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ABSTRACT 

Many cancer cells contain more than two centrosomes, yet these cancer cells can form 

bipolar spindles and appear to proliferate normally, instead of committing lethal mitoses 

with multipolar spindles. It is shown that extra centrosomes are clustered into two 

pseudo-bipolar spindle poles, thereby escaping from multipolarity. Human kinesin-14 

(HSET or KIFC1), a minus end-directed motor, plays a crucial role in centrosome 

clustering and as such, HSET is essential for cell viability only in cancer cells with 

supernumerary centrosomes, but not in non-transformed cells. Accordingly, HSET is 

deemed to be an efficient chemotherapeutic target to selectively kill cancer cells. 

Recently, three HSET inhibitors (AZ82, CW069 and SR31527) have been reported, but 

their specificity, efficacy and off-target cytotoxicity have not been evaluated rigorously. 

Here we show that these inhibitors on their own are cytotoxic to fission yeast, 

suggesting that they have other targets in vivo except for kinesin-14. Nonetheless, 

intriguingly, AZ82 can neutralize overproduced HSET and partially rescue its lethality. 

This methodology of protein overproduction in fission yeast provides a convenient, 

functional assay system by which to screen for not only selective human kinesin-14 

inhibitors but also those against other molecules of interest.  
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INTRODUCTION 

Most animal cells have two centrosomes from which mitotic bipolar spindles assemble. 

This bipolarity is essential for equal segregation of genetic material, thereby ensuring 

genome stability. Like DNA duplication, a cell has a robust regulatory mechanism by 

which centrosome number is maintained strictly as one or two copies per cell, which 

orchestrates the chromosome cycle (Conduit et al., 2015; Fu et al., 2015). Interestingly, 

it is known that in many cancer cells, this synchrony between centrosome and 

chromosome cycles becomes uncoupled, by which such cells contain more than two 

centrosomes. Nonetheless, these cancer cells appear to divide normally by means of 

bipolar spindles without undergoing lethal multipolar mitoses (Quintyne et al., 2005). It 

has been shown that these cells could form pseudo-bipolar spindles by clustering the 

supernumerary centrosomes into two poles (Cosenza and Kramer, 2016; Gergely and 

Basto, 2008). Perturbations in centrosome clustering trigger multipolar spindle 

formation and mitotic catastrophe specifically in cancer cells with supernumerary 

centrosomes (Kwon et al., 2008; Quintyne et al., 2005).  

 Centrosome clustering is achieved by a side-by-side, rather than dispersed, 

positioning of individual centrosomes; this configuration results in the formation of two 

spindle poles that is facilitated through a microtubule-dependent inward force. 

Accordingly, a variety of cellular processes affecting microtubule-based tension and 

motility are involved in the clustering of supernumerary centrosomes (Godinho et al., 

2009; Kramer et al., 2011; Leber et al., 2010; Rhys et al., 2018).  
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 One of the crucial factors required for centrosome clustering is human 

HSET/KIFC1. This protein is a member of the kinesin-14 family of proteins that 

includes mouse Kifc2, Xenopus XCTK2, Drosophila Ncd, C. elegans KLP-15, 

Arabidopsis ATK5 and KCBP, Aspergillus KlpA, fission yeast Pkl1 and Klp2 and 

budding yeast Kar3 (Ambrose et al., 2005; Endow and Komma, 1996; Goshima and 

Vale, 2005; Hanlon et al., 1997; Meluh and Rose, 1990; O'Connell et al., 1993; Paluh et 

al., 2000; Robin et al., 2005; Saito et al., 1997; Troxell et al., 2001; Walczak et al., 

1998; Yukawa et al., 2018). Kinesin-14 motor proteins have minus-end directionality 

and comprise three functional domains, an N-terminal tail domain, a central coiled-coil 

stalk domain and a C-terminal motor domain that possesses the ATPase activity (She 

and Yang, 2017). It is reported that HSET is abundantly expressed in several cancer cell 

lines including ovary, breast and lung cancer (Grinberg-Rashi et al., 2009; Pannu et al., 

2015; Pawar et al., 2014). Intriguingly, knockdown of HSET in supernumerary 

centrosome-containing breast cancer cell lines prevents centrosome clustering and 

induces cell death by multipolarity in anaphase, while in normal cell lines that contain 

two centrosomes this treatment does not result in lethality (Kleylein-Sohn et al., 2012; 

Kwon et al., 2008). Therefore, specific targeting of HSET may provide a novel strategy 

by which to selectively kill cancer cells (Li et al., 2015; Xiao and Yang, 2016).  

To date, three HSET inhibitors, designated AZ82, SR31527 and CW069, have 

been reported (Cosenza and Kramer, 2016; Xiao and Yang, 2016; Zhang et al., 2016) 

(Table 1). AZ82, which is the first HSET inhibitor to be identified, binds specifically to 
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the HSET-microtubule binary complex, thereby inhibiting the microtubule-stimulated 

ATPase activity of HSET (Park et al., 2017; Wu et al., 2013; Yang et al., 2014). Upon 

addition to cancer cells with supernumerary centrosomes, this small molecule inhibitor 

triggers multipolar spindle formation and mitotic catastrophe. The second inhibitor, 

CW069, was designed and synthesized according to in silico computational modeling 

for HSET binding (Watts et al., 2013). This compound binds to HSET in an allosteric 

manner and reduces its ATPase activity in vitro. While cells treated with monastrol, a 

kinesin-5 inhibitor, exhibit mitotic arrest with monopolar spindles, co-treatment with 

CW069 suppresses monopolarity induced by monastrol. Finally, SR31527 was 

identified through a high-throughput screen based on an ATPase assay of HSET (Zhang 

et al., 2016). It inhibits HSET by binding directly to a novel allosteric site within the 

motor domain without involving microtubules. SR31527 reportedly prevents bipolar 

clustering of extra centrosomes in triple-negative breast cancer (TNBC) cells, and 

significantly reduces viability of TNBC cells. Despite the developments of these HSET 

inhibitors, their clinical efficacy has not been evaluated, nor has the possibility of off-

target cytotoxicity been scrutinized, which is a crucial step for clinical application of 

these drugs. 

Previously, we showed that HSET, when overexpressed in fission yeast, is toxic, 

and leads to mitotic arrest with monopolar spindles, reminiscent of overproduction of 

fission yeast kinesin-14, Pkl1 or Klp2 (Yukawa et al., 2018). In this study, we have 

attempted to exploit this phenotype for the functional evaluation of HSET inhibition. 
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We have found that all three reported HSET inhibitors have off-target effects on fission 

yeast growth. Intriguingly, however, AZ82 displays neutralizing activity against HSET-

induced lethality.  

 

RESULTS 

The lethality of fission yeast cells overproducing HSET/kinesin-14 is rescued by co-

overproduction of Cut7/kinesin-5 

Bipolar spindle assembly requires proper force-balance generated by kinesin-5 and 

kinesin-14 (Sharp et al., 2000; She and Yang, 2017; Tanenbaum and Medema, 2010). In 

fission yeast, ectopic overproduction of kinesin-14 Pkl1 or inactivation of kinesin-5 

Cut7 results in force imbalance leading to mitotic arrest with monopolar spindles 

(Hagan and Yanagida, 1990; Pidoux et al., 1996; Yukawa et al., 2018). Interestingly, 

mitotic arrest caused by Pkl1 overproduction is neutralized by co-overproduction of 

Cut7 and that cells overproducing both kinesins are capable of forming colonies 

(Rincon et al., 2017) (bottom two rows in Figure 1A). 

We previously showed that overexpression of another kinesin-14, Klp2 or 

human HSET, is also lethal in fission yeast cells with a similar monopolar spindle 

phenotype (Yukawa et al., 2018). Therefore, we asked whether such Cut7-dependent 

rescue seen in Pkl1 overproducing cells is also observed in the case of overproduction 

of HSET or Klp2. As expected, Cut7 co-overproduction effectively suppresses the 

lethality of cells overproducing HSET or Klp2 (Figure 1A and B). Observation of 
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spindle morphology showed that while cells overproducing only Pkl1 or HSET 

displayed a high frequency of monopolar spindles (84% or 85% respectively) (n=39), in 

those co-overproducing Pkl1 and Cut7 or HSET and Cut7, the frequency was 

substantially reduced to 12% or 45% respectively (n=38) (Figure 1C and D). Hence, 

HSET (and Klp2) is capable of generating inward pulling forces, thereby antagonizing 

outward pushing forces exerted by Cut7. 

An assay system for evaluation of human kinesin-14 inhibitors using fission yeast  

Yeast-based screening for biologically active small molecules has successfully 

been  implemented for the identification of promising drugs against human cancer and 

other diseases (Mager and Winderickx, 2005). This strategy is also useful to develop 

reagents that exhibit a beneficial impact on normal cells, e.g. those promoting lifespan 

extension (Sarnoski et al., 2017). Fission yeast has been used for several screenings, 

such as purification of specific compounds produced by Actinomycetes (Lewis et al., 

2017) and a functional assay for Indinavir, an inhibitor against Human 

Immunodeficiency Virus Type-1 (Benko et al., 2016; Benko et al., 2017; Yang et al., 

2012). Having seen toxicity derived from overproduced HSET in fission yeast cells (see 

Figure 1A), we exploited this lethal phenotype for the biological evaluation of known 

HSET inhibitors described earlier (AZ82, CW069 and SR31527) (Cosenza and Kramer, 

2016; Xiao and Yang, 2016; Zhang et al., 2016). 

Since we can detect the inhibitory activity of compounds through a simple assay 

for cell growth properties, it is possible to assess the specificity and the efficacy of these 
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inhibitors. If inhibitors were truly specific to HSET molecules, these compounds on 

their own would not make any adverse impact on fission yeast growth (top row in 

Figure 2A, referred to as specific drugs). Upon overexpression of HSET, these 

inhibitors would now ameliorate viability loss resulting from HSET-mediated toxicity 

(bottom two rows in Figure 2A). By contrast, if these small molecules could not inhibit 

HSET activity, viability would not be increased in their presence (second row in Figure 

2A). On the other hand, if inhibitors on their own interfere with fission yeast growth, it 

implies that these compounds recognize molecules or inactivate some pathways that are 

essential for fission yeast cells independent of HSET; in other words, these inhibitors 

are not specific to HSET, but instead they are drugs that exhibit off-target effects (top 

row in Figure 2B, referred to as multi-target drugs). Nonetheless, if HSET is effectively 

inhibited by these drugs, viability of fission yeast cells would be ameliorated to some 

extent compared to that without drug treatment (bottom row in Figure 2B). 

All three known HSET inhibitors have non-specific cytotoxicity toward fission 

yeast cells 

As aforementioned, if the HSET inhibitors were specific to human kinesin-14, addition 

of these molecules to wild type fission yeast should not incur any adverse effects on cell 

growth, as there are no targets (i.e. HSET) in these cells. Even if these inhibitors were to 

effectively inhibit fission yeast kinesin-14 molecules (i.e. Pkl1 and Klp2), they would 

not kill fission yeast cells, as deletion of either pkl1 or klp2, or even double deletion is 

viable (Troxell et al., 2001). To address the specificity of HSET inhibitors, we first 
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treated fission yeast cells individually with these drugs without introducing HSET. It is 

known that yeast cells are not highly sensitive to exogenous drugs for two reasons; not 

only does a thick cell wall prevent drugs entering the cells but the presence of P-

glycoprotein transporters (multi-drug resistance proteins) actively pump drugs out of the 

cells (Nishi et al., 1992). Therefore, for our experiments, we exploited genetically 

tractable strains (YA8 and SAK931, Table 2) that are specifically designed for chemical 

biology (Arita et al., 2011; Takemoto et al., 2016b). In these strains, genes involved in 

influx and efflux of exogenously added drugs are multiply deleted; in YA8, genes 

encoding two major transporters, Bfr1 and Pmd1 are deleted  (bfr1∆pmd1∆) (Arita et al., 

2011), while SAK931 contains deletions of 5 additional genes (7∆) (Takemoto et al., 

2016a).  

As shown in Figure 3A, we found that all three drugs displayed very strong 

growth-inhibitory effects on YA8 or SA931 at 100 µM. CW069 was not cytotoxic in 

YA8 cells, but was in SAK931; fission yeast cells are likely less permeable to CW069 

than AZ82 or SR31527. These results indicated that all three HSET inhibitors targeted 

molecules besides HSET within fission yeast cells that are essential for cell viability. It 

is noted that no obvious alterations in cell morphology were observed as a result of 

treatment with these drugs (Lewis et al., 2017), of which currently, the molecular details 

of off-target effects remain to be dissected. In summary we conclude that none of the 

three inhibitors examined is indisputably specific to HSET, but instead these small 
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molecules interfere with unknown molecular pathways that are needed for cell viability 

of fission yeast.   

AZ82 modestly rescues the lethality caused by HSET overproduction 

We next sought to address whether these inhibitors are capable of rescuing the lethality 

of fission yeast cells resulting from forced expression of HSET. For this purpose, we 

assessed the number of cells in the presence or absence of inhibitors upon HSET 

overproduction. As the three kinesin-14 inhibitors displayed off-target cytotoxicity 

(Figure 3A), various concentrations of individual drugs were tested to find optimal 

concentrations which would, on one hand, repress HSET-mediated lethality, and yet, on 

the other hand display minimal cytotoxicity on their own. Intriguingly, we found that 10 

µM AZ82 could rescue the lethality caused by HSET overproduction (~3 fold increase 

of viability; 6% vs 17% in the absence and presence of AZ82 respectively, Figure 3B 

and C). As the viability of cells treated with AZ82 (10 µM) alone dropped to 42%, the 

degree of rescue by AZ82 would be larger than 3 fold. By contrast, neither CW069 or 

SR31527 exhibited noticeable recovery of cell viability at any concentrations examined 

(Figure 3B and C). Nonetheless, it is noteworthy that no additive toxicity was observed 

between these drugs and HSET overproduction, inviting the possibility that these two 

drugs also somehow neutralized HSET-mediated lethality, albeit in a very modest 

manner. Taking these results together, we consider that the three small molecule HSET 

inhibitors can block HSET function in fission yeast, although they possess off-target 

effects (Table 3). 
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DISCUSSION 

 In this study, we have introduced a novel, simple assay system using fission yeast that 

enables us to monitor the specificity and efficacy of known inhibitors against human 

kinesin-14 proteins. Recently, much attention has been attracted to mitotic kinesins as 

novel antitumor targets and several kinesin inhibitors including those used in this study 

have been developed as potential cancer therapeutics (Al-Obaidi et al., 2016; Cosenza 

and Kramer, 2016; Huszar et al., 2009; Ma et al., 2014; Ohashi et al., 2015; Xiao and 

Yang, 2016). Among them, human kinesin-14 inhibitors are regarded to be promising, 

as many cancer cells display dysregulation of the centrosome cycle, resulting in the 

emergence of supernumerary centrosomes. Yet, these cells escape from lethal 

multipolarity, which is attributed to HSET-dependent centrosome clustering (Cosenza 

and Kramer, 2016; Gergely and Basto, 2008; Kwon et al., 2008). These drugs are 

expected to have minimal impact on non-transformed cells, as HSET is not essential for 

normal mitosis in human beings. Consistent with this notion, all three HSET inhibitors 

(AZ82, CW069 and SR31527) have been shown to inhibit motor activities of HSET in 

vitro and display growth-suppressing characteristics to some extent in human cancer 

cells that contain supernumerary centrosomes (Watts et al., 2013; Wu et al., 2013; 

Zhang et al., 2016). However, whether these drugs are specific to HSET has not 

rigorously been evaluated. One reason for this pitfall is that depletion or inactivation of 
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HSET, a target of these drugs, in tumor cells results in low viability, which hampers 

accurate assessment of off-target effects in these cells. 

Given this complication, the fission yeast system introduced in this work is 

robust. As fission yeast cells are devoid of HSET, the existence of off-target effects are 

easily monitored and reliably assessed. Our results indicate that all three drugs have 

undesirable targets in fission yeast that are essential for cell viability. Accordingly, we 

ponder that in principle, none of these reagents is ideal as a specific HSET inhibitor. It 

is of note that consistent with this proposition, the existence of target molecules other 

than HSET was previously pointed out for all three drugs (Watts et al., 2013; Wu et al., 

2013; Zhang et al., 2016). 

Despite off-target effects, we have found that AZ82 exhibits inhibitory activity 

toward otherwise toxic HSET overproduction in fission yeast and that the other two 

reagents, CW069 and SR31527, are likely to neutralize toxicity resulting from HSET 

overproduction, although their impact is less than that of AZ82. As we are able to 

monitor the specificity and the efficacy of HSET inhibitors by implementing this system, 

if new inhibitors were developed, our rapid and robust strategy would provide a 

powerful tool for their biological assessment in combination with a conventional human 

culture cell system.   

In fission yeast, as in other organisms, simultaneous inactivation of kinesin-5 

and kinesin-14 rescues lethality resulting from kinesin-5 inhibition alone (Civelekoglu-

Scholey et al., 2010; Mountain et al., 1999; O'Connell et al., 1993; Pidoux et al., 1996; 
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Rincon et al., 2017; Rodriguez et al., 2008; Saunders et al., 1997; Troxell et al., 2001; 

Wang et al., 2015; Yukawa et al., 2017; Yukawa et al., 2018). Thus, effective inhibitors 

against fission yeast kinesin-14s (Pkl1 and Klp2) could be identified using cut7 

temperature-sensitive mutants, as previously proposed in the Aspergillus nidulans 

system (Wang et al., 2015). These inhibitors might be also effective to suppress HSET 

activities, as HSET and Pkl1/Klp2 are structurally conserved and HSET functionally 

replaces for Pkl1 or Klp2 when introduced into fission yeast (Yukawa et al., 2018). 

Finally, we would like to point out that the methodology described in this study 

could be exploited as an assay system for inhibitors against any human proteins of 

interest. Provided that overproduction of those human proteins display some defective 

phenotypes including lethality, which is often the case (Benko et al., 2017; Matsuyama 

et al., 2006; Nkeze et al., 2015), small molecule libraries, natural products or extracts 

from any organism could be used to identify potential inhibitors (Figure 4). In fact, we 

have recently obtained small molecules derived from plants that specifically rescue 

lethality caused by HSET overproduction with very little cytotoxicity on their own 

(M.Y., T.T., and K.K., unpublished results). Detailed characterization of these 

molecules is in progress using both fission yeast and human cancer cells. 

 

MATERIALS AND METHODS 

Strains, media, and genetic methods  
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Fission yeast strains used in this study are listed in Table 2. Media, growth conditions, 

and manipulations were carried out as previously described (Bähler et al., 1998; Moreno 

et al., 1991; Sato et al., 2005). For most of the experiments, rich YE5S liquid media and 

agar plates were used. Wild-type strain (513; Table 2), drug-sensitive strains (YA8 and 

SAK931) were provided by P. Nurse (The Francis Crick Institute, London, England, 

UK), M. Yoshida (Chemical Genetics Laboratory, RIKEN, Saitama, Japan) and S. A. 

Kawashima (Graduate School of Pharmaceutical Sciences, The University of Tokyo, 

Tokyo, Japan), respectively. For overexpression experiments using thiamine-repressible 

nmt series plasmids (Basi et al., 1993; Maundrell, 1990), cells were first grown in 

Pombe Glutamate Medium (PMG, the medium in which the ammonium of EMM2 is 

replaced with 20 mM glutamic acid) with required the amino acid supplements in the 

presence of 15 µM thiamine overnight. Thiamine was then washed out by filtration 

pump and cells continued to be cultured in the same PMG media in the absence of 

thiamine for further 12-24 h as necessary. Cells were serially diluted 10-fold, from an 

initial concentration of 2 x 107 cells/ml, and spotted onto PMG plates with added 

supplements in the presence or absence of 15 µM thiamine. Plates were incubated at 

27°C or 30°C.  

Preparation and manipulation of nucleic acids  

Enzymes were used as recommended by the suppliers (New England Biolabs Inc. 

Ipswich, MA and Takara Bio Inc., Shiga, Japan). 

Chemical compounds 
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AZ82 was supplied from AstraZeneca (Boston, MA, U.S.A.). CW069 was a kind gift of  

S. V. Ley, the University of Cambridge. SR31527 was purchased from Vitas-M 

Laboratory (Apeldoorn, The Netherlands; Cat number: STK400735). All chemicals 

were dissolved in DMSO at 10 mM and stored at −20°C. 

Treatment of HSET-overproducing fission yeast cells with kinesin 14 inhibitors 

Cells were cultured in YE5S or PMG liquid media with the required amino acid 

supplements and thiamine until mid-log phase at 30°C. Thiamine was washed out and 

cells shifted to the same PMG liquid media without thiamine at a concentration of 1 × 

105 cells/ml. The kinesin-14 inhibitors or DMSO (mock) were then added at various 

concentrations between 1 µM and 100 µM (0.01%–1% DMSO solution) and the cells 

were cultured at 30°C. OD measurements for yeast cultures were performed in a 

microplate reader (CHROMATE 4300; Awareness Technology Inc., Palm City, FL, 

U.S.A.), using an Iwaki Round Bottom 96-well microplate with lid and 200 µl per well 

for all measurements. OD measurements were performed at 600 nm at 30°C. Yeast cell 

number was determined using an automated cell counter (F-820; Sysmex, Kobe, Japan). 

Images of culture were taken by FAS-IV gel imaging system (Nippon Genetics, Tokyo, 

Japan). 

Fluorescence microscopy 

Fluorescence microscopy images were obtained using a DeltaVision microscope system 

(DeltaVision Elite; GE Healthcare, Chicago, IL, U.S.A.) comprising a wide-field 

inverted epifluorescence microscope (IX71; Olympus, Tokyo, Japan) and a Plan 
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Apochromat 60×, NA 1.42, oil immersion objective (PLAPON 60×O; Olympus Tokyo, 

Japan). DeltaVision image acquisition software (softWoRx 6.5.2; GE Healthcare, 

Chicago, IL) equipped with a charge-coupled device camera (CoolSNAP HQ2; 

Photometrics, Tucson, AZ, U.S.A.) was used. Live cells were imaged in a glass-

bottomed culture dish (MatTek Corporation, Ashland, MA, U.S.A.) coated with 

soybean lectin and incubated at 27°C. To keep cultures at the proper temperature, a 

temperature-controlled chamber (Air Therm SMT; World Precision Instruments Inc., 

Sarasota, FL, U.S.A.) was used. Images were taken as 14–16 sections along the z axis at 

0.2 µm intervals; they were then deconvolved and merged into a single projection. The 

sections of images acquired were compressed into a 2D projection using the 

DeltaVision maximum intensity algorithm. Deconvolution was applied before the 2D 

projection. Captured images were processed with Photoshop CS6 (version 13.0; Adobe, 

San Jose, CA, U.S.A.). 

Statistical data analysis 

We used the two-tailed χ2 test to evaluate the significance of differences between 

frequencies of the cells with bipolar spindles in different strains. We used this key for 

asterisk placeholders to indicate p-values in the figures: e.g., ****, P < 0.0001. 
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Table 1: IC50 of HSET/KIFC1 inhibitors 

 

 

 

 

 

 

Microtubule-stimulated ATPase activity was measured using bacterially-produced 

HSET proteins. Viability was measured using cancer cell lines that contain excess 

centrosomes. Values (µM) are taken from the following references: AZ82	 (Wu et al., 

2013); SR31527 (Zhang et al., 2016); CW069 (Watts et al., 2013). N.D., not determined. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257436doi: bioRxiv preprint 

https://doi.org/10.1101/257436


	 26	

Table 2: Fission yeast strains used in this study 

Strains Genotypes Figures 
used Derivations  

TY206 h− aur1R-Pnda3-mCherry-atb2 leu1 ura4 1A, 1D This study 

TY223 h+ kanR-Pnmt41-cut7-kanR aur1R-Pnda3-mCherry-atb2 
leu1 ura4 his2 1A, 1D This study 

MY1212 h− lys1+-Pnmt41-GFP-HSET aur1R-Pnda3-mCherry-atb2 
leu1 ura4 lys1 

1A, 1C-
D This study 

TY241 h− kanR-Pnmt41-cut7-kanR lys1+-Pnmt41-GFP-HSET 
aur1R-Pnda3-mCherry-atb2 leu1 ura4 lys1 

1A, 1C-
D This study 

MY1230 h− lys1+-Pnmt1-GFP-pkl1 aur1R-Pnda3-mCherry-atb2 leu1 
ura4 lys1 

1A, 1C-
D This study 

TY245 h− kanR-Pnmt41-cut7-kanR lys1+-Pnmt1-GFP-Pkl1 aur1R-
Pnda3-mCherry-atb2 leu1 ura4 lys1 

1A, 1C-
D This study 

TY208 h− leu1 ura4 [pREP41-GFP] 1B This study 
TY212 h− kanR-Pnmt41-cut7-kanR leu1 ura4 [pREP41-GFP] 1B This study 
TY211 h− leu1 ura4 [pREP41-GFP-klp2] 1B This study 
TY215 h− kanR-Pnmt41-cut7-kanR leu1 ura4 [pREP41-GFP-klp2] 1B This study 

YA8 h+ bfr1::ura4+ pmd1::hisG leu1 ura4 3A-C (Arita et al., 
2011) 

SAK931 h− caf5::bsdR pap1-∆ pmd1-∆ mfs1-∆ bfr1-∆ dnf2-∆ 
erg5::ura4+ leu1 ura4 ade6-M210 3A (Takemoto et 

al., 2016a) 

MY1204 h− lys1+-Pnmt1-HSET bfr1::ura4+ pmd1::hisG aur1R-
Pnda3-mCherry-atb2 leu1 ura4 lys1 3B-C This study 

TY250 h− caf5::bsdR pap1-∆ pmd1-∆ mfs1-∆l bfr1-∆ dnf2-∆ 
erg5::ura4+ leu1 ura4 ade6-M210  [pREP41-GFP] 3B-C This study 

TY247 h− caf5::bsdR pap1-∆ pmd1-∆ mfs1-∆ bfr1-∆ dnf2-∆ 
erg5::ura4+ leu1 ura4 ade6-M210  [pREP41-GFP-HSET] 3B-C This study 
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Table 3: Effects of HSET/KIFC1 inhibitors in fission yeast 
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LEGENDS FOR FIGURES 

Figure 1: Co-overproduction of kinesin-5 Cut7 neutralizes growth toxicity derived 

from kinesin-14 overproduction 

(A, B) Spot test. Strains overexpressing cut7 (cut7oe) and/or a gene encoding kinesin-14 

(A, fission yeast pkl1oe or human HSEToe or B, fission yeast klp2oe) were serially (10-

fold) diluted, spotted onto minimal plates in the presence or absence of thiamine 

(+Thi/repressed or –Thi/derepressed, respectively) and incubated at 30°C for 3 d. cell 

conc., cell concentration. klp2 was expressed ectopically on plasmids. nmt1-pkl1 and 

nmt41-HSET were integrated at the lys1 locus (Yukawa et al., 2018), while the nmt41 

promoter was integrated in front of the initiation codon of the cut7 gene (Bähler et al., 

1998). (C) Cellular localization of overexpressed Pkl1 and HSET and spindle 

morphology. Representative images are shown for each strain. Scale bars, 10 µm. (D) 

The percentage of bipolar (green) or monopolar spindles (magenta) upon 

overexpression of either pkl1 or HSET. In each condition, more than 30 mitotic cells 

were counted (n>30). All P-values are derived from the two- tailed χ2 test (***P<0.001; 

****P<0.0001). 

 

Figure 2: Strategy for evaluation of the specificity and efficacy of human kinesin-

14 inhibitors using a fission yeast system 
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Inhibitors against human kinesin-14 are categorized into two classes. The first class is 

those that do not inhibit fission yeast cells on their own (A, specific drugs). The second 

class is those that possess growth-inhibiting activities on their own. It is likely that these 

drugs have some target molecules other than HSET that are essential for fission yeast 

cell viability (B, multi-target drugs). In either type A or B, we could assess inhibitory 

activity toward HSET by monitoring growth properties of cells in which HSET is 

overproduced in the absence or presence of drug treatment. 

 

Figure 3: The three kinesin-14 inhibitors have off-target cytotoxicity in fission 

yeast, but AZ82 partially neutralizes HSET-induced lethality 

(A) Growth suppression of fission yeast cells upon treatment with individual kinesin-14 

inhibitors. Two types of fission yeast strains (YA8 or SAK931) were used. (B) Growth 

characteristics of fission yeast cells upon HSET overproduction in the presence of 

individual inhibitors. YA8 or SA931 cells were inoculated at 105 cells/ml in minimal 

medium in the absence of thiamine (derepressed condition) in 96-hole microplates, and 

DMSO (mock) or drug (dissolved in DMSO) was added. The final concentration of 

DMSO was 1%. Cells were incubated for 2-3 d at 30°C. WT: YA8 or SA931; HSEToe 

YA8 or SA931 overexpressing HSET gene. Note that small precipitates of cells are 

visible in YA8/HSEToe cells containing 5 or 10 µM of AZ82. (C) Relative number of 

HSET-overproducing cells in the presence of individual drugs. Cell number in the 
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absence of drugs and HSEToe is set as 100%, and the relative value of individual 

conditions are calculated. 

 

Figure 4: A general strategy for identification and evaluation of specific inhibitors 

against human proteins using a fission yeast system 

Provided that human genes overexpressed in fission yeast confer some phenotype, such 

as lethality, this overproducing strain can be used as an assay system in which to 

identify specific inhibitors against these proteins. Libraries consisting of small 

molecules or natural products, or extracts prepared from Actinomycetes, marine 

organisms or plants can be used as sources of inhibitor compounds. Molecules that 

show activity that rescues lethal overproduction of protein X without any adverse off-

target effects toward fission yeast cells would be ideal. 
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Figure 1. Yukawa et al.

WT

cut7oe

klp2oecut7oe

klp2oe

cell conc. :
OFF ON

BA

D

C

pkl1oecut7oe

pkl1oe

Merge GFP-Pkl1 MTs

HSEToecut7oe

HSEToe

Merge GFP-HSET MTs

overexpression :
cell conc. :

overexpression :

pkl1oecut7oe

pkl1oe

HSEToecut7oe

WT

cut7oe

HSEToe

OFF ON

0

100

75

50

25

pkl1oe HSEToe

%
 S

pi
nd

le
 s

tr
uc

tu
re

**** ***

cut7oe− cut7oe− cut7oe−

WT

Monopolar

Bipolar

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257436doi: bioRxiv preprint 

https://doi.org/10.1101/257436


Figure 2. Yukawa et al.
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Figure 3. Yukawa et al.
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Figure 4. Yukawa et al.
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