducted on the feature data 

generated. For comparison with ESA-UbiSite, we obtained the data consisting of 645 positive sites 

and 10,336 non-validated sites from 379 protein sequences from their work17. Specifically, we 

collected the proteins in the UbiD set for which position specific structural features are available. 

PTMscape was applied to 355 proteins with 613 positive ubiquitination sites and the same 

proportion of training and test division was implemented. For model training, we obtained the same 

number of negative windows as positive windows by randomly sampling the negatives from the 

whole negative set.  

 

Comparison with ModPred 

ModPred predicts as many as 23 different modification types in different species. The predictor in 

ModPred is trained with sequence-based properties, physicochemical features and evolutionary 
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conservation information, where ensembles of logistic regression models were built per 

modification residue type. Using the stand-alone version ModPred_Linux64, we predicted all 

PTMs on lysine residues for the proteins in the Swiss-Prot database that are longer than 30 residues 

and hold one or more modifiable lysine (without PSSM features). The AUC of ModPred 

predictions was calculated by comparing the output prediction scores with known PTM status from 

the PhosphoSitePlus database.  

 

Prediction on the whole human proteome 

To predict PTM sites in the whole proteome, we gathered all 17,612 sequences for which position-

specific structural features can be extracted by SPIDER3. PTMscape was applied in a two-fold 

cross-prediction scheme, where we used half the data as training data and predicted on the other 

half, and switched the role of training and test data to make predictions in the former. This ensures 

that the same data point is not used for training and prediction simultaneously, rendering 

predictions unbiased. During the training, we randomly sampled from the negative set in a way that 

the sizes of positive windows and negative windows were the same.  

 All predicted sites are provided through the website 

http://137.132.97.109:59739/CSSB_LAB/. The tables list the modification type, PTMscape score, 

the modification type, the modification’s threshold for 99% specificity, and reports on significant 

enrichment in protein domain families or protein functions. The table also indicates whether a 

modification site is ‘new’, i.e. if it has not been observed in the PSP database that we used for 

training.  

 

Enrichment analysis of PTM occurrence in protein domains and biological functions 

For the enrichment analysis of individual PTMs in each domain, we first counted the number of 

positive and negative PTM sites in the domain and across the proteome, and performed a chi-
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square test to test whether the frequency of a PTM type in a domain is significantly higher than the 

expected frequency across the proteome. We adjusted for multiple testing by selecting domain 

families with q-value smaller than 0.05.  

 For the analysis of negative crosstalk, we tested association of two competing modifications 

as follows. In each domain, we constructed a 2-by-2 contingency table where rows and columns are 

positive and negative status of the two competing PTM events on all modifiable sites within that 

domain family. We then tested whether the two PTMs are significantly more frequent in the 

domain than expected under by Fisher exact test.  

 For the analysis of positive crosstalk in a domain, we similarly constructed a contingency 

table, where the sum of the numbers in the four cells is the number of all pairs of modifiable 

residues within a domain. Here a modifiable pair of residues in a domain refers to two amino acids 

located within 5 amino acids, where one residue is modifiable in one of the two PTM types and the 

other residue is modifiable in the other PTM type. Each pair contributes to one of the four cells in 

the contingency table based on the PTM status of respective types. After the construction of the 

contingency table, we tested the significance of enrichment of co-occurring two PTMs in a domain 

by fisher exact test. These significance scores (p-value) were further adjusted for multiple testing 

(q-value), and the domains with q-value smaller than 0.05 were considered to have a significant 

positive crosstalk event.   

 Significant crosstalk events are listed in Supplementary Tables 2 and 3. The tables list the 

paired modifications, the p-values from the chi-squared test and the q-values as multiple testing 

adjusted significance measure.  

  

Function enrichment analysis of individual PTMs and crosstalk 

A list of proteins with individual and crosstalk events in protein domains was analyzed with 

Genemania32 for function enrichment. In GeneMania, we used 2017-07-13-core version of the 
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human data, with annotation limited to Pathway only, without finding any other top related genes. 
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Tables 

 

PTM type 
No. of 

proteins 

No. of 

PSP 

sites 

Window size 25 

AUC MCC 
Sensi-

tivity 

Speci-

ficity 

acetylation (K) 3,729 10,479 0.66 0.25 0.61 0.64 

methylation (K) 1,521 2,566 0.74 0.39 0.61 0.76 

ubiquitination (K) 4,874 22,592 0.64 0.22 0.67 0.54 

SUMOylation (K) 1,020 2,996 0.77 0.42 0.63 0.79 

methylation (R) 2,301 5,450 0.79 0.47 0.62 0.84 

phosphorylation (S) 8,510 76,008 0.74 0.36 0.70 0.66 

phosphorylation (T) 6,982 28,359 0.72 0.33 0.66 0.66 

phosphorylation (Y) 6,097 18,645 0.70 0.30 0.72 0.58 

 

Table 1. Performance evaluation of the linear SVMs across five modification types. The number of 

true positive sites used in the 10-fold cross-validation is about half the amount of data present in 

the PSP database after removal of redundant protein sequences and those that do not have 

secondary structure information from SPIDER3. AUC - area-under-the-curve; MCC – the highest 

Matthew’s correlation coefficient at all score thresholds; Sensitivity/Specificity at score threshold 

corresponding to the highest MCC value. 
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PTM Type Methods AUC sd AUC 
Choice of 

threshold 
MCC Sensitivity Specificity 

Phosphorylation 

(S) 

PhosphoSVM 0.84 0.01 F-measure 0.30 0.44 0.94 

PTMscape 0.81 0.01 

MCC 0.49 0.74 0.75 

F-measure 0.47 0.86 0.60 

Matching 

specificity 
0.37 0.36 0.94 

Phosphorylation 

(T) 

PhosphoSVM 0.82 0.01 F-measure 0.25 0.37 0.95 

PTMscape 0.80 0.01 

MCC 0.48 0.71 0.75 

F-measure 0.46 0.85 0.60 

Matching 

specificity 
0.37 0.34 0.95 

Phosphorylation 

(Y) 

PhosphoSVM 0.74 0.02 F-measure 0.21 0.42 0.87 

PTMscape 0.74 0.03 

MCC 0.41 0.66 0.73 

F-measure 0.35 0.89 0.42 

Matching 

specificity 
0.30 0.40 0.87 

Ubiquitination 

(K) 

ESA-ubiSite 0.95 n.a MCC 0.48 0.66 0.94 

ESA-SVM-

PCPs 
0.83 n.a MCC 0.27 0.76 0.75 

ESA-5NN 0.65 n.a MCC 0.17 0.69 0.66 

Random-

SVM 
0.73 n.a MCC 0.17 0.67 0.67 

PTMscape 0.82 n.a 

MCC 0.29 0.64 0.83 

F-measure 0.28 0.43 0.92 

Matching 

specificity 
0.23 0.31 0.94 

 

Table 2. Comparison of performance metrics between PTMscape with linear SVM and the best 

existing prediction methods in phosphorylation and ubiqutination using training and test data sets 

provided by the latter methods. For PTMscape, we chose score thresholds in three different ways, 

using the thresholds that give the best MCC, the best F-measure and the same specificity as 

reported in the benchmarking tool, respectively. The performance metric for other ubiquitination 

site prediction is from J.-R.Wang et al17. AUC - area-under-the-curve; MCC - Matthew’s 

correlation coefficient.   
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Modification 

Number of 

modifiable

sites 

Number of 

sites in PSP 

Number of 

newly 

predicted sites 

Ratio (Predicted / 

PSP records)  

acetylation (K) 515,336 17,084 5,148 0.30 

methylation (K) 528,563 3,857 5,238 1.36 

ubiquitination (K) 497,377 35,043 4,997 0.14 

SUMOylation (K) 526,278 6,142 5,330 0.87 

methylation (R) 511,803 7,957 5,072 0.64 

phosphorylation (S) 650,342 108,287 6,578 0.06 

phosphorylation (T) 436,467 45,302 4,359 0.10 

phosphorylation (Y) 214,390 30,444 2,135 0.07 

 

Table 3. Prediction of five different modifications across the whole human proteome. The two-fold 

cross-prediction scheme ensured that the prediction model used on a protein sequence did not 

include any information from the same protein. The ‘ratio’ contains the number of newly predicted 

sites divided by the number of known sites in the PSP database. 
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Figures 

 
Figure 1. Partial least squares – discriminant analysis plot for five modification types. Red and 

blue colors indicate positive, experimentally determined modifications sites (those recorded in the 

PSP database) and negative sites (the remainder of possible sites). The negatives have been 

randomly sampled to match the same number of positives in each modification to prevent a large 

number of negatives from masking the positives in each plot.  

 

Figure 2. A. Sequence logo plots of the motifs obtained from PSP reported sites and additionally 

predicted sites using ggseqlogo51 across the five different modifications. B-F. Amino acid index, 

accessible surface area, half-sphere exposure, probability of coil and helix, and PSAAP information 

obtained from known and additionally predicted sites. The hierarchical clustering of five 

modifications was performed using all variables.  

 

Figure 3. Biological functions enriched in (A) individual modification sites, (B) negative crosstalk, 

and (C) positive crosstalk events. The color of heatmap was –log10 of q-values reported from 

GeneMania.  
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