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Abstract 

Contextual functional interpretation of -omics data derived from clinical samples is a 

classical and difficult problem in computational systems biology. The measurement of 

thousands of datapoints on single samples has become routine but relating ‘big data’ datasets 

to the complexities of human pathobiology is an area of ongoing research. Complicating this 

is the fact that many publically available datasets use bulk transcriptomics data from complex 

tissues like blood. The most prevalent analytic approaches derive molecular ‘signatures’ of 

disease states or apply modular analysis frameworks to the data. Here we show, using a 

network-based data integration method using clinical phenotype and microarray data as 

inputs, that we can reconstruct multiple features (or endophenotypes) of disease states at 

various scales of organization, from transcript abundance patterns of individual genes 

through co-expression patterns of groups of genes to patterns of cellular behavior in whole 

blood samples, both in single experiments as well as in a meta-analysis of multiple datasets. 

 

Introduction 

The human immune system can be regarded as a complex adaptive system1, even though it is 

integrated with the more complex system of the whole organism. A true systems view2 of the 

immune system needs to account for the various aspects that characterize complex adaptive 

systems generally. This includes emergence, non-linearity, self-organization, noise, scaling, 

heterogeneity, a network architecture and  preservation of context for individual 

observations3. Whole blood is a “window” onto the immune system4, allowing a reasonably 

detailed assessment of the overall state of the immune system based on analysis of easily 
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obtained blood samples. Human diseases can be conceived of as complex state vectors 

embedded in high dimensional state space. 

Here we present ANIMA, Association Network Integration for Multiscale Analysis, a 

framework for discovery of high order, high complexity and low dimensional state space 

vectors from high dimensional low order, low complexity data (i.e. non-normalised 

microarray data and clinical/ sample phenotype data) by producing and interrogating a 

multiscale association network, which allows summary and visualization of different, but 

simultaneously valid views of the state of the immune system under different conditions and 

at multiple scales. 

To showcase this, we have chosen three publically available datasets which were generated 

using whole blood from human subjects with one of three infectious diseases (acute HIV 

infection, malaria and respiratory viral infections). 

Method outline 

ANIMA generates multiscale association network components from multiple data types 

(expression data, clinical data and annotation data, e.g. biological pathways databases), and 

merges all components into a single network (Figure 1). 

First, the algorithm constructs twenty-nine bipartite networks from a multi-scale analytic 

pipeline (Figure 1A, C), combining the output, and the relationships between different 

classes of output, of various analytic approaches (Table 1). Each network contains the 

associations between two distinct data types (Figure 1B, D, Table 2). The final association 

network is a result of graph union, merging all bipartite networks on shared node types while 

retaining all edges (Figure 1E).  This results in a data structure that exposes the relationships 

between modular gene expression and higher-level phenomena, while retaining key probe- 
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and gene-level information. Three types of association (with their respective association 

indices) are utilised, resulting in three distinct edge types in the final data structure (See 

Figure 1B, 1E, Table 2 and Online Methods). Weighted gene co-expression network 

analysis5 (WGCNA) is the core analytic method in ANIMA as this is used to discover 

biological processes in the system of interest.  

Network construction combines three processes. Firstly, mathematical operations on data are 

performed, independent of prior knowledge. This aspect of the approach is completely 

unsupervised. The second process involves the testing of hypotheses, to determine 

differential transcript abundance and differential co-expression of transcripts, requiring 

knowledge of phenotype/ trait classes for the samples. Finally, the results of the first two 

processes are integrated in various ways with prior knowledge. The result is a collection of 

statistically robust analytic results and various associations between them and known 

biology, in the form of a large, multipartite graph. This large graph is stored in a Neo4j graph 

database (referred to as the ANIMA database), making the overall network structure as well 

as the individual nodes and edges accessible for further analysis (see Online Methods). 

After network construction, information in the graph is accessible and utilized to expose new 

information not present in any of the individual steps. The key to making the ANIMA 

database useful lies in the use of functions and web applications (see Online Methods) that 

query this large multipartite graph and return visualization of relationships or tables of nodes 

and/ or links (associations between nodes). This has been implemented in several R functions 

which underpin a Shiny web application called ANIMA REGO.  

The novelty and value in ANIMA lies in its three broad approaches to data interpretation: 

Firstly, it allows detailed, multiscale investigation of a single dataset with a focused research 

question where two phenotype classes are compared (multiscale class comparison). 
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Secondly, as datasets are stratified by default using two variables (typically one identifying 

two disease classes, and the other either a potential confounder (e.g. sex), or a second 

biologic variable of interest, (like co-infection with a second pathogen), we can examine the 

interaction of the second variable with the first using a factorial study design (factorial 

analysis). Finally, multiple datasets, and multiple conditions can be meaningfully compared 

and contrasted to identify similarities and differences (meta-analysis), both at cellular and 

modular level.   

Results 

Validation study: data sets 

We analysed three publically available microarray datasets using the ANIMA pipeline and 

toolset (ArrayExpress/ GEO identifiers: E-GEOD-29429, E-GEOD-34404/ GSE34404, E-

GEOD-68310/ GSE68310). The first compares a cohort of subjects with acute HIV infection 

to healthy controls6, the second compares symptomatic malaria to asymptomatic controls in 

children from a malaria-endemic region7, and the last compares the host response in early 

symptomatic viral respiratory infections8. Where the datasets contained samples from 

multiple timepoints, we restricted the analysis to healthy controls and the first disease 

timepoint. The respiratory virus infection dataset contained samples from subjects with 

infections other than influenza or rhinovirus; we excluded those from this analysis. Figure S1 

shows the experimental design for the factorial analysis in limma for each of the datasets, 

together with the numbers of samples in each of the individual groups. Crucially, each of the 

datasets also included clinical data, which was integrated in the analysis. 
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The ANIMA network 

The result of the script that builds the ANIMA network is a large, mostly connected, 

multipartite graph. Figure S2 shows a subgraph of this network (for dataset HIVsetB, edge 

5). 

Searching the ANIMA network using network paths and filtering on node and 

edge properties 

In the most direct approach, the large ANIMA graph in the neo4j database can be searched 

directly from a web browser using the Cypher Query Language (CQL) 

(https://neo4j.com/developer/cypher-query-language/ ).  

For instance, the query 

 MATCH (ph:pheno)-[r1]-(n:wgcna {square:'HIVsetB',edge:5})-[r2]-(p:PROBE)-

[r3]-(s:SYMBOL) WHERE r1.weight > 0.6 AND p.logfc > 2 RETURN *  

returns WGCNA modules for the HIV positive vs control comparison in the HIVsetB dataset 

whose module eigengene (ME) is strongly correlated with a clinical variable (Pearson R > 

.6), and it also returns the genes mapping to probes within those modules that have high 

levels of over-abundance in HIV-1 infected individuals. In addition to the standard web 

browser interface for neo4j, into which the above query can be directly entered and returned 

in the browser window (Figure 2A), we also provide a function in R (igraph_plotter) that 

returns the network found, and plots this within R (Figure 2B), exports the network as node 

and edge lists for import in other software like Cytoscape (Figure 2C), or returns the result as 

an igraph9 object for further manipulation within R. 
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Approach 1: Multiscale class comparison 

Accessing individual transcript abundance levels in multiple conditions 

It is useful to view transcript abundance patterns of specified probesets, for instance to 

compare microarray data to RT-PCR validation data, or to investigate the behavior of groups 

of biologically related genes in various conditions. We provide an interface for this in 

ANIMA. The user can submit a search string (in the form of a regular expression) containing 

gene names (HUGO Gene Nomenclature Committee (HGNC) symbols), and box-and 

whisker plots for the results are returned. In the original paper on acute HIV infection the 

authors discuss a gene set of six conserved genes that appear at multiple timepoints in an 

inferred regulatory network of viral set point6. We show the normalized expression data 

stratified by HIV status and sex in the two datasets included in the HIV analysis for these six 

genes (Figure 3). In the paper on acute viral respiratory infection, IFI27 and PI3 are 

identified to differ between acute influenza A and human rhinovirus infections. In influenza, 

IFI27 is upregulated and PI3 downregulated relative to human rhinovirus. The malaria study 

replicated prior knowledge of differential transcript abundance for C1QB, MMP9, C3AR1, 

IL18R and HMOX1; we show similar results for these transcripts. Supplementary Table 1 

lists the results of differential expression analysis for the above transcripts in the three 

conditions, providing validation of data at individual transcript level.  

Functional annotation of WGCNA modules 

An important question is what do WGCNA modules represent, given that these are groups of 

genes that co-vary across samples, but that can differ dramatically in size. Instead of 

searching only for evidence of co-regulation of expression by transcription factors, one 

should consider other causes of this co-variance. We propose the notion of WGCNA modules 
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representing biological processes that may be regulated at different scales. For instance, a 

group of transcripts will co-vary across samples if these transcripts are expressed 

(predominantly) in a single cell type, and the proportions of this cell type varies between 

samples (Figure 4). Another group of transcripts may be expressed in multiple cell types, but 

represents a concerted transcriptional program executed in response to a specific stimulus, 

such as interferon-alpha stimulating the expression of a specific group of interferon-regulated 

genes (see below). Generally, we determine the function of WGCNA modules based on all 

statistically significant associations with pathways and cells. 

Relationship of modules to clinical variables 

We performed Pearson correlation of WGCNA module eigengenes (ME) and clinical 

variables (described in Online Methods). Figure 5 shows correlation of the pink ME with age 

and CD4 count in the HIVsetA data set. Clearly, the pink module is significantly associated 

with CD4 count, an association that is independent of age. Further investigation shows that 

this module is linked to interferon signaling, and probably expressed in a variety of cells. 

This agrees with our understanding of acute HIV infection, which is associated with a robust 

type-I interferon response and an acute drop in CD4 count10. 

Investigating the structure of WGCNA modules 

WGCNA modules are groups of co-expressed transcripts. Demonstrating the extent and 

direction of correlation of their constituent probes, and their relationships to biological 

pathways requires sophisticated visualization (Figure 6). We showcase the example using the 

HIVsetB dataset and focus on two modules. The turquoise module shows the coordinated 

action of genes involved in cell division, relating to the cell proliferation in the lymphoid 

compartment. The yellow module is clearly related to interferon signaling; of interest here is 

that within this module there is a group of transcripts highly correlated with each other, all 

related to interferon signaling, suggesting that these transcripts may all be downstream of a 
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single regulatory factor. Also clear from the figure is that this module is not limited to a 

single cell type, but rather to innate immune cells in general.  

Relationships between module-based approaches 

Both WGCNA and the modular approach pioneered by Chaussabel, et al11 rely on clustering 

of similarity matrices to derive modules. A key difference in these methods in ANIMA is that 

the Chaussabel modules are pre-defined, whereas the WGCNA modules are derived from the 

transcriptional data under study. It is therefore interesting to discover the relationships 

between these two approaches. Figure 7A shows the bipartite network of WGCNA and 

Chaussabel modules derived from the HIVsetA dataset, as defined by the hypergeometric 

index. Figures 7B and 7C show the two projections of the bipartite graph. The 

hypergeometric index is not the only way associations between the two module types can be 

demonstrated; for instance, a more indirect association can be inferred when a WGCNA and 

Chaussabel module map to the same biological pathway. It is clear from the plots that only a 

subset of the list of Chaussabel modules associates with WGCNA modules in any given 

condition.  

Deconvolution  

An important question in analyzing transcription data from complex tissues is whether 

differences in transcript abundance are attributable to transcriptional regulation in one or 

more cell types, or to changes in the composition of the overall leukocyte populations. 

Figure S3 shows the results for the HIVsetB dataset, and Table S2 shows the results of non-

parametric statistical testing for differences in median cell-type proportions, per cell-type and 

class comparison with uncorrected P values as well as P-values corrected for multiple testing 

using the Benjamini-Hochberg procedure; these were encoded as parameters diffP and diffQ 

of the cellprop node type in the ANIMA database. Neutrophils were the most abundant cell-
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type estimated from the array data. The proportions of activated NK cells and CD8+ T cells 

were significantly elevated in acute HIV infection, and proportions of B cells and CD4+ T 

cells were reduced, in line with published observations12.  

Virtual cells: an estimate of functional phenotypes of different immune cell types 

Given that the immune response is mediated by different types of cell, we attempted to re-

create “virtual cells” based on the assumption the genes that co-vary in terms of transcript 

abundance across samples with that of cell-type specific genes are expressed in that particular 

cell type. With these relationships, we generated virtual cells (probe co-expression matrices 

annotated with biological pathways and probe differential expression data). Figure S4 shows 

two cells (B-cells and neutrophils) in acute HIV infection; both characterized by interferon 

signaling. Given the “virtual cells” and their functions we can compare pathway-level 

transcript abundance in different cell types by creating a matrix of cell types and pathways, 

with each entry representing the “pathway activity” for a given cell and pathway 

combination. To illustrate this, we show replication of the finding of NK-cell activation in 

acute influenza infection (respInf dataset, Figure 8 A,B), and in addition provide more detail 

on which pathways are probably up- or downregulated  in these and multiple other cells.  

Approach 2: Factorial analysis 

Modules driven by sample class or sex 

Our main interest in investigating transcriptomic datasets is to identify molecular and cellular 

processes that drive, or at least are associated with, specific phenotypic traits of the samples. 

Therefore, the experimental design for the differential abundance analysis and the probe 

filtering steps prior to WGCNA module discovery were both designed to highlight processes 

associated with two factors: disease class and sex; the former because this is the basis of the 

research question for the three studies, and the latter because sex has a distinct influence on 
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immune system function13. We developed a novel approach to quantify the association of the 

WGCNA module expression with these two factors (See Online Methods). Figure 9 shows 

that, in the case of acute HIV infection, most modules are associated with the disease process 

(HIVsetB dataset), but that one module (purple) is strongly associated with sex. Figure S5 

shows the module eigengenes for the yellow and purple modules, demonstrating differential 

class associations for WGCNA modules; this finding would have been missed had the data 

not been stratified by both HIV infection status and sex. Table S4 shows the module statistics 

for this dataset. 

Additional modules were identified that associated with neither sample class nor sex. These 

represent biologic processes that manifest in heterogeneity of the sampled population. Figure 

S6 plots the study subjects in the HIV infection data set (HIVsetA) on two axes represented 

by two module eigengenes.  

 

Approach 3: Meta-analysis of multiple datasets 

Module-level meta-analysis 

Meta-analysis of multiple related expression datasets can lead to insights not available from 

analysis of any single datasets, and can highlight common patterns of transcript abundance 

across different conditions, or meaningful differences across highly common conditions. We 

implemented the approach pioneered11 and refined14 by Chaussabel, et al to perform modular 

transcriptional repertoire analysis15 on the six datasets. This approach is particularly suited to 

meta-analysis, as the composition of the modules is always identical. Figure 10 shows 

modular patterns for the six datasets in a clustered heatmap as well as the subset of modules 

with similar expression patterns across the six data sets, demonstrating universal patterns in 

the immune response to infection. Supplementary Table S3 lists module functions based on 
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all significant enrichment associations for the modules in Figure 10B. Universal upregulation 

of interferon-related modules particularly stand out, as does the suppression of modules 

associated with CD4+ T cells, CD8 T cells and B cells. 

Meta-analysis at the cell-type level 

A second approach to meta-analysis was implemented using virtual cells based on WGCNA 

modules. Here we compared the pathway scores in a single or several cell types across 

multiple conditions. For instance, comparing the CD8 T-cell response in acute HIV, acute 

viral respiratory infection, and symptomatic malaria, we find that proliferation of activated 

CD8+ T cells characterizes acute HIV infection, and to a lesser extent symptomatic malaria 

infection. In contrast, there is a suppression of CD8 T cell activity in blood in other 

conditions, due in part to a reduction in CD8+ T-cell proportions in whole blood (Figure 

10C).  

 

Discussion 

Systems immunology aims to understand the complex web of relationships between immune 

system components (cells, cytokines, effector molecules and other mediators) in immune-

mediated disease states. Much progress has been made in single-cell techniques that yield 

large amounts of information, e.g. single-cell RNAseq and mass cytometry. These 

approaches are expensive, and not easy to apply in incompletely characterized disease 

systems, as they require a certain amount of focus (e.g. selection of one or a few cell types for 

RNAseq, and marker selection for CyTOF). In contrast, RNAseq or microarray analysis of 

complex tissue samples (like blood) in principle contain information on the transcriptomic 

state of all cells present in the sample and is thus an unbiased approach. The main difficulty 

with this lies in the interpretation of the data, and in many cases a complexity-reducing 
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analysis approach is employed, where the focus is placed on differentially expressed genes. 

Other approaches based on co-expression analysis often fail to explain the drivers of the co-

expression patterns. 

We demonstrate, using a novel method of aggregating information obtained from clinical and 

microarray data, an ability to reconstruct many aspects of the immune response, and to 

discuss this not in the language of probes, genes and signatures, but rather as coordinated 

biological processes and the cellular context for these processes, allowing the generation of 

hypotheses at multiple scales. Our multiscale class comparison approach can be used to 

validate findings from individual papers, for instance the intense NK-cell activation described 

in influenza8.  

Using our factorial approach, we can begin to dissect inter individual heterogeneity in 

transcriptional patterns from transcriptional patterns that are in a causal relationship with 

defined factors. Application of the two meta-analysis approaches allows comparison of 

arbitrary datasets to detect similarities and differences at modular and cellular levels. An 

interesting and somewhat unexpected finding is that acute symptomatic malaria and acute 

respiratory viral illnesses are more similar to each other than to acute HIV infection, another 

viral illness. Despite these differences, we demonstrate that, at least for these three rather 

different infections, a broadly similar pattern of transcriptional module activity can be 

described. 

In summary, ANIMA is both a robust implementation of various well-regarded analytic 

paradigms in microarray analysis, as well as a framework for integrating these various 

methods to expose relationships at multiple scales and render these computationally 

accessible. 
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Figures 

 

Figure 1. Method overview. (A) Analytical approaches and biological complexity. (B) 

Relationships between output types (C) A bipartite graph, with two classes of nodes 

connected by edges. (D) The separate bipartite graphs, with one node type in common. (E) 

Multipartite graph obtained after merging the three graphs in (D). Abbreviations: HGNC, 

HUGO Gene Nomenclature Committee; WGCNA, weighted gene co-expression network 

analysis. 
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Figure 2. Visualising Cypher query results. Relationships between nodes extracted from 

the ANIMA database using a Cypher query applied to the HIVsetB data (NHIV=30, 

NControls=17, see Figure S1). Shown are two WGCNA modules that contain probes with 

increased transcript abundance in acute HIV infection and whose module eigengene is 

positively correlated with disease class (an ordinal variable). (A) Result from native browser 

interface for Neo4j. (B) Result plotted from within an R session connected to the ANIMA 

database, using the igraph_plotter function. Log2-fold change values for the individual 

probes are shown by coloured rings; values are shown in the legend. (C) The same result, 
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visualized in Cytoscape, taking advantage of the igraph_plotter function to export node and 

edge lists for easy import into Cytoscape. Links/ edges are annotated with Pearson correlation 

coefficients where applicable.  
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Figure 3. Visualising individual probe-level expression data. Box-and-whisker plots 

showing normalized, log2-transformed probe-level expression data for six selected genes, 

obtained by a custom function in R in four groups: Healthy female, N = 8, Healthy male, N = 

9, acute HIV female, N = 11, acute HIV male, N = 19; data from HIVsetB dataset. Gene (and 

probe nuIDs for disambiguation) are given for reference; the y-axis shows log2 scale 

normalized intensity values. Box and whisker plots show median, interquartile range, and 

range. Outliers are defined as values that lie beyond the whiskers, which extend to maximally 

1.5 X the length of the box. Individual datapoints are superimposed in red on the box-and-

whisker plots. The four groups are compared using Kruskal Wallis rank sum test and the P-

value for the comparison is shown in the plot title. Results for individual pairwise 

comparisons are not shown. 
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Figure 4. Cell associations of WGCNA modules. Relationships of WGCNA modules and 

different cell types in the respInf dataset (Day 0 acute influenza, N = 46 vs baseline healthy 

samples, N = 48, see Figure S1). Shown are WGCNA modules whose expression correlates 

with specific cell-type proportions (dark green, edges annotated with Pearson correlation 

coefficient R) and that are enriched for the genes specific to that cell type (medium green, 

suffixes xp_1-3 indicate the respective gene list on which the cell assignments were based, 

see Online Methods). The classes of cells are indicated in light green. The modules are 

annotated with coloured rings representing the difference in median eigengene values 

between cases and controls (diffME, see Online Methods); blue indicates modules which are 

under-expressed, and red indicates modules that are over-expressed in cases relative to 

controls. 
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Figure 5. Correlation of module eigengenes with clinical variables. Shown is the Pearson 

correlation of the pink module eigengene with CD4 count (cells/microlitre) (A) and with age 

(years) (B) in acute HIV (N = 28) vs healthy controls (N = 23) in the HIVsetA dataset. Study 

subject IDs are used as point labels, and coloured as indicated in the legend. Plot titles show 

the Pearson coefficient R and the associated P-value. (C) WGCNA module annotation 

obtained from the Neo4j database for the pink module. Edges are labelled with the correlation 

coefficient (R) where applicable. Note that the same coefficient is obtained for CD4 count as 

in panel A. Legends are shown for vertex type and diffME (a measure of differential co-

expression (see Online Methods), i.e. the extent that the module eigengene median varies 

between two classes). Abbreviations: diffME, differential module eigengene. 
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Figure 6. WGCNA module structure. (A) Correlation matrix of all probes in the turquoise 

module in the HIVsetB dataset (NHIV=30, NControls=17, see Figure S1). Colours in the heatmap 

represent Pearson correlation coefficients, ranging from -1 to 1, as indicated by the legend. 

The module is enriched for lymphocyte-specific genes (right annotation panel) as well as cell 

cycle/ mitosis associated genes, suggesting that various lymphocyte subsets in acute HIV 

infection are actively proliferating. (bottom annotation panel). Log2-fold change values refer 

b
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to differential transcript abundance in acute HIV relative to healthy controls. (B) Correlation 

matrix of all probes in the yellow module in the HIVsetB dataset. It is enriched for innate cell 

genes as well as interferon signaling, suggesting that innate immune cells are in an interferon-

induced state. Additional annotation information is provided to the left of the heatmap. The 

parameters modAUC1, modAUC2, diffME and sigenrich are defined in Online Methods. The 

plot is generated using a custom R function (mwat).   
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Figure 7. Relationships between WGCNA and Chaussabel modules. (A) Bipartite graph 

of the two module types based on the hypergeometric association index in the HIVsetA 

dataset (acute HIV, N = 28 vs healthy controls, N = 23). Strikingly, Chaussabel modules tend 

to have the same direction of differential expression (indicated by the rim colour of the 

Chaussabel modules, red indicating up-regulation in acute HIV, and blue indicating 

downregulation) as WGCNA modules they map to, indicated by the label colour of the 

module. (B) Projection 1 of (A), showing relationships between Chaussabel modules based 

on shared WGCNA modules; dense cliques of modules are observed. (C) Projection 2 of (A), 

showing relationships between WGCNA modules based on shared Chaussabel modules. All 
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associations (hypergeometric test) shown are corrected for multiple testing, BH-corrected P-

value < 0.05. All outputs were generated using the igraph_plotter function, exporting vertex 

and edge tables of the bipartite graph and the two projections and importing these into 

Cytoscape. 
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Figure 8. Cell/pathway activity matrix. (A) Cell/pathway activity matrix for all cell-types 

for the respInf dataset (Day 0 acute influenza, N = 46 vs baseline healthy samples, N = 48, 

see Figure S1). The clustered heatmap shows pathway activity scores representing the mean 

log-2 fold change for all probes in the pathway for a particular cell type (see Online 

Methods). There is a clear interferon response in multiple cell types, as well as down-

regulation of other pathways associated with translation. (B) Barplots highlighting the most 

highly differentially regulated pathways (left panel, determined by row sums of matrix in A), 

and cells with highest levels of differential expression (right panel, determined by column 

sums of matrix in A). In all cases, up- and downregulated pathway scores are kept separate.   
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Figure 9. WGCNA module indices. Plot of module indices representing the area-under-the-

ROC curve for the two classes for all WGCNA modules in the HIVsetB dataset (NHIV=30, 

NControls=17, see Figure S1). The indices are named per the variable they aim to differentiate 

(disease class or sex). The class index corresponds to the modAUC1 variable and the sex 

index corresponds to modAUC2. These indices are calculated form the module eigengenes 

and given class assignments using functions from the rocr package. See text and Online 

Methods for details. 
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Figure 10. Meta-analysis of transcriptional and cellular patterns. (A) All 258 Chaussabel 

modules plotted as a heatmap in all six datasets. (B) The subset of modules all expressed in 

the same direction. Three module groups of interest are identified. (C) Cell/ pathway activity 

matrix for a single cell type (CD8 + T cell) based on three celltype-gene lists (xp1, xp2, xp3, 

see Online Methods) in all three conditions. Activity in CD8+ T cells in HIV all cluster 

together, and differ from both malaria and respiratory infections. Cell labels are constructed 

by [condition]_[dataset]_[comparison]_[cell class]_[cell type]_[gene list].  
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Tables 

Table 1. List of analytic approaches used in constructing the ANIMA database. 

Approach Method R package/ 
implementation Reference 

Array data import and 
normalisation 

variance stabilising transformation, quantile 
normalisation lumi 16 

Probe filter quality filter to remove non-informative probes 
from analysis 

ReMoat, 
ReAnnotator 

17,18 

Differential expression linear model/ moderated t-test limma 19 
Estimate of cell-type 

proportions Deconvolution by least-squares fitting CellMix 20 
Chaussabel module 

expression 
Published module definitions and custom R 

code 
 11,14 

Chaussabel module 
differential expression linear model/ moderated t-test limma 19 

WGCNA module 
detection 

Clustering of topological overlap matrix and 
dynamic tree cutting WGCNA 5 

Chaussabel and WGCNA 
module annotation 

List enrichment testing by hypergeometric test 
and multiple testing correction 

WGCNA 
(UserListEnrichmen

t); ReactomePA 
5,21 

WGCNA module metrics Differential expression, module AUC, signature 
enrichment Custom code  

Module eigengene 
correlations Pearson or Spearman rank correlation WGCNA, custom 

code 
5 

Construction of bipartite 
graphs 

Bipartite graphs from adjacency lists (based on 
list enrichment) or incidence matrices (based 

on correlation) 
igraph 9 

Merging of all bipartite 
graphs Graph union Neo4j: cypher 

command merge 
22 
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Table 2. Types of associations used in the ANIMA database 

Association type Association index Intermediate result Multiple testing correction 

Correlation Pearson R or Spearman rho Incidence matrix Yes 

List enrichment hypergeometric index Adjacency list Yes 

Mapping simple mapping Adjacency list Not applicable 
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