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Summary 

We present CALISTA (Clustering and Lineage Inference in Single-Cell Transcriptional Analysis), a 

numerically efficient and highly scalable toolbox for an end-to-end analysis of single-cell transcriptomic 

profiles. CALISTA includes four essential single-cell analyses for cell differentiation studies, including 

single-cell clustering, reconstruction of cell lineage specification, transition gene identification, and 

pseudotemporal cell ordering. In these analyses, we employ a likelihood-based approach where single-

cell mRNA counts are described by a probabilistic distribution function associated with stochastic gene 

transcriptional bursts and random technical dropout events. We evaluated the performance of CALISTA 

by analyzing single-cell gene expression datasets from in silico simulations and various single-cell 

transcriptional profiling technologies, comprising a few hundreds to tens of thousands of cells. A 

comparison with existing single-cell expression analyses, including MONOCLE 2 and SCANPY, 

demonstrated the superiority of CALISTA in reconstructing cell lineage progression and ordering cells 

along cell differentiation paths. CALISTA is freely available on https://www.cabselab.com/calista. 
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Introduction 

The differentiation of stem cells into multiple cell types relies on the dynamic regulation of gene 

expression (Ralston and Shaw, 2008). In this regard, advances in single-cell gene transcriptional profiling 

technology have given a tremendous boost in elucidating the decision making process governing stem 

cell commitment to different cell fates (Kalisky et al., 2018). The applications of single-cell 

transcriptional analysis have led to new insights on the functional role of cell-to-cell gene expression 

heterogeneity in the physiological cell differentiation process (Cacchiarelli et al., 2015; Guo et al., 2010; 

Kumar et al., 2014; Petropoulos et al., 2016; Richard et al., 2016). Along with the surge in single-cell 

transcriptional profiling studies, algorithms for analyzing single-cell transcriptomics data have received 

increasing attention. In comparison to measurements from aggregate or bulk samples of cell population, 

single-cell gene expression profiles display much higher variability, not only due to technical reasons, 

but also because of the intrinsic stochastic (bursty) dynamics of the gene transcriptional process (Kærn 

et al., 2005). In particular, the stochastic gene transcription has been shown to generate highly non-

Gaussian mRNA count distributions (Raj et al., 2006), which complicate data analysis using established 

methods that rely on a standard noise distribution model (e.g. Gaussian or Student’s t-distribution).   

Numerous algorithms have recently been developed specifically for the analysis of single-cell gene 

expression data. A class of these computational algorithms is geared toward identifying cell groups or 

clusters within a heterogeneous cell population. Traditional clustering algorithms such as k-means and 

hierarchical clustering have been applied for such a purpose (Grün et al., 2015; Stumpf et al., 2017; 

Treutlein et al., 2016). Several other single-cell clustering strategies, such as CIDR (Lin et al., 2017), 

pcaREDUCE (žurauskienė and Yau, 2016) and SNN-cliq (Xu and Su, 2015), adapt more advanced 

algorithms such as nearest neighbors search. Time-variant clustering strategies have also been 

implemented to elucidate the appearance of multiple cell lineages (Huang et al., 2014; Marco et al., 

2014). In addition, consensus clustering methods, such as SC3 (Kiselev et al., 2017), have received much 

interest thanks to their superior stability and robustness. Finally, a likelihood-based method called 

SABEC (Simulated Annealing for Bursty Expression Clustering) (Ezer et al., 2016) employs a 

mechanistic model of the bursty stochastic dynamics of gene transcriptional process to cluster cells.  
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Another important class of algorithms deals with the reconstruction of lineage progression during 

cell differentiation process and the pseudotemporal ordering of single cells along the cell developmental 

path(s). The lineage progression describes the transition of stem cells through one or several 

developmental stages during the cell differentiation. This progression may comprise a single 

developmental path from the progenitor cells to one final cell fate, as well as bifurcating paths leading 

to multiple cell fates. In this class of algorithms, the reconstruction of the lineage progression and 

developmental paths is commonly implemented for the purpose of pseudotemporal cell ordering. The 

pseudotime of a cell represents the relative position of the cell along the developmental path and is 

typically normalized to be between 0 and 1. By plotting the gene expression against the pseudotime of 

the cells along a developmental path, one obtains a dynamic trajectory of the gene expression based on 

which the gene regulations driving the cell fate decision-making can be inferred. Numerous algorithms 

are available for single-cell transcriptional data analysis for cell lineage inference and cell ordering, 

notably DPT (Haghverdi et al., 2016), MONOCLE 2 (Qiu et al., 2017; Trapnell et al., 2014) and PAGA 

(Wolf et al., 2018b)   (for a more complete list, see a recent review by Cannoodt et al., 2016). 

In this work, we developed CALISTA (Clustering and Lineage Inference in Single Cell 

Transcriptional Analysis), a numerically efficient and highly scalable toolbox for an end-to-end analysis 

of single-cell transcriptomics data. CALISTA is capable of and has been tested for analyzing datasets 

from major single-cell transcriptional profiling technologies, including scRT-qPCR and scRNA-

sequencing with both plate-based (e.g. SMART-seq) and droplet-based platforms (scDrop-seq). 

CALISTA enables four essential analyses of single-cell transcriptomics in stem cell differentiation 

studies, namely single-cell clustering, reconstruction of lineage progression, transition gene 

identification and cell pseudotime ordering. In existing literature, these analyses are typically carried out 

by stringing several task-specific tools together in a bioinformatics pipeline. But, the basic assumptions 

behind different tools (e.g., regarding the distribution of data noise) maybe incompatible, an issue that 

has not been delved into more carefully in the literature. In contrast, the different analyses in CALISTA 

are fully compatible with each other as they are based on the same likelihood-based approach using 

probabilistic models of gene transcriptional bursts and random dropout events. 

In the next section, we describe the algorithmic aspects and functionalities of CALISTA. The 

single-cell clustering of CALISTA is adapted from a previous method SABEC (Simulated Annealing for 

Bursty Expression Clustering) with a significant improvement in computational times, while the 
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remaining CALISTA analyses represent novel contributions. For this reason, we focus the performance 

evaluation of CALISTA on lineage inference and cell pseudotime ordering, and compare CALISTA with 

widely-used bioinformatics packages including MONOCLE2 (Qiu et al., 2017; Trapnell et al., 2014) and 

SCANPY (Wolf et al., 2018a). Subsequently, we illustrate CALISTA’s end-to-end analysis using single-

cell transcriptional profiles from the differentiation of human induced pluripotent stem cells (iPSCs) into 

mesodermal (M) or undesired endodermal (En) cells (Bargaje et al., 2017). Finally, we demonstrate the 

scalability of CALISTA in analyzing large datasets from scDrop-seq studies. 

 

Results 

Single-cell Transcriptional Analysis using CALISTA 

Fig. 1 summarizes the four analyses of single-cell transcriptional profiles in CALISTA, including: (1) 

clustering of cells, (2) reconstruction of cell lineage progression (3) identification of key transition genes, 

and (4) pseudotemporal ordering of cells. In CALISTA, we adopt a likelihood-based approach where the 

likelihood of a cell is computed using a probability distribution of mRNA defined according to the two-

state model of gene transcriptional process (Peccoud and Ycart, 1995) and when appropriate, a random 

dropout event model (see Methods). A random dropout occurs when mRNA molecules of a gene are not 

detected even though the true mRNA count is non-zero. The single-cell clustering in CALISTA is an 

adaptation of the algorithm SABEC (Ezer et al., 2016), where the single-cell clustering is carried out in 

two steps as illustrated in Figure 1b: (1) independent runs of maximum likelihood clustering, and (2) 

consensus clustering. SABEC has a high computational requirement which hinders its application to 

large single-cell transcriptomics datasets with 10s-100s of thousands of cells from newer high-

throughput single-cell technologies, such as scDrop-Seq. CALISTA offers a substantial numerical speed-

up over SABEC thanks to the implementation of a greedy algorithm and the reduction in the model 

parameter space (see Supplementary Note 1 and Supplementary File S1). CALISTA offers a parallel 

computing option which enables running the analysis over multiple computing cores for further speed-

up.  

The rest of the single-cell analyses in CALISTA represent new contributions of this work. For 

reconstructing cell lineage progression, we treat single-cell clusters as cell states through which stem 

cells transition during the cell differentiation. Here, CALISTA allows the calculation of distances 

between any pair of cell clusters. The cluster distance – defined as the maximum difference in the 
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cumulative likelihood value upon reassigning the cells from the original cluster to the other cluster (see 

Methods) – gives a measure of dissimilarity in their gene expression distributions between any two 

clusters. CALISTA generates the lineage progression graph by sequentially adding state transition edges 

connecting closely distanced clusters until every cell cluster is connected to at least another cluster (Fig. 

1c). CALISTA also provides an interface for users to edit the lineage progression graph, i.e. adding or 

removing state transition edges, based on the cluster distances and other available information about the 

cell differentiation. For assigning directionality to the edges, CALISTA relies on user-provided 

information, for example information on the cell stage or sampling time, the starter/progenitor cells or 

the expected temporal profiles of the gene expression.  

For any two connected clusters in the lineage progression, one can further use CALISTA to obtain 

the set of transition genes. The transition genes are determined based on the differences of the likelihood 

between having the cells in separate clusters and having them together in a single cluster (see Methods). 

Here, the likelihood difference corresponding to a gene reflects the informative power of that gene for 

segregating cells into two clusters. The transition genes may point to candidate gene markers and genes 

regulating the state transition during differentiation. SABEC also allows the determination of transition 

genes, but using a different strategy, called EPiK (Estimation of Pairwise changes in Kinetics), that is 

based on the statistical significance of the difference in the two-state model parameters between any two 

clusters.  

The final component of CALISTA concerns with the pseudotemporal ordering of cells along a 

developmental path – defined as a sequence of connected clusters – in the lineage progression graph (Fig. 

1d). More specifically, given a developmental path in the reconstructed lineage progression, CALISTA 

produces a list of the cells ordered in increasing pseudotimes. For this purpose, we first assign a 

pseudotime to each cluster, which is normalized such that the starting cluster in the lineage progression 

graph has a pseudotime of 0 and the final cell cluster (or clusters) has a pseudotime of 1. Subsequently, 

we assign each cell to a transition edge that is pointing to or emanating from the cluster to which the cell 

belongs, again by adopting the maximum likelihood principle (see Methods). Here, we assume that the 

distribution of the single-cell gene expression varies monotonically between cell states (clusters). For 

simplicity, the likelihood of a cell along a transition edge is computed using a linear interpolation of the 

cell likelihood values from the connected clusters. Each cell is then assigned to the transition edge that 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 25, 2019. ; https://doi.org/10.1101/257550doi: bioRxiv preprint 

https://doi.org/10.1101/257550
http://creativecommons.org/licenses/by-nc/4.0/


 6 

maximizes its likelihood value. Analogously, the cell pseudotime is computed by a linear interpolation 

of the cluster pseudotimes and set to the corresponding maximum point of the cell likelihood value. 

 

Comparison of CALISTA performance with other methods 

We compared the performance of CALISTA with two widely-used single-cell bioinformatics 

packages for lineage inference and pseudotime cell ordering: MONOCLE 2 (Qiu et al., 2017) and 

SCANPY (Wolf et al., 2018a). More specifically, in SCANPY package, we used Partition-based Graph 

Abstraction (PAGA) for lineage progression inference (Wolf et al., 2017) and Diffusion Pseudotime 

(DPT) for pseudotime cell ordering (Haghverdi et al., 2016).  

In the first comparison, we generated in silico single-cell expression data of the cell differentiation 

of central nervous system (CNS) using a stochastic differential equation (SDE) model proposed by Qiu 

et al. (Qiu et al., 2012, n.d.). We simulated single-cell data for 9 time points and 200 cells per time point, 

totaling 1800 cells (see Methods). As shown in Figure 2a, the simulated single-cell data clearly display 

two cell lineage bifurcations, as expected in this cell differentiation system (Qiu et al., 2012): (1) CNS 

precursors (pCNSs) differentiating into neurons and glia cells; (2) glia cells differentiating into astrocytes 

and oligodendrocytes (ODCs). Figures 2b-d show the reconstructed lineage progressions produced by 

MONOCLE 2, PAGA, and CALISTA, respectively. PAGA produced the most inaccurate lineage, 

deviating significantly from the expected lineage (Fig. 2c vs. Fig. 2a). MONOCLE 2 performed better 

than PAGA, producing a lineage progression that is in general agreement with the in silico lineage graph. 

But, looking at MONOCLE 2’s lineage more carefully, the method identified many more bifurcation or 

branching points than expected (13 vs. 2).  CALISTA outperformed both MONOCLE 2 and PAGA, 

generating a lineage progression that agrees very well with the in silico lineage.  

Figures 2e-f depict the pseudotemporal cell ordering for the simulated CNS single-cell expression 

produced by MONOCLE2, DPT, and CALISTA, respectively. Besides visual comparisons of the 

pseudotemporal ordering, we also computed the correlations between the pseudotimes from each of the 

methods and the in silico times of the cells, i.e. the simulation times at which the single-cell mRNA data 

were sampled (see Supplementary File S2). Among the three algorithms compared, CALISTA’s 

pseudotimes have the highest correlation with the in silico cell times (correlation ρ of 0.856), followed 

by DPT (ρ = 0.769) and lastly MONOCLE 2 (ρ = 0.571). The cell orderings in Figures 2e-g further 

confirm the advantage of CALISTA over the other methods.  
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We further evaluated CALISTA’s performance using four single-cell gene transcriptional datasets 

from cell differentiation systems with a variety of lineage topologies, including Bargaje et al. study on 

the differentiation of human induced pluripotent stem cells (iPSC) into cardiomyocytes (Bargaje et al., 

2017), Chu et al. study on the differentiation of human embryonic stem cells (hESC) into endodermal 

cells (Chu et al., 2016), Moignard et al. study on hematopoietic stem cell (HSC) differentiation 

(Moignard et al., 2013), and Treutlein et al. study  on mouse embryonic fibroblast (mEF) differentiation 

into neurons (Treutlein et al., 2016). We again compared CALISTA with the same single-cell analyses 

as in the in silico case study above. Figures 3 summarizes the reconstructed lineage progression of the 

cell differentiation using MONOCLE 2, PAGA, and CALISTA. The cell differentiation in these cell 

systems follows the lineage progression drawn in Figure 4a. As in the in silico case study above, 

CALISTA generated the most accurate lineage progressions, followed by MONOCLE 2 and lastly 

PAGA. Figures 4b-c show the pseudotemporal ordering of cells produced by MONOCLE 2, DPT, and 

CALISTA, respectively. In assessing the accuracy of the pseudotimes, we relied on the known lineage 

progression and cell capture times, since the true cell differentiation times are not known in these 

datasets. All three methods performed equally well for the HSC differentiation dataset by Moignard et 

al. (Moignard et al., 2013). For iPSC dataset (Bargaje et al., 2017), CALISTA gave the most accurate 

pseudotimes, while MONOCLE2 and DPT had difficulties in assigning pseudotimes for one of the final 

cell type due to the close similarity of the gene expression with the progenitor iPSCs (see next section 

for more detail).  For mEF dataset (Treutlein et al., 2016), CALISTA produced pseudotimes that are 

most consistent with the known lineage and capture times, followed by DPT and then MONOCLE 2. 

Finally, for hESC dataset (Chu et al., 2016), CALISTA again outperformed DPT and MONOCLE2, but 

here MONOCLE 2 performed better than DPT. In summary, for both simulated and real life single-cell 

gene expression datasets, CALISTA is able to reconstruct lineage progression and single-cell 

pseudotimes much better than widely-used single-cell gene expression analyses.  

 

Application to the differentiation of induced pluripotent stem cells to cardiomyocytes  

In the following, we demonstrated an end-to-end analysis of single-cell gene expression data using 

CALISTA. Here, we used the single-cell gene expression dataset from the differentiation of human 

iPSCs into cardiomyocytes in Bargaje et al. study (Bargaje et al., 2017). The dataset includes single-cell 

expression of 96 genes measured by RT-qPCR for 1896 cells collected across 8 time points (day 0, 1, 
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1.5, 2, 2.5, 3, 4, 5) after induction to differentiate. Figure 5a shows the developmental states identified in 

the original study: epiblast cells (E) in the early stage (day 0, 1, 1.5), primitive streak (PS)-like progenitor 

cells in the intermediate stage (day 2, 2.5), and a lineage bifurcation into either the desired mesodermal 

(M) or undesired endodermal (En) cell fate in the late stage (day 3, 4, 5).  

First, we clustered the cells by using CALISTA. The optimal number of clusters was chosen to be 

five based on the eigengap plot (see Supplementary Figure S1). The single-cell clustering of CALISTA, 

as shown in Figure 5b, recapitulates the previously identified developmental states. Here, clusters 1, 2, 

and 5 contain mostly E, PS, and En cells, respectively, while M cells are split between clusters 3 and 4 

that are demarcated by different capture times (see cluster compositions in Supplementary Figure S2). 

After single-cell clustering, we employed CALISTA to infer the lineage progression graph. The 

cluster pseudotimes were set to the modes (most frequent values) of the cell capture times in the clusters 

divided by the maximum cell capture time (see Supplementary Figure S3). The directionality of the state 

transition edges was set according to the cluster pseudotimes, pointing from a cluster with a lower 

pseudotime to that with a higher pseudotime. As shown in Figure 5c, the lineage progression graph 

reconstructed by CALISTA reproduces the lineage bifurcation event as the cells transition from PS-like 

cells to take on either M or En cell fates (Bargaje et al., 2017). Subsequently, for each state transition 

edge, we identified the set of transition genes (see Supplementary Figure S4). Among the identified 

transition genes in the lineage progression graph (25 genes in total, see Supplementary File S3), many 

are known lineage specific transcriptional regulators involved in the iPSC cell differentiation, such as 

EOMES, GATA4, GSC, HAND1, KIT, MESP1, SOX17, and T (Bargaje et al., 2017). 

Finally, we employed CALISTA to generate the pseudotemporal ordering of cells along the two 

distinct developmental paths in the lineage progression: (1) the M path forming mesodermal cells (cluster 

1 – 2 – 3 – 4; see red dashed path in Figure 5d) and (2) the En path forming endodermal cells (cluster 1 

– 2 – 5; see green dashed path in Figure 5d). After assigning cells to the state transition edges and 

prescribing the cell pseudotimes, we ordered cells belonging to each developmental trajectory in 

increasing pseudotimes with a total of 1408 cells in the M path and 1215 cells in the En path.  

The likelihood value of each cell computed during the pseudotemporal cell ordering can further be 

visualized as a landscape plot.  Figure 5e depicts the negative log-likelihood surface of the cells over the 

first two principal components. A higher value on the surface indicates a cell state with broader mRNA 

distributions, i.e. a state of higher uncertainty in the gene expression. As shown in Figure 5e, iPSC cells 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 25, 2019. ; https://doi.org/10.1101/257550doi: bioRxiv preprint 

https://doi.org/10.1101/257550
http://creativecommons.org/licenses/by-nc/4.0/


 9 

start their journey from a valley in this surface, implying that the progenitor cells are at a low uncertainty 

state. As the cell differentiation progresses, cells pass through an intermediate state with higher 

uncertainty, where a peak uncertainty is reached at or around the cell lineage bifurcation. After the 

bifurcation, cells follow two paths toward lower uncertainty, leading to two valleys corresponding to 

distinct cell fates (M and En fates). The rise-and-fall in gene expression uncertainty have also been 

reported in other cell differentiation systems, suggesting that stem cells go through a transition state of 

high uncertainty before committing to their final cell fate(s) (Richard et al., 2016; Stumpf et al., 2017).  

To visualize the gene expression trajectories along the two cell differentiation paths, we calculated 

the moving average expression values of transition genes for the pseudotemporally ordered cells using a 

moving window comprising 10% of the total cells in each path (see Figure 5f-h and Supplementary 

Figure S5). A number of transition genes follow highly similar expression trajectories along the M and 

En paths, with an increase in expression from E to PS-like state, followed by a decrease in expression 

from PS-like to M or En state (see Figure 5f). The majority of genes with the aforementioned trajectory 

are known PS-like markers (for example EOMES, GSC, MESP1, and MIXL1 (Bargaje et al., 2017; Ng 

et al., 2005; Tiyaboonchai et al., 2017)), and thus, we refer to these genes as PS-genes (see 

Supplementary File S3). Another group of transition genes show differential profiles between the M and 

En paths after the lineage bifurcation. Here, we define M-genes as the genes with higher expressions 

along the M path than the En path (see Figure 5g). Correspondingly, we define En-genes as genes with 

higher expressions along the En path than the M path (see Figure 5h). Notably, many of the known M 

marker genes (e.g., BMP4, HAND1, MYL4 and TNNT2 (Bargaje et al., 2017; Jagtap et al., 2011)) are 

among the M-genes, and several of the known En marker genes (e.g. HNFA4, KIT, and SOX17 (Bargaje 

et al., 2017; Ng et al., 2010; Thomas et al., 2006)) are among the En-genes (see Supplementary File S3). 

In general, after the lineage bifurcation, the expressions of M genes increase along the M path, but are 

either suppressed (BMP4, HAND1, KDR) or unchanged (MYL4, TGFB2, TNNT2) along the En path. 

Among the known En markers, the expression of HNFA4 increases along the En path after the lineage 

bifurcation but remains relatively unchanged along the M path. The expression of KIT follows the 

opposite profile, where the gene expression is downregulated along the M path and is relatively 

unchanged along the En path. While the expression of SOX17, like KIT, decreases along the M path, the 

gene is upregulated along the En path immediately after the lineage bifurcation before being 

downregulated toward the end of the developmental trajectory.  
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Finally, we constructed gene co-expression networks for the M and En developmental paths based 

on the pseudotemporal profiles of the gene expression (pairwise Pearson correlation, p-value ≤ 0.01 and 

correlation value ≥ 0.8, see Supplementary Figure S6). We identified cliques in the M and En gene co-

expression networks, i.e. a subset of genes (at least 5) that are connected to each other, using a maximal 

clique analysis by the Bron-Kerbosch algorithm (Bron and Kerbosch, 1973). Figure 5i depicts the cliques 

from the M and En gene co-expression networks, showing three gene regulatory modules: one module 

specific to the M path (red), another specific to the En path (green), and a shared module (grey). Most of 

the PS genes, including known PS marker genes, belong to the shared module as expected. Among the 

genes in the shared module, DKK1, FZD1 and T are involved in Wnt signaling pathway, which is known 

to promote cell differentiation (Davidson et al., 2012). GATA6, which plays an important role in the 

endoderm commitment (Tiyaboonchai et al., 2017), belongs to the En module. On the other hand, the M 

module shows activating relationships among mesoderm gene markers (e.g. BMP4, MYL4 and 

HAND1), and antagonistic relationships between several M genes and KIT, an En gene marker.  

 

Application of CALISTA to massively parallel Drop-Seq datasets 

To demonstrate the scalability of CALISTA, we analyzed single-cell expression datasets from droplet-

based assays. Single-cell Drop-seq is a massively parallel genome-wide expression profiling technology 

capable of analyzing thousands of cells in a single experiment. However, the bioinformatic analysis of 

large single-cell transcriptomics datasets poses a significant computational challenge (Angerer et al., 

2017). To address this challenge, CALISTA offers a parallelization option for handling large datasets by 

splitting the greedy optimization runs among multiple computing cores (see Supplementary Note S2 for 

more details on CALISTA implementation).  

We first tested the single-cell clustering performance of CALISTA in analyzing Drop-seq datasets 

using the single-cell study of mouse spinal cord neurons by Sathyamurthy et al. (~18K nuclei) 

(Sathyamurthy et al., 2018) and the study of peripherical blood mononuclear cells by Zheng et al. (~68K 

cells) (Zheng et al., 2017). We noted that k-medoid clustering for large consensus matrices is 

computationally prohibitive. Thus, we bypassed the consensus clustering and took among the 

independent runs of the greedy algorithm, the cell clustering corresponding to the highest likelihood 

value. For Sathyamurthy et al. dataset, CALISTA clustering identified nine single-cell clusters based on 

the eigengap plot, which agrees well with the original study (by comparing Supplementary Figure S7 
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with Figure 1D in the original publication (Sathyamurthy et al., 2018)). For the largest cluster (52% of 

total data) containing neurons, CALISTA further split the cells into two subpopulations – one comprising 

cells with high expressions of Snap25, Syp and Rbiox3, and the other comprising cells with medium 

expression of these genes. Notably, CALISTA was able to distinguish clearly Schwann and Meningeal 

cells, which in the original study (using SC3 (Kiselev et al., 2017)), were placed into the same cluster 

(Sathyamurthy et al., 2018). Meanwhile, for Zheng et al. scDrop-seq dataset, CALISTA generated cell 

clusters that show a general agreement with the original study (see Supplementary Figure S8).  

We then tested CALISTA’s lineage progression reconstruction on scDrop-seq data of ~38K cells, 

taken from 12 developmental stages of zebrafish embryogenesis (Farrell et al., 2018). The results of 

CALISTA are summarized in Figure 6. For this large dataset, we employed a modified clustering 

procedure (see Supplementary Note S2) and identified 82 clusters, 23 of which comprise cells at the final 

developmental stage. Figure 6a depicts the reconstructed lineage progression by CALISTA (see also 

Supplementary File S5), while Figure 6b shows the cell type labels for the cell clusters at the final 

developmental stage based on the expression levels of 26 key gene markers (see Supplementary Figure 

S9). The results are again in good agreement with the known cell types (Farrell et al., 2018). 

 

Discussion 

CALISTA provides four bioinformatic analyses for single-cell expression data that are essential in 

studies of stem cell differentiation. The analyses can be implemented either sequentially in a data 

analytics pipeline or separately in a standalone application. Throughout the development of the analyses 

in CALISTA, we used the same likelihood approach based on the two-state stochastic gene 

transcriptional model. Thus, the analyses are fully compatible with each other. The use of a mechanistic 

model in CALISTA brings an additional advantage, because the model parameters have relevance to the 

mechanism of gene transcription process and thus can provide insights into the gene regulations during 

stem cell differentiation. To the best of our knowledge, CALISTA is the first mechanistic model-based 

toolbox that allows an end-to-end analysis of single-cell transcriptional profiles. Despite the focus on 

stem cells in our work, each of the tools in CALISTA is agnostic to the source of the single-cell 

transcriptomic data analysis and thus can be used for other studies.  

CALISTA’s single-cell clustering analysis is an adaptation of another method called SABEC (Ezer 

et al., 2016), with a significant improvement in computational efficiency, thanks to the implementation 
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of greedy algorithm. This improvement is critical and necessary for the analysis of extremely large 

single-cell datasets with tens to hundreds of thousands of cells, which will become more common in the 

near future. In addition to computational efficiency, CALISTA is able to account for random technical 

dropout events, a feature that is missing from SABEC. With the exception of the single-cell clustering 

analysis, CALISTA includes novel algorithms for transition gene identification, lineage progression 

inference and pseudotime calculations. As demonstrated in numerous case studies above, when 

compared to popular single-cell analysis methods for lineage inference and pseudotemporal cell ordering, 

including MONOCLE 2, PAGA, and DPT, CALISTA performed better than these methods.  

CALISTA further features an interactive interface for user inputs at different steps in the analysis, 

for example in setting the number of cell clusters or during the curation of the lineage progression graph 

(see CALISTA tutorials on https://www.cabselab.com/calista ). The user interface enables incorporating 

existing biological knowledge of the cell differentiation system, which is often difficult – if not 

impossible – to codify. Although such prior knowledge is not necessary for using CALISTA, the ability 

to incorporate this knowledge, whenever available, is a useful and important feature in the analysis of 

single-cell transcriptional profiles.  
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Figures 

 

 

Figure 1. CALISTA single-cell analysis workflow. (a) Single-cell expression input data are first pre-

processed. (b) Single-cell clustering in CALISTA combines maximum likelihood and consensus 

clustering. In the maximum likelihood step, CALISTA relies on the two-state model of the gene 

transcription process in combination with a model of random dropouts to describe the distribution of 

single-cell gene expression. The maximum likelihood clustering is implemented multiple times, each 

starting from random cell assignment into clusters, using a greedy algorithm, the results from which are 

then used to generate a consensus matrix. The final step implements k-medoids clustering algorithm 

using the consensus matrix. (c) CALISTA uses cluster distances - a measure of dissimilarity in the gene 

expression distribution between any two clusters – to reconstruct the lineage progression graph. The state 

transition edges are added in increasing magnitude of cluster distances. In addition, CALISTA provides 

transition genes between any two connected clusters in the lineage graph based on the gene-wise 

likelihood differences between having the cells separately and having them in one cluster. (d) For 

pseudotemporal ordering of the cells, CALISTA reassigns each cell to a transition edge and computes 

its pseudotime by maximizing the cell likelihood. CALISTA uses a linear interpolation for evaluating 

the cell likelihood between two connected clusters. Given a developmental path in the lineage 

progression, CALISTA generates a moving averaged gene expression trajectory using the 

pseudotemporally ordered cells in the path.   
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Figure 2. Performance comparison of CALISTA, MONOCLE 2 and SCANPY (PAGA and DPT) 

using in silico single-cell gene expression data of cell differentiation in the central nervous system 

(CNS). (a) Single-cell gene expression data of CNS differentiation simulated using a model proposed by 

Qiu et al. show two branching / bifurcation points (Qiu et al., 2012): (1) Progenitor CNSs forming 

neurons and glia cells; (2) Glia cells forming astrocytes and oligodendrocytes (ODCs). (b-d) 

Reconstructed lineage progression by MONOCLE 2, PAGA (via SCANPY) and CALISTA, 

respectively. DDRTree: discriminative dimensionality reduction via learning tree (Mao et al., 2015), FA: 

ForceAtlas2 (Hua et al., 2018), PC: principal component. (e-g) Pseudotemporal ordering of cells by 

MONOCLE 2, DPT, and CALISTA, respectively.   
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Figure 3. Comparison of lineage progressions reconstructed from single-cell transcriptional 

profiles by MONOCLE 2, PAGA, and CALISTA. (Top row) Induced pluripotent stem cell (iPSC) 

differentiation into cardiomyocytes in Bargaje et al. study (Bargaje et al., 2017). (Second row) Human 

embryonic stem cell differentiation into endodermal cells in Chu et al. study (Chu et al., 2016). (Third 

row) Hematopoietic stem cell differentiation in Moignard et al. study (Moignard et al., 2013). (Bottom 

row) Mouse embryonic fibroblast differentiation into neurons in Treutlein et al. study (Treutlein et al., 

2016). (Left column) MONOCLE 2. (Middle column) PAGA. (Right column) CALISTA. DDRTree: 

discriminative dimensionality reduction via learning tree (Mao et al., 2015), FA: ForceAtlas2 (Hua et 

al., 2018), PC: principal component. The colors indicate the cell sampling times.  
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Figure 4. Comparison of pseudotemporal cell ordering using single-cell transcriptional profiles by 

MONOCLE 2, DPT, and CALISTA. (Top row) Induced pluripotent stem cell (iPSC) differentiation 

into cardiomyocytes in Bargaje et al. study (Bargaje et al., 2017). (Second row) Human embryonic stem 

cell differentiation into endodermal cells in Chu et al. study (Chu et al., 2016). (Third row) Hematopoietic 

stem cell differentiation in Moignard et al. study (Moignard et al., 2013). (Bottom row) Mouse embryonic 

fibroblast differentiation into neurons in Treutlein et al. study (Treutlein et al., 2016). (First column) 

Single-cell gene expression data. Pseudotemporal cell ordering from (Second column) MONOCLE 2, 

(Third column) DPT, and (Fourth column) CALISTA. PC: principal component. The colors in the first 

column indicate the cell sampling times, and those in the second-fourth column indicate the pseudotimes.  
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Figure 5. End-to-end analysis of single-cell transcriptional profiles during iPSC differentiation into 

ardiomyocyte. The single-cell gene expression dataset was taken from the study of Bargaje et al. 

(Bargaje et al., 2017) (a-b) PCA plots of single-cell dataset along the first two principal components. 

Each dot represents a cell, where the colors indicate (a) the capture time info and (b) CALISTA single-

cell clusters. (c) Lineage progression graph reconstructed by CALISTA. The graph was generated by 

adding transition edges in increasing order of cluster distances until each cluster is connected by an edge. 

Following this procedure, an edge connecting cluster 1 and 5 was originally added in the graph. We 

manually removed this edge as the edge bypassed intermediate capture times. (d) Pseudotemporal 

ordering of cells. Cells were first assigned to the state transition edges in the lineage progression, and 

then pseudotemporally ordered along two developmental paths – mesodermal (M) path (red) and 

endodermal (En) path (green). (e) Cell likelihood landscape. The landscape shows the surface of the 

negative log-likelihood of the cells. A higher value thus indicates a state of increased gene expression 

uncertainty. (f-h) Moving window average of gene expression along M and En developmental paths for 

representative (g) PS, (h) M, and (i) En genes (underlined and boldfaced). (i) Gene modules of M (red 

and grey) and En paths (green and grey) (drawn using Cytoscape (Smoot et al., 2011)). The grey nodes 

and edges are common between the M and En modules. Solid (dashed) lines indicate positive (negative) 

gene correlations. 
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Figure 6. Analysis of single-cell Drop-seq gene expression data of zebrafish embryogenesis (Farrell 

et al., 2018). (a) Reconstruction of lineage progression and pseudotimes calculation of cells (see also 

Supplementary File S5).  (b) Cell types at the final developmental stage. 
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Methods 

Input data and data preprocessing 

The single-cell gene expression matrix should be formatted into an 𝑁 × 𝐺 matrix, where G denotes the 

number of genes, N denotes the number of cells, and the matrix element 𝑚𝑛,𝑔 is the transcriptional 

expression value of gene g in the n-th cell. CALISTA accepts expression values from RT-qPCR (2𝐶𝑡 

value) and scRNA-Seq including both plate-based (e.g. log(RPKM) or log(TPM))  and droplet-based 

measurements (e.g. gene UMI counts). For  UMI data from scDrop-seq, CALISTA further scales the 

expression matrix by dividing each gene UMI count with the total UMI count in the corresponding cell 

and then multiplying the value with the median of the total UMI counts among cells (Zheng et al., 2017).  

Before performing single-cell analysis, we first preprocess the single-cell expression matrix by 

removing the genes and cells (i.e., columns and rows of the expression matrix, respectively) with a large 

fraction of zero expression values, exceeding a user-defined threshold (default threshold: 100% for genes 

and 100% for cells). For scRNA-seq datasets, CALISTA further selects a number of informative genes 

Y for the single-cell analysis following a previously described procedure (Macosko et al., 2015), with Y 

is to the minimum among the following: 200, the number of genes G, and a user-defined percentage of 

the number of cells N. 

Next, CALISTA scales the single-cell expression values such that the maximum value of any 

gene is 200. The scaling is carried out as follows:  

 

�̂�𝑛,𝑔 = 2

𝑙𝑜𝑔2(𝑚𝑛,𝑔+1)

𝑙𝑜𝑔2(𝑚𝑚𝑎𝑥,𝑔)
𝑙𝑜𝑔2(200)

        (1) 

 

where 𝑚𝑛,𝑔 and �̂�𝑛,𝑔 represent the original and scaled expression value of gene g in the n-th cell 

respectively, and 𝑚𝑚𝑎𝑥,𝑔 is the maximum expression value in gene g (i.e. the maximum of 𝑚𝑛,𝑔 over all 

cells). The scaling above allows CALISTA to use a pre-computed table for the maximum likelihood in 

the clustering analysis, thereby reducing the computational cost significantly. We tested using in silico 

single-cell gene expression datasets generated using the two-state gene transcriptional model, and 

confirmed that the scaling does not affect the clustering accuracy (see Supplementary Note S3). After 

scaling, for scDrop-Seq data, we re-rank the top Y genes in increasing value of the gene-wise likelihood 

𝑣𝑔  computed following Equation (10) below, with the random dropout model in Equation (4) 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 25, 2019. ; https://doi.org/10.1101/257550doi: bioRxiv preprint 

https://doi.org/10.1101/257550
http://creativecommons.org/licenses/by-nc/4.0/


 26 

incorporated in the calculation of likelihood. A lower gene-wise likelihood value indicates a broader 

distribution of single-cell expression. Genes with likelihood values exceeding a given threshold (by 

default set at the elbow of the curve of likelihood vs gene rank) is removed from further analysis. 

 

Stochastic two-state gene transcriptional model 

For describing the mRNA distribution of a gene, CALISTA relies on the two-state model developed by 

Peccoud and Ycart (Peccoud and Ycart, 1995). The model characterizes the stochastic bursty gene 

transcriptional process at the single-cell level. More specifically, the model describes a promoter that 

switches stochastically between an OFF (inactive or non-permissive) state, where the gene transcription 

cannot start, and an ON (active or permissive) state, where the gene transcription can proceed. The set 

of reactions describing the stochastic gene transcription in the two-state model are as follows: 

 

𝑂𝐹𝐹 
𝜃𝑜𝑛
→  𝑂𝑁 

𝑂𝑁 
𝜃𝑜𝑓𝑓
→   𝑂𝐹𝐹 

𝑂𝑁 
𝜃𝑡
→  𝑂𝑁 +𝑚𝑅𝑁𝐴 

𝑚𝑅𝑁𝐴 
𝜃𝑑𝑚
→    ⊘ 

 

where on is the rate of the promoter activation, off is the rate of the promoter inactivation, t is the rate 

of mRNA production when the promoter is active, d is the rate constant of mRNA degradation, and m 

denotes the number of mRNA molecules. At steady state, the probability distribution of mRNA count m 

can be approximated by the following density function (Raj et al., 2006): 

 

𝑃2(𝑚; 𝜃𝑜𝑛, 𝜃𝑜𝑓𝑓 , 𝜃𝑡)

=
Γ(𝜃𝑜𝑛 +𝑚)Γ(𝜃𝑜𝑛 + 𝜃𝑜𝑓𝑓)𝜃𝑡

𝑚

Γ(𝑚 + 1)Γ(𝜃𝑜𝑛 + 𝜃𝑜𝑓𝑓 +𝑚)Γ(𝜃𝑜𝑛)
 𝐹1 1(𝜃𝑜𝑛 +𝑚, 𝜃𝑜𝑛 + 𝜃𝑜𝑓𝑓 +𝑚,−𝜃𝑡)  (2)  

 

where 1F1 represents the confluent hypergeometric function of the first kind. 

 

Random dropout event model 
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If desired and when appropriate, users can account for random dropout events in CALISTA. The 

inclusion of random dropouts is particularly suitable when dealing with single-cell transcriptional 

profiles from Drop-Seq technology.  In CALISTA, the dropout probability is modeled by a negative 

exponential function with an optimal decay constant of 𝜆, as follows: 

 

𝑃𝑑(0|𝑚) = 𝑒
−𝜆𝑚     (3) 

 

where 𝑃(0|𝑚) denotes the probability that the measured single-cell mRNA count is zero when the true 

number of mRNA molecules is m. A decay constant 𝜆 = 0 gives a dropout probability of 1, i.e. dropout 

occurs regardless of the true mRNA count. The parameter 𝜆 is estimated from the plot of the fraction of 

zeros against the mean expression across all measured genes, following the procedure described in 

Pierson et al. (Pierson and Yau, 2015) (see examples in Supplementary Figure S10). Combining the 

dropout event model with the two-state gene transcription model above give the following distribution 

function of measured single-cell mRNA readouts �̂�: 

 

𝑃(�̂�; 𝜃𝑜𝑛, 𝜃𝑜𝑓𝑓, 𝜃𝑡) = {
∑ 𝑃𝑑(0|𝑚)𝑃2(𝑚; 𝜃𝑜𝑛, 𝜃𝑜𝑓𝑓 , 𝜃𝑡)      for �̂� = 0 𝑚

(1 − 𝑒−𝜆�̂�)𝑃2(�̂�; 𝜃𝑜𝑛, 𝜃𝑜𝑓𝑓 , 𝜃𝑡)      for �̂� > 0
    (4) 

 

Cell Clustering 

As illustrated in Figure 1b, CALISTA combines maximum likelihood and consensus clustering 

algorithms for single-cell clustering analysis. Following a previous method SABEC (Ezer et al., 2016), 

CALISTA uses the stochastic two-state model of gene transcription to derive the steady-state probability 

distribution of gene expression values. The probability distribution is used to prescribe a likelihood value 

to a cell based on the measured single-cell expression values of its genes (Ezer et al., 2016). In contrast 

to SABEC that employs a simulated annealing algorithm, CALISTA implements a greedy algorithm to 

solve the likelihood maximization problem (see Supplementary Note S1). The greedy algorithm is 

implemented repeatedly for a specified number of times, each starting from a different random initial 

cell assignment, to generate a consensus matrix. The (i,j)-th element of the consensus matrix records the 

number of times that the i-th and j-th cells are assigned to a cluster. The final cell clustering is obtained 
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by applying k-medoids on the consensus matrix (Bhat, 2014) (see Supplementary Note S1 for more 

details).  

 

Lineage Inference  

The first novel algorithm in CALISTA is the reconstruction of cell lineage graph, which reflects the 

lineage progression in the differentiation process (Figure 1c). Based on the view that cell clusters 

represent cell states, the nodes of the lineage graph comprise cell clusters, while the edges represent state 

transitions in the lineage progression. For inferring the lineage graph, CALISTA computes cluster 

distances based on dissimilarities in the gene expressions among cells from two clusters. Again, 

CALISTA adopts a likelihood-based strategy using the probability distribution of mRNA from the 

stochastic two-state gene transcription model to define the cluster distances.  

 

Cluster distance 

Given K clusters from CALISTA single-cell clustering analysis above or the clustering provided by the 

user, CALISTA evaluates a 𝐾 × 𝐾 dissimilarity matrix 𝑆 where the element skj gives the likelihood of 

cells from cluster k to be assigned to cluster j, computed as follows: 

 

𝑠𝑘𝑗 =
1

𝑁𝑘

1

𝐺
(∑ ∑ln𝑃

𝐺

𝑔=1

𝑁𝑘

𝑛𝑘=1

(�̂�𝑛𝑘,𝑔; 𝜃
∗(𝑔, 𝑗)))     (5) 

 

where 𝑁𝑘 is the set of cell indices for the cells in cluster k and 𝜃∗(𝑔, 𝑗) = {𝜃𝑜𝑛
∗ , 𝜃𝑜𝑓𝑓

∗ , 𝜃𝑡
∗}
𝑗

𝑘
 is the parameter 

vector of two-state gene transcription that maximizes the joint probability of obtaining the gene 

expression values for gene g of the cells in the cluster j, as follows: 

 

𝜃∗(𝑔, 𝑗) = 𝑎𝑟𝑔max
𝜃
∑ ln𝑃(�̂�𝑛𝑔; 𝜃).   

𝑛∈𝑁𝑗

  (6) 

The probability 𝑃(�̂�; 𝜃) is computed using the steady state probability distribution from the two-state 

gene transcription model as given in Eq. (2) (assuming that random dropout events are insignificant) or 

using the distribution function defined in Eq. (4).  
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Note that the diagonal element skk is the sum of the cell likelihood in the original cluster 

assignment, i.e.  𝑠𝑘𝑘 = ∑ ∑ ln𝑃 (�̂�𝑛,𝑔; 𝜃
∗(𝑔, 𝑘))𝑔∈𝐺  𝑛∈𝑁𝑘

, and thus are larger than other elements skj, 

𝑗 ≠ 𝑘. The dissimilarity coefficients in the matrix S is subsequently normalized by subtracting each 

element with the diagonal element of the corresponding rows, as follows: 

 

�̂�𝑘𝑗 = 𝑠𝑘𝑘 − 𝑠𝑘𝑗      (7) 

 

Since the likelihood always takes on negative values, the normalized dissimilarity coefficient assumes a 

positive value. A larger �̂�𝑘𝑗 reflects a higher degree of dissimilarity between the two clusters. The 

distance between the j-th and k-th cluster, denoted by dkj, is defined as: 

 

𝑑𝑘𝑗 = 𝑚𝑎𝑥(�̂�𝑘𝑗 , �̂�𝑗𝑘)     (8) 

 

Lineage graph construction   

CALISTA generates a lineage graph by connecting single-cell clusters (states) based on the cluster 

distances. The lineage graph describes the state transition of stem cells during the cell differentiation 

process, under the assumption that the transitions occur between closely related cell states (i.e. between 

clusters with low distances). Briefly, CALISTA starts with a fully disconnected graph of single cell 

clusters, and sequentially adds one transition edge at a time in increasing magnitude of cluster distance 

until each cluster is connected by at least one edge. Once the lineage graph has been established, 

CALISTA assigns directionalities to the edges in the lineage graph according to user-provided 

information, e.g. starting cells/clusters or expected gene expression profiles. Given information of the 

starting cells, CALISTA defines the cell cluster(s) containing these cells as the starting cluster(s). On the 

other hand, given the expected trajectory of some marker genes, CALISTA uses the mean expression of 

the gene marker(s) in each cell cluster to determine the starting cell cluster.  

When the stage or time information is provided for the cells, CALISTA implements the 

following lineage reconstruction procedure. First, large outliers in the cluster distances (i.e. cluster 

distances that are larger than the median value by 3 scaled median absolute deviation) are removed from 

further consideration. Single-cell clusters are then labelled by their most frequent (mode) cell stage or 

time. Clusters with the lowest stage/time label are the starting clusters. CALISTA constructs a connected 
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graph by assigning one (and only one) incoming edge for each cluster, except for the starting cluster(s), 

from the cluster with the lowest cluster distance among the set of feasible parent cluster(s). Here, the 

feasible parents of a given cluster j are any clusters with time/stage labels that are the nearest to but do 

not exceed a cutoff cell times/stages in cluster j. The default cutoff is set to the 5th percentile of the cell 

times/stages in cluster j. This cutoff is used to ensure that there exists sufficient difference in the cell 

times between the parent and daughter cell clusters. 

Besides the automated lineage reconstruction above, CALISTA further allows the users to 

manually add or remove transition edges between pairs of clusters/nodes through a user-friendly GUI 

(see CALISTA user manual). 

Transition genes 

Another novel contribution in CALISTA is an algorithm to extract the set of transition genes between 

any two connected clusters in the lineage graph. Here, transition genes are defined as genes whose single-

cell expressions are highly informative in grouping cells into the two clusters. More specifically, 

CALISTA evaluates the likelihood difference between having cells assigned to two separate clusters and 

having the cells together in one cluster, again using the steady-state distribution of mRNA from the two-

state gene transcription model. Given two clusters j and k, we compute the following: 

 

𝑣𝑗𝑘
𝑔 = 𝑣𝑗

𝑔 + 𝑣𝑘
𝑔 − 𝑣𝑗+𝑘

𝑔                               (9) 

with 

𝑣𝑗
𝑔 = ∑ ln𝑃 (�̂�𝑛,𝑔; 𝜃

∗(𝑔, 𝑗))

𝑛∈𝑁𝑗

                 (10) 

𝑣𝑘
𝑔 = ∑ ln𝑃 (�̂�𝑛,𝑔; 𝜃

∗(𝑔, 𝑘))

𝑛∈𝑁𝑘

                 (11) 

𝑣𝑗+𝑘
𝑔 = ∑ ln𝑃 (�̂�𝑛,𝑔; 𝜃

∗(𝑔, 𝑗 + 𝑘))

𝑛∈𝑁𝑘∪𝑁𝑗

  (12) 

 

where the optimal parameter vector 𝜃∗(𝑔, 𝑗 + 𝑘) is obtained according to Equation (6) for all cells from 

clusters j and k together. The value of 𝑣𝑗𝑘
𝑔

 reflects the informativeness of single-cell gene expression of 

gene g for grouping cells into two clusters j and k by the maximum likelihood principle in CALISTA. 

For each edge in the lineage graph, CALISTA generates a rank list of genes in decreasing values of 𝑣𝑗𝑘 
𝑔

. 
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The transition genes correspond to the set of top genes in the list such that the ratio between the sum of 

𝑣𝑗𝑘 
𝑔

among these genes and the total sum of 𝑣𝑗𝑘 
𝑔

 among all genes exceeds a given threshold (default 

threshold: 50%). 

 

Pseudotemporal ordering of cells 

Given a lineage progression graph among cell clusters, the third and last novel algorithm in CALISTA 

concerns with the pseudotemporal ordering of cells. For this purpose, we first assign a pseudotime to 

each cluster. If the time or stage information of the cells is provided, then the pseudotime of a cluster is 

set to the mode of the time/stage of the cells in the cluster divided by the largest time/stage. When the 

time/stage information is not available, but the starting cluster is known (e.g., from knowledge of starting 

cells or marker genes), we assign a pseudotime of 0 for the starting cluster. We then evaluate the sum of 

the cluster distances along each path in the lineage progression and identify the maximum cumulative 

cluster distance. The pseudotime of a cluster is given by its cumulative cluster distance to the starting 

cluster divided by the maximum cumulative cluster distance.  Once the cluster pseudotimes have been 

set, we assign each cell to one of the state transition edges and compute the cell pseudotime using the 

maximum likelihood principle (see Cell assignment to transition edges below). Finally, given a 

developmental path in the linage progression, CALISTA provides a pseudotemporal ordering of cells 

that have been assigned to the edges belonging to the path.  

 

Cell assignment to transition edges 

For pseudotemporal ordering of the cells, CALISTA first assigns cells to the edges in the lineage graph. 

In the following illustration, let us consider a cell n in cluster k. CALISTA allocates the cell n to one of 

the edges that are incident to cluster k, again following the maximum likelihood principle. For this 

purpose, we define the likelihood value of a cell n to belong to an edge pointing from any cluster j to 

cluster k as follows: 

 

Λ𝑗→𝑘(𝑛) = max
𝑡
Λ𝑗(𝑛) +

(𝑡 − 𝑡𝑗)

(𝑡𝑘 − 𝑡𝑗)
(Λ𝑘(𝑛) − Λ𝑗(𝑛))  (13) 
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where tk denotes the cluster pseudotime label and  Λ𝑘(𝑛)  defines the likelihood value of the n-th cell to 

be in cluster k, i.e. Λ𝑘(𝑛) =  ∑ ln𝑃 (�̂�𝑛,𝑔; 𝜃
∗(𝑔, 𝑘))𝑔∈𝐺 . Similarly, we define the likelihood value of the 

same cell to belong to an edge pointing from cluster k to any cluster l by the following: 

 

Λ𝑘→𝑙(𝑛) = max
𝑡
Λ𝑘(𝑛) +

(𝑡 − 𝑡𝑘)

(𝑡𝑙 − 𝑡𝑘)
(Λ𝑙(𝑛) − Λ𝑘(𝑛))  (14) 

 

CALISTA computes all possible Λ𝑗→𝑘(𝑛) and Λ𝑘→𝑙(𝑛) lineage graph, and assigns the cell to the edge 

that gives the maximum of all Λ𝑗→𝑘(𝑛) and Λ𝑘→𝑙(𝑛) values. The pseudotime of the cell 𝑡(𝑛) is set to t 

that gives the maximum likelihood value, as follows: 

𝑡(𝑛) = argmax
𝑡
Λ𝑗(𝑛) +

(𝑡 − 𝑡𝑗)

(𝑡𝑘 − 𝑡𝑗)
(Λ𝑘(𝑛) − Λ𝑗(𝑛))

𝑜𝑟

𝑡(𝑛) = argmax
𝑡
Λ𝑘(𝑛) +

(𝑡 − 𝑡𝑘)

(𝑡𝑙 − 𝑡𝑘)
(Λ𝑙(𝑛) − Λ𝑘(𝑛))

  (15) 

 

depending on the cell assignment to edges above.  

 

Cell ordering along a developmental path 

Given a lineage progression graph, users can identify one or several developmental paths. A 

developmental path is defined as the sequence of connected clusters in the lineage progression graph 

with transition edges pointing from one cluster to the next in the sequence. CALISTA generates a 

pseudotemporal ordering along a given developmental path by first identifying cells belonging to the 

state transition edges in the path and order these cells according to their pseudotimes. Note that in 

defining the likelihood function for assigning cells to edges, we have assumed that the steady state 

probability distributions of gene expressions vary linearly between two connected clusters or states. But 

the result of the cell ordering does not change if we replace the linear interpolation function with any 

monotonic function.  

 

In silico single-cell time-stamped expression data generation 

For testing the performance of CALISTA, we simulated synthetic single-cell gene expression data using 

the stochastic differentiation equation (SDE) model of the gene network (12 genes) governing the 
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differentiation of central nervous system (CNS) proposed by Qiu et al. (Qiu et al., 2012, n.d.). We 

simulated single-cell gene expression data for 9 time points (tsim = 0, 1, 2, 4, 6, 8, 12, 16, 20) and a total 

of 1800 cells (i.e., 200 cells per time point) using a time step of 0.04. Prior to the sampling, we simulated 

the model until steady state. In order to simulate asynchronous cell differentiation, for each time point 

tsim,i, we took cells from random simulation times assuming a Gaussian distribution with a mean of tsim,i 

and a standard deviation of 0.2. The in silico data are included in CALISTA package 

(http://www.cabselab.com/calista). 
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