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Abstract  
 
Recent advances in single-cell transcriptional profiling technologies provide a means to shed new light 

on the dynamic regulation of physiological processes at the single-cell level. Single-cell gene 

expression data taken during cell differentiation have led to novel insights on the functional role of 

cell-to-cell variability. Here, the clustering of cells, the reconstruction of cell lineage progression and 

developmental trajectory, and the identification of key genes involved in the cell fate decision making, 

are among the most common-yet-challenging data analytical tasks. In this work, we developed 

CALISTA (Clustering And Lineage Inference in Single-Cell Transcriptional Analysis) for clustering 

and lineage inference analysis using single-cell transcriptional profiles. CALISTA adopts a likelihood-

based approach using the two-state model of stochastic gene transcriptional bursts to capture the 

heterogeneity of single-cell gene expression. We demonstrated the efficacy of CALISTA by applying 

the method to single-cell gene expression datasets (RT-qPCR and RNA-sequencing) from four cell 

differentiation systems without any lineage bifurcation and with one or multiple lineage bifurcations. 

CALISTA is freely available on https://github.com/CABSEL/CALISTA.  

 

 
 
 
 
 
 
 
 
 
 
 
 
  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 31, 2018. ; https://doi.org/10.1101/257550doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 31, 2018. ; https://doi.org/10.1101/257550doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 31, 2018. ; https://doi.org/10.1101/257550doi: bioRxiv preprint 

https://doi.org/10.1101/257550
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/257550
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/257550
http://creativecommons.org/licenses/by-nc/4.0/


1. Introduction 
 
The differentiation of stem cells into multiple cell types relies on the dynamic regulation of gene 

expression 1. In this regard, advances in single-cell gene transcriptional profiling techniques have given 

a tremendous boost in elucidating the decision making process governing stem cell commitment to 

different cell fates (see a recent review on single-cell transcriptomics technologies2). The applications 

of single-cell transcriptional analysis have led to new insights on the functional role of cell-to-cell gene 

expression heterogeneity in the physiological cell differentiation process 3–7. Along with the surge in 

single-cell transcriptional profiling studies, algorithms for analyzing single-cell transcriptomics data 

have received much attention due to new challenges in the data interpretation. In comparison to 

measurements from aggregate samples of cell population, single-cell gene expression profiles display 

much higher variability, not only due to technical reasons, but also because of the intrinsic stochastic 

(bursty) dynamics of the gene transcriptional process 8. In particular, the stochastic gene transcription 

has been shown to generate highly non-Gaussian distributed expression data 9, which further 

complicate data analysis using standard methods that rely on a standard noise distribution (e.g. 

Gaussian).   

 

Numerous algorithms have recently been developed specifically for the analysis of single-cell gene 

expression data. A class of these computational algorithms is geared toward characterizing cell types or 

states (clusters) within a heterogeneous cell population based on single-cell expression data. 

Traditional clustering algorithms such as k-means and hierarchical clustering have been applied for 

such a purpose 10–12. Several other single-cell clustering strategies, such as CIDR 13, pcaREDUCE 14, 

scLVM 15 and SNN-cliq 16, adapt more advanced algorithms such as principal component analysis 

(PCA) or nearest neighbors search. Time-variant clustering strategies have also been implemented to 

elucidate the appearance of cell types in lineage progression 17,18. Consensus clustering methods, such 

as SC3 19 and SIMLR 20, have also received much interest thanks to their superior stability and 

robustness. Finally, a recent likelihood-based method called SABEC (Simulated Annealing for Bursty 

Expression Clustering) 21 employs a model of the bursty stochastic dynamics of gene transcriptional 

process to cluster cells, such that the gene expression distribution of each cell cluster conforms with the 

analytical distribution governed by the model.  

 

Another important class of algorithms for single-cell gene expression data analysis deals with the 

reconstruction of lineage progression during cell differentiation process and the pseudotemporal 

ordering of single cells along the cell developmental path(s). The lineage progression graph describes 

the transition of stem cells through developmental stages during the cell differentiation. The lineage 

progression may comprise a single developmental path into one cell fate or bifurcating paths into 

multiple cell fates. In these algorithms, the reconstruction of the lineage progression and developmental 

paths is commonly implemented for the purpose of pseudotemporal cell ordering. The pseudotime of a 

cell represents the relative position of the cell along the developmental path, and is typically 

normalized to be between 0 and 1. By plotting the gene expression against the pseudotime of the cells, 

one obtains the trajectory of the gene expression which reflects the gene regulation driving the cell fate 
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decision making. Numerous algorithms, such as DPT 22, SCUBA 17, and MONOCLE 23,24, have been 

developed for single-cell transcriptional data analysis for cell lineage inference and cell ordering (for 

further details see a recent review by Canoodt et al. 25). 

 

In this work, we developed CALISTA (Clustering And Lineage Inference in Single Cell 

Transcriptional Analysis). CALISTA provides three types of analysis of single-cell gene transcriptional 

profiles, namely cell clustering, lineage progression inference, and pseudotemporal cell ordering. 

CALISTA adopts a likelihood-based strategy using the two-state model of the stochastic gene 

transcription process 26. Like a previous clustering method SABEC, the single-cell clustering in 

CALISTA is based on the assumption that cells belonging to a cluster have the same cell state. More 

specifically, the gene expression distribution of each cell cluster (state) follows an analytical 

distribution derived from the two-state model with a particular set of parameters. In comparison to 

SABEC21, CALISTA offers several orders of magnitude of computational speed-up through the 

implementation of a greedy algorithm. Based on the cell clustering result, CALISTA generates the cell 

lineage progression graph using cluster distances, a likelihood-based measure of dissimilarity between 

cell clusters. Moreover, for any two connected cell clusters (states) in the lineage progression graph, 

CALISTA provides the set of transition genes, which represent highly informative gene markers and 

potential regulators of the cell state transition. Given a lineage progression graph, CALISTA 

subsequently assigns cells to state transition edges and evaluates the cell pseudotimes. Finally, 

CALISTA generates gene expression profiles along a developmental path – a sequence of state 

transition edges in the lineage progression graph – in the lineage progression by ordering of the cells 

belonging to the path according to their pseudotimes.  

 

In the following, we described the application of CALISTA to single-cell transcriptional profiles taken 

during the differentiation of human induced pluripotent stem cells (iPSCs) into either a desired 

mesodermal (M) or an undesired endodermal (En) fate 27. In the supplementary material, we further 

included the results of CALISTA application to the analysis of four single-cell transcriptional datasets 

from single-cell RTqPCR and single-cell RNA-sequencing (scRNA-seq) experiments. In these case 

studies, CALISTA was able to reconstruct cell lineage progressions with multiple lineage bifurcations, 

a particularly challenging task in single-cell gene expression analysis that often requires specialized 

algorithms 17,22,28. We further compared the performance of CALISTA to frequently used algorithms 

for clustering and pseudotemporal cell ordering, including SIMLR 20, SC3 19, DPT 22, SCUBA 17, and 

MONOCLE2 23,24. 

 
 

2. Results 
 

2.1 General framework of CALISTA 
 
Figure 1 summarizes the analysis of single-cell transcriptional profiles in CALISTA, which comprises 

three main elements: (1) single-cell clustering, (2) reconstruction of lineage progression, and (3) 

pseudotemporal ordering of cells. In analyzing single-cell expression data, CALISTA adopts a 
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likelihood-based approach, where the likelihood of a cell is defined by the joint probability of the 

measured gene expression according to the steady-state probability distribution derived from the two-

state model 26 (see Methods). As illustrated in Figure 1b, the single-cell clustering in CALISTA 

involves two steps: (1) independent runs of maximum likelihood clustering using a numerically 

efficient greedy algorithm, and (2) consensus clustering using k-medoids 29. The maximum likelihood 

clustering in the first step starts with a random assignment of cells into a desired number of clusters, 

followed by iterations of (a) maximum likelihood estimation of two-state model parameters for each 

gene and each cluster and (b) reassignments of each cell to the cluster that give the largest cell 

likelihood value, until no more cell reassignments occur or until a prescribed maximum number of 

iterations is reached. When the number of clusters is not known a priori, CALISTA provides the 

eigengap plot based on which users can choose the appropriate number of clusters in their dataset (see 

Methods).  The likelihood-based single-cell clustering in CALISTA parallels the clustering algorithm 

SABEC 21, but offers a substantial improvement in computational speed due the difference in the 

implementation of the maximum likelihood clustering (see Supplementary Table 1).   

By viewing the single-cell clusters as cell states through which stem cells transition during the cell 

differentiation, CALISTA uses distances among the cell clusters to reconstruct a lineage progression 

graph. The cluster distance between any two clusters – defined as the maximum difference in the 

cumulative likelihood value upon reassigning the cells from the original cluster to the other cluster (see 

Methods) – gives a measure of dissimilarity in their gene expression distributions. CALISTA generates 

the lineage progression graph by sequentially adding state transition edges connecting closely distanced 

clusters until every cell cluster is connected to at least another cluster (Figure 1c). Users can further 

curate the lineage progression graph by manually adding or removing state transition edges based on 

the cluster distances and available information about the cell differentiation system. For assigning 

directionality to the edges, CALISTA relies on user-provided information, for example information on 

the cell stage or sampling time, the starter/progenitor cells or the expected temporal profiles of the gene 

expression. Furthermore, for any two connected clusters in the lineage progression, CALISTA provides 

the set of transition genes based on gene-wise likelihood differences between having the cells in 

separate cluster and having them together in a single cluster (see Methods). Here, the gene-wise 

likelihood difference reflects the informative power of a gene to discriminate cells between two 

clusters. The transition genes represent candidates of gene markers and may also point to the genes 

regulating for the state transition.  

The final element of CALISTA concerns the pseudotemporal ordering of cells along a user-defined 

developmental path, i.e. a sequence of connected clusters and state transition edges, in the lineage 

progression graph (Figure 1d). For this purpose, we first set the pseudotime for each cluster, which is 

normalized such that the starting cluster in the lineage progression graph has a value of 0 and the final 

cell cluster (or clusters) has a value of 1 (see Methods). Subsequently, we assign each cell to a 

transition edge pointing to or emanating from the cluster to which the cell belongs, again by adopting a 

maximum likelihood principle. More specifically, we assume that the distribution of the single-cell 

gene expression varies monotonically between cell states (clusters) in the lineage progression. The 

likelihood of a cell along a transition edge is computed using a linear interpolation of the cell 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 31, 2018. ; https://doi.org/10.1101/257550doi: bioRxiv preprint 

https://doi.org/10.1101/257550
http://creativecommons.org/licenses/by-nc/4.0/


likelihood values for the connected clusters. Each cell is then assigned to the transition edge that 

maximizes its likelihood value. Anologously, the cell pseudotime is computed by a linear interpolation 

of the cluster pseudotimes, and set to the corresponding maximum point of the cell likelihood value. 

Finally, for any user-defined developmental path, CALISTA identifies the cells belonging to the 

transition edges in the path and orders the cells in increasing pseudotime.  

 

2.2 Application of CALISTA to iPSC to cardiomyocyte differentiation 
 
In the following, we applied CALISTA to analyze single-cell gene expression dataset describing the 

differentiation of human induced pluripotent stem cells (iPSCs) into cardiomyocytes 27. In the original 

study, Bargaje et al. measured the expression level of 96 genes by RT-qPCR for 1896 cells collected 

across 8 time points (day 0, 1, 1.5, 2, 2.5, 3, 4, 5) after induction to differentiate. Figure 2a shows the 

four previously reported developmental states in the differentiation system: epiblast cells (E) in the 

early stage (day 0, 1, 1.5), primitive streak (PS)-like progenitor cells in the intermediate stage (day 2, 

2,5), and a lineage bifurcation into either a desired mesodermal (M) or an undesired endodermal (En) 

fate in the late stage (day 3, 4, 5).  

First, we clustered the cells by using k-means algorithm and CALISTA without using the time 

information. The optimal number of clusters was chosen to be five based on the eigengap plot (see 

Methods and Supplementary Figure 1). As depicted in Figure 2b, the single-cell clustering by k-means 

is incongruent with the known developmental states and with the capture times. One of the cell clusters 

(cluster 3 in Figure 2b, green dots) includes cells from both early (E) and late stage (En and M) cells. 

On the other hand, the single-cell clustering by CALISTA as shown in Figure 2c, recapitulates the 

previously identified developmental states. Here, cluster 1, 2, and 5 contain mostly E, PS, and En cells, 

respectively, while the M cells are split between two clusters (cluster 3 and 4), demarcated by different 

capture times (see cluster composition in Supplementary Figure 2). 

After single-cell clustering, we employed CALISTA to infer the lineage progression graph by 

calculating the cluster distances and by adding state transition edges in decreasing magnitude of the 

distances until each cluster was connected by at least one other cluster. An edge connecting cluster 1 

and 5 was manually removed as the edge was inconsistent with the cell capture time information (i.e., 

bypassing intermediate capture time points). The cluster pseudotime was set to the mode (most 

frequent value) of the cell capture times in the clusters normalized by the maximum capture time. The 

directionality of the state transition edges was set according to the cluster pseudotimes (also see 

Supplementary Figure 3). As illustrated in Figure 2d, the lineage progression graph reconstructed by 

CALISTA accurately replicates the lineage bifurcation event as the cells transition from PS-like cells to 

take on either M or En cell fates 27. Subsequently, for each state transition edge, we identified the set of 

transition genes (see Supplementary Figure 4). Among the identified transition genes in the lineage 

progression graph (25 genes in total), many are known lineage specific transcriptional regulators 

involved in the iPSC cell differentiation, such as EOMES, GATA4, GSC, HAND1, KIT, MESP1, 

SOX17 and T 27. 

In addition, as a measure of cell-to-cell variability, we evaluated the Shannon entropy of the gene 

expression distribution in each cluster, referred to as cluster entropy (see Methods). A higher cluster 
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entropy indicates that the cells in the cluster display broader and more uncertain gene expression 

distribution 7.  As depicted in Figure 2e, the cluster entropy rises at the beginning of the lineage 

progression during the transition from E to PS-like cells, and then decreases as the cells progress into 

more differentiated M and En states. The cluster entropy reaches a peak value for PS-like progenitor 

cells (~ day 2), which coincides with the lineage bifurcation event 27. The rise-and-fall of the cluster 

entropy agrees well with published reports from other cell differentiation systems, suggesting that stem 

cells go through a transition state of high uncertainty before committing to a particular cell fate 7,12.  

 Finally, we employed CALISTA to generate the pseudotemporal ordering of cells along the 

developmental paths in the lineage progression. We identified two cell developmental trajectories in 

the lineage progression: (1) the M path forming mesodermal cells (cluster 1 – 2 – 3 – 4, red path in 

Figure 2d) and (2) the En path forming endodermal cells (cluster 1 – 2 – 5, green path in Figure 2d). 

After (re)assigning cells to the state transition edges and prescribing cell pseudotimes, we ordered cells 

belonging to each developmental trajectory in increasing pseudotimes, for a total of 1408 cells in the M 

path and 1215 cells in the En path. Furthermore, to visualize the trajectories of the gene expression 

along the two cell differentiation paths, we calculated the moving average expression values of the 

transition genes for the pseudotemporally ordered cells using a moving window of 190 cells (see 

Figure 2g-i and Supplementary Figure 5).  

A number of transition genes follow the same dynamic expression profile along the M and En 

paths, with an upregulation from E to PS-like transition, followed by a downregulation from PS-like to 

M or En transition (see Figure 2g). The majority of genes with the aforementioned trajectory are 

known PS-like markers (for example EOMES, GSC, MESP1, and MIXL1 27,30,31), and thus, we refer to 

these genes as PS-genes (Supplementary Table 2). Another group of transition genes show differential 

profiles after the bifurcation in the lineage progression (i.e., after PS-like state). Here, we define M-

genes as the genes with higher expressions along the M path than the En path (see Figure 2h). 

Correspondingly, we define En-genes as genes with higher expressions along the En path than the M 

path (see Figure 2i). Notably, many of the known M marker genes (e.g., BMP4, HAND1, MYL4 and 

TNNT2 27,32) are among the M-genes (see Supplementary Table 2), and several of the known En 

marker genes (e.g. HNFA4, KIT, and SOX17 27,33,34) are among the En-genes (see Supplementary 

Table 2). In general, after the lineage bifurcation, the expressions of M genes are upregulated along the 

M path, but are either downregulated (BMP4, HAND1, KDR) or unchanged (MYL4, TGFB2, TNNT2) 

along the En path. Among the En genes, the expression of HNFA4 increases along the En path after the 

lineage bifurcation, but remains relatively unchanged along the M path. The expression of KIT follows 

the opposite profile, where the gene expression is downregulated along the M path and is relatively 

unchanged along the En path. While the expression of SOX17, like KIT, decreases along the M path, 

the gene is upregulated along the En path immediately after the lineage bifurcation before being 

downregulated toward the end of the developmental trajectory.  

We subsequently constructed gene co-expression (correlation) networks based on the moving 

average gene expression profiles for the M and En developmental paths (pairwise Pearson correlation, 

p-value ≤ 0.01 and correlation value ≥ 0.8, see Supplementary Figure 6). We further identified cliques 

in the M and En gene co-expression networks, i.e. a subset of genes (at least 5) that are connected to 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 31, 2018. ; https://doi.org/10.1101/257550doi: bioRxiv preprint 

https://doi.org/10.1101/257550
http://creativecommons.org/licenses/by-nc/4.0/


each other, using a maximal clique analysis by the Bron-Kerbosch algorithm 35. Figure 2j depicts the 

cliques from the M and En gene co-expression networks, showing three distinct gene regulatory 

modules: one module specific to the M path (red), another specific to the En path (green), and finally a 

shared module (grey). Here, most of the PS genes, including known PS marker genes, belong to the 

shared module. Besides, the shared module includes DKK1, FZD1 and T, regulators of Wnt signaling 

pathway, which have been shown to promote cell differentiation 36. Meanwhile, GATA6, which plays 

an important role in the endoderm commitment 30, is in the En module. Finally, the M module shows 

activating relationships among mesoderm markers (e.g. BMP4, MYL4 and HAND1), and antagonist 

interactions between several M genes and KIT, an En gene and marker.  

We further evaluated the performance of CALISTA using three publicly available RT-qPCR and 

RNA-seq datasets 11,37,38 (see Supplementary Note 1). Notably, for each of the datasets, CALISTA is 

able to produce accurate clustering results that are consistent with the known population substructures, 

and to infer single11 or multiple 37,38 bifurcation events in the lineage progression. 

 

2.3 Comparison to existing methods 
 
In comparison to single-cell clustering algorithm SABEC 21, the clustering procedure in CALISTA 

converges substantially faster, while producing comparable clustering results (see Supplementary Fig. 

10). For example, in the application to single-cell expression data from hematopoietic stem cell (HSC) 

differentiation 38, 50 repeats of SABEC took roughly 28 hours to complete, while our greedy algorithm 

converged to the final consensus-based solution in seconds on the same computer workstation (see 

Table 1).    

We also compared the performance of CALISTA to three additional clustering algorithms, namely 

SIMLR20, SC319 and MONOCLE 228. SIMLR and SC are consensus-clustering methods that learn cell-

cell similarities by using multiple kernels and Laplacian transformations, respectively. On the other 

hand, MONOCLE 2 is a software tool specifically designed for single-cell gene expression data 

analysis that also includes, among other features, a single-cell clustering algorithm using a t-distributed 

method. For the comparison of performance, we considered four publicly available scRNA-seq 

datasets39–42, including Kolodziejczyk et al. study on the differentiation of pluripotent stem cells under 

different conditions 39; Pollen et al. study on the identification of different cell types within a 

heterogeneous human fetal population 43; Usoskin et al. study using single mouse neural cells 41; and 

Villani et al. study on the detection of human blood dendritic cell subpopulations 42. Here, the reference 

cell identities were taken from single-cell labeling in the original studies 39,41–43. To assess the 

clustering accuracy of each method, we calculated the Adjusted Rand Index (ARI)19,44, which ranges 

between 0 (fully incorrect labels) and 1 (fully correct labels).  

Table 1A compares the ARIs of SIMLR, SC3, MONOCLE 2, and CALISTA for the four datasets 

mentioned above (see Supplementary Table S3 for cell clustering results). The results show 

comparable clustering performance among all of the algorithms for two of the studies (Kolodziejczyk 

et al.39 and Pollen et al.40 datasets), with high accuracy (ARI> 0.85). Meanwhile, for the remaining two 

studies (Usoskin41 and Villani42 datasets), CALISTA and SC3 outperform SIMLR and MONOCLE 2. 
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Next, we compared the performance of CALISTA in reconstructing the lineage progression with 

three existing algorithms, namely Diffusion Pseudotime (DPT) 22, SCUBA 17, and MONOCLE 2 28, 

that are able to infer linear and branched trajectories. SCUBA and MONOCLE 2 are able to detect 

multiple bifurcation events, while DPT is designed for the identification of a single branching point 22. 

Of note, like CALISTA, MONOCLE 2 reconstructs the lineage progression without any user inputs. In 

contrast, users have to specify information on the topology of the lineage progression (linear or 

branched) in DPT and to provide the cell stage information in SCUBA. We applied the algorithms to 

single-cell gene expression datasets from four studies characterized a variety of lineage topologies, 

including Bargaje et al. study above 11; Chu et al. study 37 on the differentiation of human embryonic 

stem cells into endodermal cells; Moignard et al. study 38 on hematopoietic stem cell differentiation; 

and Treutlein et al. study 11 on mouse embryonic fibroblast differentiation into neurons. We excluded 

SCUBA for one of the datasets (from Moignard et al. study 38) since the capture time information was 

not available. Table 1B summarizes the results of the reconstruction of lineage progression. For each of 

the datasets, CALISTA was able to accurately recover the lineage progression with single or multiple 

bifurcations (see Figure 2 and Supplementary Figure 7). Conversely, DPT, SCUBA and MONOCLE 2 

had difficulties in reconstructing lineage progression without bifurcation (e.g., inconsistency with cell 

capture times or identification of spurious bifurcation) as well as that with multiple bifurcations (see 

Supplementary Figures 11-13). 

 

2.4 Algorithmic stability 
 
In order to assess the robustness of CALISTA results, we performed repeated independent runs of 

CALISTA using a random subsample of cells from Bargaje et al. 27, Chu et al. 37, Moignard et al. 38, 

and Treutlein et al. 11 datasets, using the same settings used in the analysis of the full dataset. We then 

evaluated the similarity between the outcome of CALISTA single-cell clustering of the subsamples 

with that of the original full dataset, by computing the figure of merit (FOM)45 and the area under the 

Receiver Operating Characteristic (AUROC) and the Precision-Recall curve (AUPR)46. Notably, the 

performance of CALISTA decreased only marginally with decreasing cell population in the random 

subsample between 60% and 90% of the original dataset (see Supplementary Figure 14 and 

Supplementary Table 4).  

 

3. Methods 
 

3.1 Input data 

The single-cell gene expression matrix should be formatted into an 𝑁×𝐺 matrix, where G denotes the 

number of genes, N denotes the number of cells, and the matrix element 𝑚%,' is the transcriptional 

expression value of gene g in the n-th cell. CALISTA accepts expression values from RT-qPCR (2)* 

value) and RNA-sequencing (i.e. log(RPKM) or log(TPM)). In preparing the input matrix, the single-

cell gene expression data should first be normalized 3,47 and transformed into the appropriate 

expression values 48,49. When the cells come from different stages or time points, the stage or time 

information can also be passed into CALISTA, which will be used for determining lineage progression.  
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Before performing single-cell analysis, CALISTA first preprocesses the single-cell expression 

matrix by removing the genes and cells (i.e., rows and columns of the expression matrix, respectively) 

with a large fraction of zero expression values, exceeding a user-defined threshold (default threshold: 

90% for genes and 100% for cells). When the number of genes G is much higher than the number of 

cells N (for example, in the case of RNA-seq datasets), CALISTA further selects a number of 

informative genes Y (default Y = G/2 or 200, whichever is smaller) for the single-cell analysis 

following a previously described procedure 50. Briefly, CALISTA first calculates gene-wise mean 

(average) expressions and coefficients of variation (CV) across the cells. The genes are partitioned into 

20 bins based on their mean expressions. The CV values of the genes within each bin are subsequently 

transformed into z-scores. Finally, the genes from the Y largest CV z-scores among all bins are selected 

for the single-cell analysis. 

In the final preprocessing step, CALISTA scales the single-cell expression values such that the 

maximum value of any gene is 200. The scaling is carried out as follows:  

 

𝑚%,' = 2
,-'. /0,123
,-'. /456,1

,-'. 788
								(1)	

   

where 𝑚%,' and 𝑚%,' represent the original and scaled expression value of gene g in the n-th cell 

respectively, and 𝑚/=>,' is the maximum expression value in gene g (i.e. the maximum of 𝑚%,' over 

all cells). The scaling above allows CALISTA to use a pre-computed table for the maximum likelihood 

in the clustering analysis, thereby reducing the computational cost significantly (see Cell Clustering 

below). We tested using in silico datasets and confirmed that the scaling of the expression values does 

not affect the clustering accuracy (see Supplementary Note 2).
 

 

3.2 Cell Clustering 

As illustrated in Figure 1b, CALISTA combines maximum likelihood and consensus clustering 

algorithms for single-cell clustering analysis. Following a previous method SABEC, CALISTA uses 

the stochastic two-state model of gene transcription to derive the steady-state probability distribution of 

gene expression values. The probability distribution is used to prescribe a likelihood value to a cell 

based on the measured single-cell expression values of its genes 21. In contrast to SABEC that employs 

a simulated annealing algorithm, CALISTA implements a numerically efficient greedy algorithm to 

solve the likelihood maximization problem. By repeatedly running the greedy algorithm, each starting 

from a different random initial cell assignment, CALISTA generates a consensus matrix containing the 

number of times that any two cells are assigned to a cluster. Finally, CALISTA uses the consensus 

matrix to cluster cells by k-medoids.  

 

Stochastic two-state gene transcriptional model 

The two-state model of stochastic gene transcriptional process in CALISTA follows the model 

developed by Peccoud and Ycart 26. The model describes a promoter that switches stochastically 

between an OFF (inactive or non-permissive) state, where the gene transcription cannot start, and an 
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ON (active or permissive) state, where the gene transcription can proceed. The set of reactions 

describing the stochastic gene transcription in the two-state model are as follows: 

	
𝑂𝐹𝐹	

AB0 	𝑂𝑁	
	

𝑂𝑁	
ABCC

	𝑂𝐹𝐹	
	

𝑂𝑁	
A* 	𝑂𝑁 + 𝑚𝑅𝑁𝐴	

	
𝑚𝑅𝑁𝐴	

AG/		⊘	
	
where qon is the rate of the promoter activation, qoff is the rate of the promoter inactivation, qt is the rate 

of mRNA production when the promoter is active, qd is the rate constant of mRNA degradation, and m 

denotes the number of mRNA molecules. At steady state, the probability distribution of mRNA count 

m can be approximated by the following density function:9 

 

𝑃 𝑚;	𝜃-%, 𝜃-LL, 𝜃M =
Γ 𝜃-% + 𝑚 Γ 𝜃-% + 𝜃-LL 𝜃M/

Γ 𝑚 + 1 Γ 𝜃-% + 𝜃-LL + 𝑚 Γ 𝜃-%
	 𝐹3 3 𝜃-% + 𝑚, 𝜃-% + 𝜃-LL + 𝑚,−𝜃M 		(2)	 

	

where 1F1 represents the confluent hypergeometric function of the first kind. 

 

Maximum likelihood clustering by greedy algorithm 

As illustrated in Figure 1b, the greedy algorithm for the maximum likelihood single-cell clustering in 

CALISTA comprises three basic steps:  

1. Initialization. Cells are randomly assigned into K clusters with equal probabilities (i.e., uniform 

random cell assignments).  

2. Parameter estimation. For each cluster k (between 1 and K) and each gene g (between 1 and G), 

CALISTA obtains the parameter vector of the two-state gene transcription model 𝜃∗ 𝑔, 𝑘 =

𝜃-%∗ , 𝜃-LL∗ , 𝜃M∗ '

S
 that maximizes the joint probability of obtaining the gene expression values of the 

cells in the cluster, as follows: 

 

𝜃∗ 𝑔, 𝑘 = 𝑎𝑟𝑔max
A

ln 𝑃 𝑚%'; 𝜃 			
%∈\]

		(3) 

 

where 𝑁S is the set of cell indices for the cells in cluster k.  The probability	𝑃 𝑚; 𝜃  is computed using 

the steady state probability distribution from the two-state gene transcription model, as given in Eq. (2) 
9. For computational efficiency, as previously done in SABEC 21, the log-probability ln𝑃 𝑚|𝜃  values 

are pre-computed for m between 0 and 200 and for a set of parameter vectors 𝜃-%` , 𝜃-LL` , 𝜃M`, `a3

b
, 

producing a 𝑊×201 matrix L. The parameter set consists of all combinations from the following 

parameter discretization: qn =[0.5, 1, 2, 3, 4, 5], qoff =[0.25, 0.5, 1, 2, 3, …, 19], and qt = [1, 51, 101, …, 

451]. The parameter ranges in CALISTA are adapted from SABEC and selected to cover the parameter 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 31, 2018. ; https://doi.org/10.1101/257550doi: bioRxiv preprint 

https://doi.org/10.1101/257550
http://creativecommons.org/licenses/by-nc/4.0/


combinations for which 𝑃 𝑚|𝜃  spans a family of steady state distributions of mRNA counts, 

including negative binomial, Poisson, and bimodal distributions. While the number of parameter 

combinations (W = 945) in CALISTA is much lower than that in SABEC (W = 39500), our extensive 

testing indicated that the single-cell clustering in CALISTA performs as well as SABEC at much lower 

computational requirements.  

By pre-computing the log-probability values, the solution to the parameter estimation problem 

above reduces to finding the parameter combination corresponding to the maximum element of the 

following vector: 

 

𝐿×𝑟S,'							(4)	

 

where 𝑟S,' is a 201×1 vector with its i-th element being the number of cells in cluster k with its 

expression value of gene g rounded to the nearest integer equaling to 𝑚%],'.  

3. Cell re-assignment. Once the optimal parameter values for all G genes and all K clusters have been 

obtained, CALISTA reassigns each cell to its new cluster following a greedy algorithm. More 

specifically, CALISTA evaluates the likelihood for each cell to belong to a cluster as follows: 

ΛS 𝑛 = 	 ln 𝑃 𝑚%,'; 𝜃∗ 𝑔, 𝑘
i

'a3

					(5) 

   

where ΛS 𝑛   denotes the likelihood value of the n-th cell to be in cluster k. We reassign each cell to 

the cluster that gives the maximum likelihood. 

 

Steps 2 and 3 from the algorithm outlined above are repeated iteratively until convergence, i.e. until 

there are no new cell reassignments. 

 

Single-cell clustering using consensus matrix  

To improve both the robustness of the single-cell clustering, CALISTA executes the iterative greedy 

clustering algorithm above until convergence for multiple times (by default 50), each starting with a 

different random initial cell assignment. The results from the independent clustering runs are combined 

to produce a 𝑁×𝑁 symmetric consensus matrix 𝐶. The (i,j)-th element of the matrix C gives the 

number of times that the i-th and j-th cells are clustered together, as illustrated in Figure 1b. CALISTA 

subsequently applies k-medoids algorithm using the consensus matrix to obtain the final cell clustering 

assignment 29. 

 

Choosing the number of clusters 

As an aid for choosing the appropriate number of clusters K – when the number is not known a priori – 

CALISTA provides the eigengap plot based on the normalized graph Laplacian matrix 𝐴\×\  of the 

consensus matrix C, defined as follows 51: 

𝐴 = 𝐼 − 𝐵n3 7𝐶𝐵n3 7      (6) 
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where 𝐼 is the 𝑁×𝑁 identity matrix and B is the 𝑁×𝑁 degree matrix of 𝐶, i.e. the diagonal matrix 

whose elements represent the row-wise sum of the consensus matrix (i.e., 𝑏p,p = 𝑐p,r\
ra3 ). The 

eigengap plot is the plot of the eigenvalues λ of the matrix A in an ascending order. The number of 

clusters K can be heuristically chosen based on a “gap” in the eigenvalues of A, where the lowest K 

eigenvalues λ1… λK values are much smaller than λK+1.  

 

3.3 Lineage inference 

The second main component of CALISTA is the reconstruction of cell lineage graph, which reflects the 

lineage progression in the differentiation process. Based on the view that cell clusters represent cell 

states, the nodes of the lineage graph comprise cell clusters, while the edges represent state transitions 

in the lineage progression. For inferring the lineage graph, CALISTA computes cluster distances based 

on dissimilarities in the gene expressions among cells from two clusters. Again, CALISTA adopts a 

likelihood-based strategy using the probability distribution of mRNA from the stochastic two-state 

gene transcription model to define the cluster distances. Finally, users can use CALISTA to extract the 

set of transition genes between any two connected clusters in the lineage graph. 

	
Cluster distance 

Given K clusters from the single-cell clustering analysis above (or provided by the user), CALISTA 

evaluates a 𝐾×𝐾 dissimilarity matrix 𝑆 where the element skj gives the likelihood of cells from cluster 

k to be assigned to cluster j, computed as follows: 

	

𝑠Sr =
1
𝑁S

1
𝐺

ln 𝑃
i

'a3

\]

%]a3

𝑚%],'; 𝜃
∗ 𝑔, 𝑗 					(7)	

	
Note that the diagonal element skk is the sum of the cell likelihood in the original cluster assignment, 

i.e.  𝑠SS = ΛS 𝑛 	%∈\] , and should be larger than other elements skj, 𝑗 ≠ 𝑘. The dissimilarity 

coefficients in the matrix S is subsequently normalized by subtracting each element with the diagonal 

element of the corresponding rows, as follows: 

	
𝑠Sr = 𝑠SS − 𝑠Sr					(8)	

   

Since the likelihood always takes on negative values, the normalized dissimilarity coefficient assumes 

a positive value. A larger 𝑠Sr reflects a higher degree of dissimilarity between the two clusters. The 

distance between the j-th and k-th cluster, denoted by dkj, is defined as: 

	
𝑑Sr = 𝑚𝑎𝑥 𝑠Sr, 𝑠rS 					(9)	

 

Lineage graph construction  

CALISTA generates a lineage graph by connecting single-cell clusters (states) based on the cluster 

distances. The lineage graph describes the state transition of stem cells during the cell differentiation 

process, under the assumption that the transitions occur between closely related cell states (i.e. between 
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clusters with low distances). Briefly, CALISTA starts with a fully disconnected graph of single cell 

clusters, and recursively adds one transition edge at a time in increasing magnitude of cluster distance 

until each cluster is connected by at least one edge. Users can manually add or remove transition edges 

between pairs of clusters/nodes based on the cluster distance ranking, time/cell stage information or 

biological knowledge. 

Once the lineage graph has been established, CALISTA assigns directionalities to the edges in the 

lineage graph according to user-provided information (e.g. stage or time information, starting cells, or 

expected gene expression profiles). When the stage or time information is available for the cells, the 

clusters are first labeled using the most frequent value (mode) of cells’ stage or time. CALISTA then 

assigns the edge directionalities according to the causal direction of the cluster stage or time. 

Alternatively, CALISTA can also employ users provided information on the start cells or a marker 

gene with a known expression profile during cell differentiation (e.g., in in Figure 1d, gene Nfe2 is 

expected to be downregulated during the differentiation process) to determine the starting cell cluster.   

 
 
Transition genes 

Given an edge between cluster k and j in the lineage graph, CALISTA provides the set of transition 

genes whose expressions are differentially distributed between the two clusters. More specifically, 

CALISTA evaluates the likelihood difference between having cells in clusters j and k separately and 

having the cells together in one cluster, again using the steady-state distribution of mRNA from the 

two-state gene transcription model, as follows: 

 

𝑣rS
' = 𝑣r

' + 𝑣S
' − 𝑣r2S

' 																														(10)	  

with 

𝑣r
' = ln 𝑃 𝑚%,'; 𝜃∗ 𝑔, 𝑗

%∈\~

																	(11) 

𝑣S
' = ln 𝑃 𝑚%,'; 𝜃∗ 𝑔, 𝑘

%∈\]

																	(12) 

𝑣r2S
' = ln 𝑃 𝑚%,'; 𝜃∗ 𝑔, 𝑗 + 𝑘

%∈\]∪\~

		(13) 

 

where the optimal parameter vector 𝜃∗ 𝑔, 𝑗 + 𝑘  is obtained according to Equation (3) for the 

combined cells in clusters j and k. A large 𝑣rS
'  reflects that gene g is differentially expressed between 

clusters j and k, according to the stochastic two-state gene transcriptional model. For each edge in the 

lineage graph, CALISTA generates a rank list of genes in decreasing values of 𝑣rS	
' . The transition 

genes correspond to the set of top genes in the list such that the ratio between the sum of 𝑣rS	
' among 

these genes and the total sum of 𝑣rS	
'  among all genes exceeds a given threshold (default threshold: 

50%). 
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3.4 Pseudotemporal cell ordering 

Given a lineage progression graph among cell clusters, the third and last main component of CALISTA 

concerns the pseudotemporal ordering of cells. For this purpose, we first set pseudotimes to the 

clusters. If the time or stage information of the cells is provided, then the pseudotime of each cluster is 

set to the mode of the time/stage of the cells in the cluster. Subsequently, the pseudotimes are 

normalized to have values between 0 and 1 by dividing with the maximum possible value among the 

clusters. The user can manually assign the pseudotimes of the clusters based on some prior knowledge. 

Subsequently, each cell is assign to one of the state transition edges that are incident to the cluster 

containing the cell using the maximum likelihood principle, and then given a pseudotime that 

corresponds to the maximum point. Finally, given a developmental path in the linage progression, 

CALISTA can generates a pseudotemporal ordering of cells belonging to the state transition edges in 

the defined path.  

 

Cell assignment to transition edges 

For pseudotemporal ordering of the cells, CALISTA first assigns cells to the edges in the lineage 

graph. In the following illustration, let us consider a cell n in cluster k. CALISTA allocates the cell n to 

one of the edges incident to cluster k according to the maximum likelihood principle. For this purpose, 

we define the likelihood value of a cell n to belong to an edge pointing from any cluster j to cluster k as 

follows: 

Λr→S 𝑛 = max
M
Λr 𝑛 +

𝑡 − 𝑡r
𝑡S − 𝑡r

ΛS 𝑛 − Λr 𝑛 		(14) 

where tk denotes the cluster pseudotime label. Similarly, we define the likelihood value of the same cell 

to belong to an edge pointing from cluster k to any cluster l by the following: 

ΛS→, 𝑛 = max
M
ΛS 𝑛 +

𝑡 − 𝑡S
𝑡, − 𝑡S

Λ, 𝑛 − ΛS 𝑛 		(15) 

CALISTA computes all possible Λr→S 𝑛  and ΛS→, 𝑛  lineage graph, and assigns the cell to the edge 

that gives the maximum of all Λr→S 𝑛  and ΛS→, 𝑛  values. The pseudotime of the cell 𝑡 𝑛  is set to t 

that gives the maximum likelihood value, as follows: 

𝑡 𝑛 = argmax
M
Λr 𝑛 +

𝑡 − 𝑡r
𝑡S − 𝑡r

ΛS 𝑛 − Λr 𝑛

𝑜𝑟

𝑡 𝑛 = argmax
M
ΛS 𝑛 +

𝑡 − 𝑡S
𝑡, − 𝑡S

Λ, 𝑛 − ΛS 𝑛

		(16) 

depending on the cell assignment to edges above.  

 

Cell ordering along a developmental path 

Given a lineage progression graph, users can identify one or several developmental paths. A 

developmental path is defined as the sequence of connected clusters in the lineage progression graph 

with transition edges pointing from one cluster to the next in the sequence. CALISTA generates a 

pseudotemporal ordering along a given developmental path by first identifying cells belonging to the 

state transition edges in the path and order these cells according to their pseudotimes. Note that in 
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defining the likelihood function for assigning cells to edges, we have made the assumption that the 

steady state probability distributions of gene expressions vary linearly between two connected clusters 

or states. But the result of the cell ordering does not change if we replace the linear varying function in 

the likelihood definition with any monotonic function.  

 

3.4 Cluster entropy 

CALISTA provides the entropy of gene expression for clusters based on the definition of Shannon 

entropy, as follows: 

𝐻S = −
1
𝐺

𝑝�]
' 𝑙𝑜𝑔7

𝑝�]
'

𝑑𝑖𝑚 𝑏S
'

�]
1

�]
1a3

				(17)
i

'a3

 

 where 𝑝�]
' =

��]
1

��� \]
	, 𝐵S

' is the number of bins in the histogram of expression values of gene g in 

cluster k, 𝑧�]
' is the number of cells in the 𝑏S

'-th bin, 𝑑𝑖𝑚 𝑏S
' 	is the size of the 𝑏S

'-th bin and dim 𝑁S  

is the dimensionality of the set 𝑁S. When binning the expression values of each gene g, we ensure that 

each bin contains at least 10 cells.  

 

Code availability 

A MATLAB and R version of CALISTA used in this study is freely available from the following 

website: https://github.com/CABSEL/CALISTA. 

 

Data availability 

All the public single cell data sets analyzed in this study are available from the original publications. In 

silico datasets for evaluating the effects of gene expression scaling are available on CALISTA website: 

https://github.com/CABSEL/CALISTA.  
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Figures 
 
 

 
Figure 1: The workflow of CALISTA. (a) Preprocessing of single-cell expression input data. 
CALISTA accepts both single-cell RT-qPCR (CT values) or RNA-seq (RPKM or TPM). (b) Single-cell 
clustering in CALISTA combines maximum likelihood and consensus clustering approaches. In the 
maximum likelihood step, CALISTA relies on the two-state model of the gene transcription process to 
describe the distribution of single-cell gene expression. The maximum likelihood clustering is 
implemented multiple times, each starting from random assignment of cells into clusters, using a 
greedy algorithm and producing a consensus matrix. The final step implements k-medoids clustering 
algorithm using the consensus matrix. (c) CALISTA evaluates cluster distances - a measure of 
dissimilarity in the gene expression distribution between any two clusters, to reconstruct the lineage 
progression graph. The state transition edges are added in increasing magnitude of cluster distances. In 
addition, CALISTA provides transition genes between any two connected clusters in the lineage graph 
based on the gene-wise likelihood differences of having the cells separately and having them in one 
cluster. (d) For pseudotemporal ordering of the cells, CALISTA reassigns each cell to a transition edge 
and computes its pseudotime by maximizing the cell likelihood. CALISTA uses a linear interpolation 
for evaluating the cell likelihood between two connected clusters. Given a developmental path in the 
lineage progression, CALISTA generates moving averaged gene expression trajectory for the 
pseudotemporally ordered cells belonging to the path.   
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Figure 2: Analysis of lineage relationships during iPSC to cardiomyocyte differentiation using 
CALISTA. The single-cell gene expression dataset was taken from the study of Bargaje et al. (a-c) 
Plots of single-cell dataset along the first two principal component. Each symbol represents a cell, 
while the colors represent (a) the capture time info, (b) k-means single-cell clusters, and (c) CALISTA 
single-cell clusters. (d) Lineage progression graph. The graph was generated by adding transition edges 
in increasing order of cluster distances until each cluster is connected by an edge. An edge connecting 
cluster 1 and 5 was originally included in the graph, but manually removed based on the capture time 
information. (e) Cluster entropies. The entropy is the highest for the cluster harboring  primitive streak 
(PS)-like progenitor cells, i.e. the cluster at the bifurcation in the lineage progression. (f) 
Pseudotemporal ordering of cells. Cells were first assigned to the state transition edges in the lineage 
progression, and pseudotemporally ordered along two developmental paths – mesodermal (M) path 
(red) and endodermal (En) path (green). (g-i) Representative moving average gene expression profiles 
for (g) PS genes, (h) M genes, and (i) En genes. (j) Gene modules in M path (red and grey) and En path 
(green and grey) (drawn using Cytoscape 52). The grey nodes and edges are shared between the M and 
En modules.  
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Tables 
 
Table 1. Comparison of CALISTA with Existing Clustering and Lineage Inference Methods. (A) 
Adjusted Rand Index (ARI) of SIMLR, SC3, MONOCLE 2 and CALISTA. (B) Detection of lineage 
bifurcations by DPT, SCUBA, MONOCLE 2 and CALISTA. 
 

A
SIMLR SC3 MONOCLE 2 CALISTA

Kolodziejczyk et al. (704 cells, 3 clusters) 1 1 0.97 0.96

Pollen et al. (249 cells, 11 clusters) 0.94 0.95 0.86 0.89

Usoskin et al.  (622 cells, 4 clusters) 0.68 0.88 0.57 0.91

Villani et al. (751 cells, 6 clusters) 0.37 0.88 0.58 0.86

B
DPT SCUBA MONOCLE 2 CALISTA

Inferrable bifurcation event/-s Single Multiple Multiple Multiple

Prior Information requirement Linear/Branching Time Points None None

Bargaje et al. (1896 cells, 1 bifurcation event) � � � �

Chu et al. (728 cells, no bifurcation event) � � � �

Moignard et al. (597 cells, 2 bifurcation events) ✓ Partial - ✓ Partial �

Treutlein et al. (405 cells, 1 bifurcation event) � � � �

Clustering Accuracy (Adjusted Rand Index, ARI)

Lineage Inference

 


