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Abstract 

The association between the Deformed Wing Virus and the parasitic mite Varroa destructor 

has been identified as a major cause of worldwide honey bee colony losses. The mite acts as a 

vector of the viral pathogen and can trigger its replication in infected bees. However, the 

mechanistic details underlying this tripartite interaction are still poorly defined, and, in 

particular, the causes of viral proliferation in mite infested bees. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667
https://doi.org/10.1101/257667


	
   2	
  

Here we develop and test a novel hypothesis - grounded in ecological predator-prey theory - 

that mite feeding destabilizes viral immune control through the removal of both viral ‘prey’ 

and immune ‘predators’, triggering uncontrolled viral replication. Consistent with this 

hypothesis, we show that experimental removal of increasing volumes of haemolymph from 

individual bees results in increasing viral densities. In contrast, we find no support for 

alternative proposed mechanisms of viral expansion via mite immune-suppression or within-

host viral evolution. 

Overall, these results provide a new model for the mechanisms driving pathogen-parasite 

interactions in bees, which ultimately underpin honey bee health decline and colony losses. 

 

 

Keywords 

Apis mellifera; Deformed Wing Virus; honey bees; Varroa destructor; viral proliferation; 

Volterra equations   
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Background 

Efficient pollination is vital for crop production (1) and the honey bee is the prevailing 

managed insect crop pollinator. Honey bees suffer from a range of adverse factors (2); in 

particular, the Deformed Wing Virus (DWV) is implicated in the substantial colony losses 

reported in many parts of the world (3). The parasitic mite Varroa destructor plays a key role 

in virus transmission and replication (4, 5); however, there are still alternative and not fully 

resolved hypotheses about the major mechanisms underpinning the Varroa-DWV interaction. 

The capacity of the Varroa mite to transfer DWV was proved by Ball (6) and later confirmed 

under field conditions (7); these authors also provided preliminary evidence for the replication 

of the virus within the mite, which was later confirmed (8). However, the mite does not act 

only as a vector of the virus, thus increasing the pathogen’s prevalence, but can also trigger 

uncontrolled replication in infected bees, which undermines colony survival (9). Initially, 

increased replication was attributed to a direct immune suppressive action exerted by the mite 

(10) but this hypothesis was later questioned (11). It has been suggested that intense 

replication in infested bees, leading to the development of the characteristic symptom of an 

overt viral infection, represented by crippled wings at eclosion, is related to the active 

replication of the virus within the infesting mite (8). However, high DWV copy numbers are 

frequently detected in bees that are not mite-infested and a clear relationship between viral 

load within the mites and that in infested bees was not found in all cases (12). Based upon 

field experiments aiming at assessing the impact of Varroa infestation on bees, we showed 

that the immune challenge represented by the feeding mite amplifies existing viral infections 

through an escalating bee immunosuppression, perpetuated by the increasing DWV 

abundance (9). On the other hand, a study describing Varroa invasion into a previously mite-

free area showed that this was associated with increased DWV prevalence and infection rates, 

as well as a rapid selection of a single virulent strain, adapted to mite transmission and 
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associated with colony collapse events (13). This facilitation seems to take place also at the 

individual level when a mite infests a honey bee, where either parasitization or artificial 

injection favours the replication of a single quasi-clonal DWV strain within the bee (12). 

In sum, in spite of the large body of evidence about the effect of mite infestation on the 

dynamics of viral infection in the honey bee and the importance of the Varroa-DWV 

association for honey bee health, there are still alternative and not fully resolved hypotheses 

on the major underpinning mechanisms. Actually, the available data can also support further 

and non-contrasting views on how mite feeding can influence the viral titer in bees. In 

particular, the significant increase in the viral titers of bees infested by three mites versus a 

single mite (9) and previous observations about the effects of multiple mite infestation on the 

proportion of symptomatic bees (14) suggests that feeding intensity may play a role. When 

more Varroa mites parasitize the same bee, they make a single wound into the bees’ cuticle to 

access the haemolymph, and feed from the same opening (15, 16). Thus, the immune response 

(in particular, melanisation pathways) will be similar for one versus three mites. However, 

three mites will extract a substantially higher volume of haemolymph from the bee than a 

single mite, and thus may impact the system by this process. The critical importance of 

haemolymph removal on DWV dynamics seems to be confirmed by the proliferation of DWV 

that can be observed after simple wounding with capillary needles and the resulting bleeding 

from the open wounds (11). Indeed, on a purely theoretical background, it is possible to 

hypothesize that the concurrent removal of virus particles and circulating antiviral immune 

effectors by the blood feeding mite can determine a dynamic response similar in principle to 

that observed when both preys and predators are constantly removed from a predator-prey 

system (17). Therefore, in order to clarify the causes of viral proliferation in mite infested 

bees, we carried out controlled lab experiments aiming at testing the existing hypotheses and, 

in particular, we used both a theoretical analysis and in vivo experiments to test the possibility 
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that mite feeding destabilizes viral immune control through the removal of both viral ‘prey’ 

and immune ‘predators’, triggering uncontrolled viral replication. 

 

Methods 

Bees and mites used in this study 

The biological material (honey bee worker larvae and Varroa destructor adult females) was 

obtained from an experimental apiary located in Udine (Northeastern Italy). Previous studies 

indicated that local colonies are hybrids between Apis mellifera ligustica Spinola and Apis 

mellifera carnica Pollman (18). 

 

Artificial infestation of bees with V. destructor mites 

The bee larvae and the mites were collected from brood cells capped 0-15 h previously. 

Larvae obtained as above were transferred into gelatine capsules (Agar Scientific Ltd., 6.5 

mm diameter), artificially infested with one mite or left uninfested, and maintained in an 

incubator (34 °C, 75% R.H., dark) until the adult emergence (19) (Fig. 1A). Newly emerged 

adult bees and the infesting mites were stored at –80 °C for subsequent molecular analyses. 

Sixty bees per experimental group were prepared with this method, which, after removing 

dead bees and mites, resulted in 40 non parasitized honey bees (32 DWV positive) and 32 

parasitized honey bees (30 DWV positive) together with 32 infesting mites (27 DWV 

positive), that were used in the analysis (Fig. 1B). To confirm the results on the distribution of 

viral infection levels in mite infested bees, another 58 infested bees, prepared as above, were 

analysed subsequently. 

In order to test the relative importance of immunity on the increased viral titer normally 

observed in multiple infested bees, we artificially infested with no, one or three mites five last 
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instar honey bee larvae obtained as described above (Fig. 2A) and compared the expression of 

immune genes in those bees, as described below. 

 

Study of the effects of an increasing haemolymph subtraction on viral replication 

This experiment was designed to assess the effect of the removal of an increasing 

haemolymph volume, in absence of feeding mites, on the dynamics of DWV titer in naturally 

infected honey bees. Last instar bee larvae were collected from a brood comb as described 

above and maintained in an incubator (34 °C, 75% R.H., dark) until the white eyes stage, 

which occurred about 4 days after the collection from brood cells sealed in the preceding 15 

hours. Then, 4 experimental groups, made of about 30 pupae each, were established. One 

group (“control”) was left untreated, whereas all the other bees had the right antenna cut, at 

the level of the scapum, using fine scissors; pupae bleeding after cutting were discarded. Bees 

of one group (“wound”) had the wound sealed with a cream containing Sulfathiazole (2%) 

and Neomycin sulfate (0.5%) to prevent secondary infections. Bees of the remaining two 

groups (“wound −1 µL” and “wound −2 µL”) had the wound sealed as above, after removing 

either 1 or 2 µL of haemolypmh, with a microcapillary tube precisely graduated with 1 or 2 

µL of ethanol, dispensed through a micropipette; untreated bees acted as further basal control. 

By subtracting increasing amounts of blood, we tried to assess the effect of pure haemolymph 

subtraction, while minimizing the impact of wounding and the resulting immune reaction. 

After treatment bees were kept into a Petri dish, lined with sterile filter paper, and maintained 

under dark, at 34 °C, 75% R.H., for 4 four days, before assessing the viral titer as described 

below. To account for the variability across colonies and genotypes, the experiment was 

repeated four times: on 2 colonies in Udine (Northern Italy) and 2 colonies in Napoli 

(Southern Italy). 
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Quantification of DWV concentration in the honey bee haemolymph 

Haemolymph was collected from late instar honey bee larvae by puncturing with an 

entomological needle the dorsal vessel and collecting the bleeding fluid with a capillary tube. 

Haemolymph was added to an Eppendorf tube containing the same quantity of anti-coagulant 

buffer (20), mixed and centrifuged at 1000 g for 10 min at 4 °C. Then, the supernatant 

containing the plasma was discarded and DWV quantified as described above. 

 

Molecular analyses 

Sequencing of DWV, quantitative DWV analysis, analysis of DWV mutant cloud, DWV 

Negative strand quantitative analysis and the transcriptomic study of bees were carried out 

using standard methods described in detail in SI Materials and Methods. 

 

Statistical analysis of experimental data 

The proportion of infected bees (Fig. S2) was compared by means of a Chi Square test; the 

confidence intervals reported in the figure were calculated with the formula: 1.96√(prop(1-

prop)/n). The skewness of the distribution of viral loads across samples was calculated after 

excluding samples were the virus had not been detected. 

Since the normality of the distribution of data about viral infection in bees, as assessed by real 

time RT-PCR, is not warranted, non-parametric methods were preferred to standard 

parametric analysis. In particular, the correlation between viral load in mites and bees infested 

by those mites (Fig. S5) was tested by means of Spearman rank. Comparison between 

infection levels in bees belonging to different experimental groups was carried out by means 

of a Mann-Whitney U test (Figures 1B, 1C, 1D) or Kruskal-Wallis (Figures 2B, 3). 

For the statistical analysis of transcriptomic data, see the respective section. 
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Theoretical analysis 

In ref. 9 we presented a series of models capturing the coupled within-host dynamics of viral 

copy number (V) and a shared immune currency (I). The most parsimonious model analysed 

further in the current paper included an immuno-suppressive effect of high viral load, as 

described by the following ordinary differential equations 

 

dV/dt = (r-cI)V 

dI/dt = a - uI + (b-sV)V (S1) 

 

These equations describe the within-host growth of a pathogen population V and its 

controlling immunological counterpart I. The maximal rate of pathogen replication is r, which 

is countervailed by a rate of immunological control cI. The dynamics of I are shaped by an 

intrinsic production rate a, a rate of decay u, and activation / suppression parameters b and s. 

This model implementation ensures that the sign of the impact of virus on immune dynamic 

(immuno-stimulatory or immuno-suppressive) will depend on viral titre, V. Specifically, we 

assume that at low densities the pathogen is a net activator of immunological activity, 

whereas at high densities (whenever V > b/s) the pathogen becomes immuno-suppressive, 

with b/s controlling the threshold point between the two regimes. 

 

To clarify presentation, we again work with a normalized version of equations (S1 in ref. 9) to 

reduce the parameter dimensions. Specifically, we rescale the units of time to the maximal 

growth rate of the virus (t = rt), the units of viral density to the density that halts immune 

proliferation (V = Vs/b) and the units of immune density to the density that halts viral 

proliferation (I = Ic/r). Applying these normalizations to equations (S1) lead to the following 

equations (dropping the bold font for clarity) 
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dV/dt = (1-I)V  

dI/dt = x – yI + z(1-V)V (S2) 

 

Note that the full system (S1) can be recovered from (S2) by rescaling the units and replacing 

parameters as follows: x = , y = , z = . For an equilibrium analysis of equations S2, 

see ref. 9. 

 

In order to introduce a constant loss of both DWV particles and circulating immune effectors 

from the system, as caused by the mite feeding upon the bee’s haemolymph, we introduce a 

rate of I and V loss m (scaled to growth rate r in this dimensionless form) such that the system 

becomes 

 

dV/dt = (1 – m – I)V 

dI/dt = x – (y + m)I + z(1 – V)V (S3) 

 

In reference 9 we demonstrate for the m = 0 case that there is a lower stable and upper 

unstable equilibrium in V, which converge as y increases from zero (see figure 6 in ref. 9). In 

system (S3) the equilibria become  

 

𝑉!"#$%&∗ = !
!−

! !!!!! !!!!! !!

! !
 𝑉!"#$%&'(∗ = !

!+
! !!!!! !!!!! !!

! !
 

𝐼!"#$%&∗ = 1−𝑚  (S4) 

 

In figure S8 we plot these equilibria as a function of increasing haemolymph removal rate m, 

and observe a decline in immune effectors and an increase in the lower stable equilibrium. To 
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better understand the generality of this effect, we study 𝑑𝑉!"#$!"
∗

𝑑𝑚, and in the limit of small 

m, we find a tractable result, !"!" 𝑙𝑖𝑚!→! = !!!
!   ! !!! !!

, which is positive for reasonable 

parameter choices – specifically when y < 1 and x > y – z/4. 

 

Results 

Viral infection in parasitized honey bees 

To clarify the role of the mite in the dynamics of viral infection in honey bees, we evaluated 

the presence and abundance of DWV in adult bees that were artificially infested with one mite 

as mature larvae or were not infested with mites as controls (Fig. 1A); viral presence and 

titers were evaluated using quantitative real time PCR with sequence-specific DWV primers. 

Furthermore, a subset of these bees (see Fig. 1B) was subjected to Next Generation 

Sequencing (NGS) which allowed us to confirm that the bees were infected with DWV and 

the sequences were >98% identical with a published sequence obtained from a sample 

collected in the same apiary in 2006 (i.e. NC_004830.2; Fig. S1) and clearly separated from 

other genotypes of DWV (i.e. NC_006494.1) or recombinants that were associated with 

higher virulence in other studies (Fig. S1) (12, 21). 

We found that 80% of individuals not exposed to mite feeding (n=40) were DWV infected. 

However, the prevalence of DWV in bees infested by a DWV-infected mite (n=27) was 

higher at 96% (Fig. S2; Chi Sq.=3.681, d.f.=1, P=0.055). 

Viral load was higher in bees parasitized by mites compared to control bees (Fig. 1B; average 

viral load in mite infested bees (n=32)=2.21E+08; average viral load in uninfested bees 

(n=40)=4.50E+04; Mann-Whitney U=482, n1=40, n2=32, P=0.037). DWV infection levels in 

non-parasitized bees showed a great variability ranging from 10^3 to 10^6 (Fig. 1B). 

However, DWV infection levels showed even greater variability in mite-infested bees; in fact, 

most mite-infested bees showed infection levels falling within the same interval as that 
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recorded in uninfested bees, but a few specimens largely exceeded the upper limit of this 

interval, reaching 10^10 viral genome copies per bee (Fig. 1B). Consequently, the distribution 

of viral loads was very skewed in mite-infested bees (skewness of the distribution of viral 

loads in mite infested bees (n=30)=5.48, skewness in uninfested bees (n=32)=2.50). 

Individual bees sampled later in the field season, when the DWV prevalence and the basal 

infection rate are higher (9), and artificially infested with one mite, showed a similar skewed 

distribution of infection levels, with some individuals displaying very high DWV infection 

levels (skewness of the distribution of viral loads in mite infested bees (n=58)=5.66; Fig. S3). 

Moreover, re-evaluation of previous data demonstrating the effect of single and multiple mite 

infestation on viral loads in bees (9) revealed a similar underlying distribution, with a higher 

median viral infection in mite-infested bees and the distribution of viral loads becoming 

increasingly sparse (Fig. S4). In sum, the DWV infection data show that the higher viral load 

observed, on average, in infested bees is due to a change in the distribution of individual viral 

levels, which is right skewed, due to the presence of a sub-population of highly infected bees 

as already observed using a different experimental setup (12). 

 

Viral replication in mites 

To study the vector role of Varroa, we evaluated the mites infesting the experimental bees 

above (Fig. 1A) and found that their infection levels were generally higher than those in the 

bees themselves (median viral load in mites (n=32)=	
  5.56E+11). A significant correlation was 

found between the mites’ viral load and viral load of the bees they infested (Fig. S5; n=32, 

Spearman corr. coeff.=0.531, t=3.433, d.f.=30, P=0.002). However, this result cannot be 

unequivocally interpreted, since the observed correlation could be due either to the fact that a 

highly infected mite, harbouring an intense viral replication, can inject higher amounts of 
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viral particles, or that a mite infesting a highly infected bee can acquire more virus while 

feeding. 

 

Active replication of single stranded positive RNA viruses results in the synthesis of the 

complementary negative strand that is used as a template for the production of viral copies.  

Therefore, to assess the importance of viral replication within the mite on the level of bee 

infection, we assessed the presence of DWV negative strands in the mites used for the 

artificial infestation of bees (Fig. 1A). As expected, the mites containing DWV negative 

strands had a significantly higher infection level than those where no negative strands were 

found (Fig. 1C; Mann-Whitney U=42, n1=9, n2=23, P=0.005). However, when we examined 

whether the viral replication in the parasite was related to the viral load in the host, we found 

that the infection level of bees infested by mites where an active viral replication was detected 

was not significantly different from that measured in bees infested by mites which did not 

apparently harbour an actively replicating virus (Fig. 1D; Mann-Whitney U=80, n1=9, n2=23, 

P=0.157). 

 

Composition of the viral mutant cloud 

Short replication time and limited correction capability in RNA viruses favour rapid genetic 

changes, so that, even in a single host, a virus population normally consists of an ensemble of 

different genetic sequences (i.e. quasi-species). To study the composition of the viral mutant 

clouds in bees with different levels of viral infection, we amplified and sequenced by NGS the 

viral region encoding the virus RNA dependent RNA polymerase, by individually sequencing 

5 highly infected bees and 5 bees with low infection levels (average DWV genome copies per 

bee of 1.41E+09 and 1.95E+03, respectively) that were obtained from the previous 

experiment (see Fig. 1B). From 74 to 559 different variants were reconstructed in each 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

https://doi.org/10.1101/257667


	
   13	
  

sample, based on a number of viral reads ranging from 40,107 to 160,842. We found no 

obvious common sequence in low vs high virus infected bees: the most represented sequence 

was present in six samples from both the low and highly infected groups, at prevalences 

ranging from 11 to 74% (Fig. 1E). Thus, a link between viral load and molecular diversity 

was not found (Fig. 1E, Fig. S6). 

 

Effects of mite infestation and viral infection on the transcriptome of honey bees 

To disentangle the effect of the Varroa mite parasitization from that of DWV infection on the 

immune response of bees, we studied the expression of immune genes in bees exposed to a 

different combination of stress factors (see Fig. 1B; Supplementary Data 1). In particular, to 

assess the influence of the mite (i.e. Varroa effect), we compared the expression level of 

immune genes in five uninfested bees bearing a low viral infection (average DWV 

infection=2.04E+03, see Fig. 1B) and five mite infested bees bearing a similar low viral 

infection level (average DWV infection=1.95E+03, see Fig. 1B). Next, to assess the influence 

of the combination Varroa-DWV (i.e. Varroa+DWV effect), we compared five uninfested 

bees bearing a low viral infection with five mite infested bees bearing a high viral infection 

level (average DWV infection=1.41E+09). We found that different immune pathways were 

differentially affected by Varroa mite alone and the replicating virus in presence of the mite 

(Fig. 1F; Supplementary Data 1). Overall, infestation with mites, at low viral infection levels, 

caused significant changes in expression (i.e. up-regulation) of genes involved in the Toll 

pathway, while very high DWV infection levels associated with Varroa infestation caused 

significant changes in expression of genes involved in the JNK pathway (Fig. 1F; 

Supplementary Data 1). Thus, the impact of Varroa mite feeding on bee immune response is 

different from the impact of the high viral titer stimulated by the mite. Furthermore, this 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

https://doi.org/10.1101/257667


	
   14	
  

experimental setup, allowing the separation of the mite effect from that of the virus, 

confirmed that immune-suppression by the mites (10) does not play a major role. 

 

Immune-virus ‘predator-prey’ dynamics within the host 

In 2012, we proposed a series of mathematical models describing how within-host viral 

dynamics are controlled by immunological response, which in turn can be modified by the 

presence of the virus and other stress conditions, such as mite feeding or pesticide exposure 

(9, 22). The simplest model consistent with the observation of divergent outcomes (low-

cryptic or high-overt infection) required a threshold immune-suppressive effect of DWV. 

Given this assumption, any factor that depletes the immune system (e.g. increasing mite load) 

will lead to a gradual increase in a stable DWV set-point until, for sufficiently large depletion, 

a critical transition to unbound viral replication will follow, leading to overt symptoms and 

ultimately host death. We hypothesized that, in case of mite infestation, immune depletion 

may result from the activation of competing immune reactions cross-modulated by shared 

networks of transcriptional control and, in particular, the melanisation and clotting reactions 

triggered at the mite’s feeding site, which are under the control of a NF-kB transcription 

factor that is involved also in antiviral response (9, 23). 

Here we mathematically explored the possibility that the concurrent removal of virus particles 

and circulating antiviral immune effectors by the blood feeding mite can determine a dynamic 

response similar in principle to that observed when both preys and predators are constantly 

removed from a predator-prey system (17), by adding to the existing models, which 

incorporate the depletion of the bee’s immune resources related to the wounding by the 

parasitic mite (9), a constant rate of loss of both virus and immune effectors, resulting from 

the feeding of the blood sucking parasite. Indeed, according to this new model, increasing the 
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simultaneous removal of both virus and immune effectors drops immunity and 

increases/destabilises the viral titre (Fig. S7). 

 

Effects of the increasing haemolymph subtraction on viral proliferation 

In order to verify this hypothesis, we carried out another lab experiment by artificially 

infesting mature bee larvae with one mite or three mites, using non-infested bees as controls, 

and by assessing both the viral infection level and immune response at eclosion (Fig. 2A). We 

observed that the higher DWV titers are associated with the removal of higher amounts of 

haemolymph, due to heavier mite infestations (Fig. 2B; Supplementary Data 2; Kruskal-

Wallis: H=6.41, d.f.=2, P=0.041); it is important to note that the lack of a differential immune 

response in multiple vs single mite infested bees indicates that haemolymph loss alone, rather 

than an increasing mite-induced immunosuppression, can generate an increasing level of viral 

infection (Fig. 2C; Fig. S8; Supplementary Data 2; note that no differentially expressed genes 

were found in the comparison 1 vs 3 mites, whereas 66 and 50 differentially expressed genes 

were found, respectively, from the comparisons: 0 vs 1 mite and 0 vs 3 mites). 

To further corroborate this hypothesis, we assessed the impact of haemolymph subtraction in 

absence of mite conditioning by comparing viral replication in naturally infected bee pupae 

from which different amounts of haemolymph were removed with a microcapillary tube from 

a cut antenna, using wounded or untreated bees as controls. The viral load varied across 

treatments, with a clear dose-dependent response, positively linking the volume of removed 

haemolymph to the viral titer measured 4 days after bleeding (Fig. 3; Kruskal-Wallis: 

H=35.10, d.f.=3, P<0.001). In particular, the viral infection in bees to which 2 microliters of 

haemolymph were removed was about ten times higher than that observed in bees which had 

only 1 microliter of haemolymph removed from a single wound (Fig. 3; Mann-Whitney 
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U=377, n1=n2=40, P=0.00002), suggesting that blood subtraction alone can play a role, 

regardless of the immune reaction at the feeding site. 

 

Discussion 

The infection level in uninfested bees is consistent with available data about DWV prevalence 

in honey bee eggs and larval food (24, 25) and clearly indicates that trans-ovarial and trans-

stadial transmission as well as viral acquisition by feeding upon contaminated food during the 

pre-imaginal life play an important role in the spread of DWV infection within the hive (Fig. 

S9). The higher proportion of infected bees among those infested by a mite, together with the 

presence of replicating viruses within the mites, confirms the role of V. destructor as a vector 

of the virus (Fig. S9). 

More importantly, our results highlighted the fundamental role of the mite for the increased 

virulence of DWV in infected honey bees. Collectively, our experimental data allow us to 

conclude that the capacity of the mite to host the viral pathogen replication (8) (Fig. S10A) 

appears to be of limited importance for the dynamics of DWV infection in bees. The similar 

composition and structure of the mutant clouds, observed in low and highly infected bees do 

not support an important role of viral molecular diversity in the modulation of observed levels 

of DWV virulence at individual level (Fig. S10B) as proposed earlier (12, 13) but recently 

questioned (26). Our transcriptomic study further confirms that immune-suppression by the 

mite (10) (Fig. S10C) does not play an important role. Instead, on the basis of our 

experimental and theoretical results, we conclude that the stress resulting from mite feeding 

has the potential of destabilizing the equilibrium between the pathogen and the bee’s immune 

control (9) (Fig. S10D). Here we confirm our previous hypothesis, based on the depletion of a 

shared immune resource (9, 23) and show that the intensity of mite feeding can affect the 

progression of viral infection through a dynamic process triggered by the concurrent removal 
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of the virus and antiviral effectors, which is well described by models proposed for prey-

predators interaction (Fig. S10E). The removal of the virus by the feeding mite is a simple 

consequence of the presence of huge numbers of viral particles in the bee’s haemolymph, as 

confirmed by the significant correlation between viral infection in bees and the mites which 

fed upon them, that could not be related to an enhanced within-mite replication. As for the 

possible presence of antiviral effectors in the bees’ blood and thus the possibility that the mite 

can subtract significant amounts of them while feeding, it is worth noting that, despite our 

knowledge about antiviral defence in the honey bee is still incomplete, convincing evidence 

has been provided regarding the contribute of haemocytes to antiviral defence through 

phagocytosis in Drosophila (27), whereas, according to most transcriptomic analyses, 

antimicrobial peptides that are dissolved in the bee’s blood certainly play a still 

uncharacterized role in the immune response to viruses, being constantly up-regulated upon 

infection (28). 

In 1926, the mathematician Vito Volterra, to explain the unexpected fluctuations of certain 

fish species in the Adriatic Sea, developed his famous model, which clearly showed that the 

subtraction of both predators and prey, through fishing, could result in the proliferation of the 

latter (17). Here we suggest, through a modelling approach corroborated by new experimental 

data, that the pure subtraction of haemolymph - containing both virus and immune factors - 

from the host, by the feeding mite (Fig. S10E), similarly to the fish industry with regards to 

prey and predatory fishes, could trigger the proliferation of DWV which can be sustained by 

the depletion of a shared immune resource (9, 23) and progressively reinforced by the viral 

induced immune-suppression taking place as soon as the pathogen surpasses a critical 

threshold (9). 

This is a conceptual hypothesis, under which different physiological mechanisms, largely 

unexplored at molecular level, can fit, and represents the most parsimonious interpretation of 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/257667doi: bioRxiv preprint 

https://doi.org/10.1101/257667


	
   18	
  

the mite role in the enhanced virulence of the virus, providing the logical framework for 

future experiments aiming to unravel the intimate molecular mechanisms involved. 

 

To our knowledge, this “micro-ecological” perspective of the immune interactions has not 

been proposed so far for any other blood-feeding parasite and associated pathogens, likely 

because most species studied from this point of view do not perform a severe bleeding like 

Varroa mites, and, then, the impact on viral dynamics by blood removal is more limited. 

Indeed, V. destructor can consume as much as 0.7 µL of bee haemolymph every 24 h (29), 

corresponding to the 0.6% of the bee pupa’s haemolymph (30), which, according to our data, 

can contain up to 10^3-10^8 DWV particles per µL, according to the infection level. 

 

Conclusions 

We believe that this new information on the interactions within the bee-mite-virus network 

provides a new vision of the crucial role played by Varroa mite in the re-emergence of DWV, 

an endemic pathogen of honey bees that plays a key role in the current widespread crisis of 

the beekeeping industry. Moreover, the proposed “micro-ecological” perspective of the 

immune interactions has broader implications in the research area of animal parasitology. 
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Figure captions 

Fig. 1. Evaluation of existing hypotheses about the role of Varroa mite in increasing virulence 

of DWV: methods and results. (A) Individual bees naturally infected with DWV were 

artificially infested with one Varroa mite or left uninfested. (B) Viral load in individual bees 

infested with one mite or left uninfested as a control. In this and following similar figures, the 

dashed line represents the lower detection limit for the methodology used; the solid lines 

represent the average viral load. The samples used for the transcriptomic analysis are marked 

with different colours: yellow (uninfested-low virus infected bees), green (mite infested-low 

virus infected bees) and red (mite infested-high virus infected bees). An asterisk marks a 

significant difference at P<0.05. (C) DWV genome copies in Varroa mites where an active 

replication was detected (DWV negative strand present) or not (DWV negative strand absent). 

An asterisk marks a significant difference at P<0.05. (D) DWV genome copies in bees 

infested by mites where an active replication was detected (DWV negative strand present) or 

not (DWV negative strand absent). (E) Prevalence of different DWV variants in infected bees 

with variable virus infection levels. (F) Effect of the Varroa mite and the combination 

Varroa-DWV on the expression of genes of the canonical immune pathways. The proportion 

of differentially expressed genes in each pathway, as resulting from the comparison: 

uninfested-low viral infected bees vs mite infested-low viral infected bees (i.e. Varroa effect) 

and from the comparison: uninfested-low viral infected bees vs mite infested-high viral 

infected bees (i.e. Varroa+DWV effect), is reported as well as the proportion of immune 

genes belonging to that pathway (i.e. expected). Two asterisks mark significant differences at 

P<0.01 between expected and observed proportions. 

 

Fig. 2. Increased feeding by Varroa mite causes increased DWV infection unrelated to 

immune competence. (A) Individual bees naturally infected with DWV were artificially 
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infested with no Varroa mites, one mite, or three mites. (B) Viral load, as the proportion of 

reads mapping to DWV genome, in individual bees artificially infested with no mites, one 

mite, or three mites. (C) Clustering of individual bees infested by no mites, one mite, or three 

mites according to the expression level of immune genes. 

 

Fig. 3. The subtraction of increasing amounts of haemolymph causes increased viral 

replication in bees. The number of DWV genome copies in bees after the removal of 1 or 2 

µL of haemolymph through a wound is reported along the corresponding viral infection in 

control bees and wounded bees with no haemolymph subtraction. 
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Fig. 2 

 

  

A 

B 
Transcriptomic analysis 

C 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

pr
op

or
tio

n 
of

 D
W

V
 

m
ap

pe
d 

re
ad

s 

no mites one mite three mites 



	
   29	
  

Fig. 3 
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Supplementary materials and methods 
 
Sequencing of DWV. The de novo assembly of DWV was performed using CLC Genomics 
Workbench 9.0. Briefly, simple contig sequences were first created using the information from the 
read sequences using an assembly algorithm based on de Bruijn graphs -a compact representation 
based on short words (k-mers) that is ideal for high coverage, very short read (25-50 bp) data sets- 
then all reads were mapped using the simple contig sequence as a reference. 
A phylogenetic tree was constructed from two sequences obtained in this study (samples P11 and P31, 
Fig. 1B-1E) and 12 available complete DWV genomes including: 
 
gi|71480055|ref|NC_004830.2| Deformed wing virus, complete genome,  
gi|31540603|gb|AY292384.1| Deformed wing virus isolate PA, complete genome,  
gi|390190253|gb|JQ413340.1| Deformed wing virus isolate Chilensis A1, complete genome,  
gi|592965310|gb|KJ437447.1| Deformed wing virus isolate Varroa-infested-colony-DJE202, complete 
genome,  
gi|40714033|dbj|AB070959.1| Kakugo virus genomic RNA, complete genome,  
gi|47177088|ref|NC_005876.1| Kakugo virus, complete genome,  
gi|430007848|gb|JX878304.1| Deformed wing virus strain Korea-1, complete genome,  
gi|430007850|gb|JX878305.1| Deformed wing virus strain Korea-2, complete genome,  
gi|56121875|ref|NC_006494.1| Varroa destructor virus-1, complete genome,  
gi|55925812|gb|AY251269.2| Varroa destructor virus 1, complete genome,  
gi|301070167|gb|HM067437.1| Deformed wing virus isolate VDV-1-DWV-No-5, complete genome,  
gi|301070169|gb|HM067438.1| Deformed wing virus isolate VDV-1-DWV-No-9, complete genome. 
 
Multiple sequence alignment was performed using the ClustalW algorithm and the phylogenetic tree 
was constructed with “MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger 
datasets” (31) using the neighbor-joining method; bootstrap values are based on 1000 replicates. 
 
Quantitative DWV analysis. Total RNA was isolated from individual honey bees using TRIzol 
reagent (Invitrogen), according to the manufacturer’s instructions. The concentration and purity of 
total RNA were determined by spectrophotometry (Varioskan Flash Spectral Scanning Multimode 
Reader; Thermo Fisher Scientific). 
The quantification of DWV genome copies was performed by SYBR Green qRT-PCR. Titers of DWV 
were determined by relating the Ct values of unknown samples to an established standard curve. The 
standard curve was established by plotting the logarithm of seven 10-fold dilutions of a starting 
solution containing 21.9 ng of plasmid DNA pCR II-TOPO (TOPO-TA cloning) with a DWV insert 
(from 21.9 ng to 21.9 fg), against the corresponding Ct value, as the average of three repetitions.  
The PCR efficiency (E=107.5%) was calculated based on the slope and coefficient of correlation (R2) 
of the standard curve, according to the following formula: E=10(−1/slope)−1 (slope=−3.155, y-
intercept=41.84, R2=0.999). Amplifications were performed using the StepOne Real-Time PCR 
System (Life Technologies) with the following thermal cycling profiles: one cycle at 48 °C for 15’ for 
reverse transcription, one cycle at 95 °C for 10’; 40 cycles at 95 °C for 15’’, 60 °C for 1’; one cycle at 
68 °C for 7’, using the Power SYBR Green RNA-to-Ct 1-Step Kit (Thermo Fisher Scientific). Primer 
pair (DWV-Forward 5’-GCGCTTAGTGGAGGAAATGAA-3’; DWV-Reverse 5’-
GCACCTACGCGATGTAAATCTG-3’) was designed using PrimerExpress 3.0 software (Life 
Technologies) following the standard procedure. Negative (H2O) and positive controls (previously 
identified positive samples) were included in each qRT-PCR run. According to the manufacturer, the 
used equipment should allow the detection of the virus provided that at least 50 genome copies are 
present in the sample. 
 
Analysis of DWV mutant cloud. For DWV RNA-dependent RNA polymerase (DWV\RdRp) 
analysis, specific primer pair were chosen for the amplification of a genome portion of 454 bp 
(DWV\RdRp-Forward 5’-TAGTGCTGGTTTTCCTTTGTC-3’; DWV\RdRp-Reverse 5’-
CCCAGGACCAAAATTCTTAT-3’). The PCR reactions were conducted using the Invitrogen 
SuperScript III One-Step System (Platinum) following the manufacturer’s procedure. The thermal 
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profile was: 50 °C for 30’; 94 °C for 2’; 40 cycles at 94 °C for 15’’, 60 °C for 30’’, 68 °C for 1’; 68 °C 
for 5’. Amplified products were run on a 1% agarose gel containing 0.5 µg/ml ethidium bromide and 
then visualized by UV transillumination. The specificity of the RT-PCR assay was confirmed by 
sequencing analysis. RT-PCR bands were excised from the agarose gel and purified using the Pure 
Link Quick Gel Extraction Kit (Invitrogen, Carlsbad, CA). The sequence data of the fragment were 
analysed using the BLAST server at the National Center for Biotechnology Information, NIH. For the 
RNAseq analysis, the same primer pairs described above were designed with a specific overhang 
(DWV\RdRp-Forward 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’; DWV\RdRp-
Reverse 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’). All primer pairs were 
designed by using Primer Express Software (Applied Biosystems). 
Raw Illumina paired-end reads in forward and reverse orientation were merged using the PEAR 
software v0.9.8 (32), adaptor trimmed using cutadapt v1.9 (33) and quality filtered using the FASTX 
Toolkit’s fastq_quality_filter program (34) requiring minimum quality of 20 in 95% bases or more. 
For the study of DWV variants we used a software designed for quasi-species reconstruction from 
next-generation sequencing data (35). Sequenced fragments were aligned against a reference genome 
and the reference genome was partitioned into a set of sliding windows, then a reconstruction 
algorithm based on combinations of multinomial distributions was applied. The selected reference 
genome was the one most closely related to the DWV samples sequenced in this study (i.e. 
NC_004830.2; Fig. S1). The analysis output is a collection of sequences with prevalences, which was 
used for a diversity analysis based on the Shannon index. 
 
DWV Negative strand quantitative analysis. In order to quantify the DWV negative strand in 
infesting mites, a strand-specific Biotin/Streptavidin method was used. SYBR-Green real-time 
quantitative PCR (qPCR) as described above was preceded by a specific retrotranscription 
incorporated with biotinylated-primers (Biotin-DWV-Forward 5’-TCG ACA ATT TTC GGA CAT 
CA-3’; Biotin-DWV-Reverse 5’-ATC AGC GCT TAG TGG AGG AA-3’) and magnetic bead 
purification by using the Dyna beads KilobaseBINDER Kit following the manufacturer’s instructions 
(Applied Biosystems). 
 
Transcriptomic study of bees. Samples were transferred into liquid nitrogen and the total RNA 
isolated using Tri-reagent (MRC Inc., USA) (Ambion Inc.). RNA sequencing libraries were generated 
by means of TruSeq Standard mRNA seq kit Illumina, according to the standard protocol indicated by 
the producer (Illumina, Inc., CA, USA) and starting from 1-2 micrograms of high quality RNA (RNA 
Integrity Number >7, Agilent Technologies Bioanalyzer, Agilent Technologies, USA). This protocol 
produced 25-30 million reads per sample that were 36 bases in length. 
The sequencing reads were trimmed using ERNE (36) in order to remove low quality reads and the 
adapters removed with Cutadapt (33). The remaining reads were aligned to the most recent honey bee 
genome build (Amel 4.5 (37)) with TopHAt2 (38) using default parameters and annotated with the 
newest official gene set (OGS 3.2). Reads were counted with Htseq count (39) using exons as accepted 
regions and cumulating the counts at whole gene level. 
The obtained data were uploaded into DEseq2 (40) to be elaborated by means of VST (Variance 
Stabilizing Transformation) algorithm and used for the cluster analysis. 
Five uninfested and 10 newly emerged infested bees, 5 with a high DWV infection level and 5 with a 
low infection level, were collected from the cages and processed as above (Fig. 1B). Also five newly 
emerged bees infested with no, one or three mites (Fig. 2A) were processed as above. 
 
To gain insight into the relative contribution of the Varroa mite and DWV in the alteration of the 
expression of genes belonging to the canonical immune pathways, we studied the transcriptome of 
bees exposed to a different combination of stress factors (Supplementary Data 1). In particular, to 
assess the influence of the mite, we compared the expression level of 191 immune genes, listed in ref. 
12, in five uninfested bees bearing a low viral infection (average DWV infection=2.04E+03) and five 
mite infested bees bearing a similar, low viral infection level (average DWV infection=1.95E+03) 
(Fig. 1B); instead, to assess the influence of the combination Varroa-DWV we compared five 
uninfested bees bearing a low viral infection with five mite infested bees bearing a high viral infection 
level (average DWV infection=1.41E+09) (Fig. 1B). Note that 14 and 151 genes classified in ref. 12 
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as “immune related” and “immune system process” respectively, were not included in this analysis 
that concentrated on canonical immune pathways. 
Due to the uncertainty about the distribution of data, the comparisons were carried out using the 
Mann-Whitney U test. Since the purpose of this research was not to gather data about single genes but 
rather to gain an indication about the involvement of different immune pathways, and keeping into 
account the moderate probability of type I errors, no correction for multiple comparisons was applied 
but rather differentially expressed genes were considered as such when probability was below 0.01. To 
verify the possible enrichment of each immune pathway, the proportion of differentially expressed 
genes belonging to that pathway out of the total number of DEGs in that contrast was compared with 
the proportion of genes belonging to that pathway out of the total number of genes considered here; 
Chi square test was used and, again, the level of probability was set to 0.01. 
In order to test the relative importance of immunity on the increased viral titer normally observed in 
multiple infested bees, we artificially infested with none, one or three mites five last instar honey bee 
larvae obtained as described above and compared the expression of immune genes in those bees, as 
described above (Supplementary data 2). The proportion of reads mapping onto the DWV genome 
provided an estimation of the viral infection level in bees whereas a cluster analysis of samples 
according to the expression of immune genes gave an indication of the effects of an increasing mite 
infestation on the bee’s immunity. 
FPKM were used as gene expression data. The list of honey bee immune genes proposed by Ryabov et 
al. (12) was used. 
To remove possible outlier samples from the analysis, the mean expression value across all samples 
for each gene was calculated as well as the standard deviation (note that here samples were considered 
as belonging to a single big group, in order not to introduce any bias in our preliminary filtering). Then 
expression values higher or lower than the mean expression value ±2 standard deviations were noted. 
Lastly the proportions of outlier genes in each sample were considered and samples having more than 
25% of outlier genes were excluded (this procedure lead to the exclusion of one single sample out of 
15, which appeared to have a number of outlier genes bigger by three fold than any other sample). 
Then we performed a cluster analysis using “Gene Cluster 3.0” (41) with the following options: 
centering genes around mean, similarity metrics: correlation (uncentered), clustering method: average 
linkage. The tree was displayed using “Treeview” (42). 
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Supplementary figures 
 

 
 
Figure S1. Phylogenetic relationship of the DWV infecting the bees used in this study (samples 
P11 and P31). The dendrogram is based on the complete genomes (nt sequences) of available 
sequences of DWV strains and related viruses. 
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Figure S2. DWV prevalence in bees parasitized or not by a DWV infected mite. Error 
bars represent the estimated confidence limits of the proportion. 
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Figure S3. Frequency distribution of infection levels in bees parasitized with one mite in 
late summer. 
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Figure S4. Viral load in individual bees artificially infested at the L5 stage with one, 
three or no mites and sampled after 1, 6 and 12 days (eclosion). A further sample, 
parasitized by 3 mites and collected 1 day after eclosion, with infection level=1.22E+03, does 
not appear on this graph. 
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Figure S5. Infection level in infesting mites and infested bees. Note that zero values were 
transformed to 10. 
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Figure S6. Diversity of the mutant cloud, as estimated with the Shannon index, and viral 
infection in bees. 
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Figure S7. Increasing haemolymph loss destabilises viral dynamics. Stable (solid lines) and 
unstable (dashed line) equilibria are plotted for both viral titre (black lines, scaled to viral density that 
halts immune proliferation) and immune effector density (gray line, scaled to density that halts viral 
replication). Equilibrium expressions are defined in equations S4. Below the dotted line, the virus can 
be efficiently regulated by the immune-system to some intermediate (potentially cryptic) density, 
represented by the solid line. Above the dotted line (and for high m, any point to right of intersection 
with solid line), the virus cannot be efficiently regulated and a viral explosion ensues. A constant loss 
of viral particles and circulating immune effectors caused by mite feeding (increasing m, moving right 
along the solid lines) will first cause a gradual increase in copy number, V* (black line) and a 
correspondent decrease in circulating immune effectors, I* (gray line), and then at a defined point 
(intersection of solid and dotted lines), a viral explosion will ensue. Parameters are x = 0.09, y = 0.1 
and z = 0.4. 
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Figure S8. Differential immune response in bees infested by no, one or three mites. For each 
contrast between treatments the number of differentially expresses genes belonging to the canonical 
immune pathways is reported. 
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Figure S9. Possible routes of infection of DWV. The bees are represented by squares of different 
colours according to the developmental stage, the virus is a yellow pentagon and the mite an orange 
hexagon. Both trans-ovarial (from queen to egg, 1) and trans-stadial (from egg to larva, 2, and from 
larva to adult, 3) as well as horizontal transmission between nurse bees and larvae (4) and from adult 
to adult (5) are possible among bees. The Varroa mite can transfer the virus from pupa to pupa (6), 
pupa to adult (7) and viceversa (8) and adult to adult (9). Note the possible infection routes of the bee 
larva (2, 4), that are possible independently of the mite’s presence. The contribution of the mite as a 
virus vector is highlighted by transmission routes 6, 7, 8, 9. 
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Figure S10. Current hypotheses about the role of the mite in facilitating viral infections. The bees 
are represented by squares, the virus is a yellow pentagon and the mite an orange hexagon; violet 
triangles (empty after suppression) represent the immune effectors. (A) The virus replicates within the 
mite and subsequently infects the pupa (8). (B) The mite favours the proliferation of a virulent strain 
of the virus (in the case represented here as an example, by injecting the pathogen into the 
haemolymph where replication is easier) (12, 13). (C) The mite suppresses the bee’s immune response 
(10). (D) The mite engages the same factors needed to sustain the antiviral response, releasing the 
pathogen from immune control (9). (E) The mite feeds upon the virus-contaminated haemolymph, 
subtracting both DWV and immune effectors, altering the dynamics of the systems, resulting in 
increased virus abundance (this article). 
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