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Summary 

Bacterial growth depends on numerous reactions, and yet follows surprisingly simple laws that 

inspired biologists for decades. Growth laws until now primarily dealt with steady-state 

exponential growth in constant conditions. However, bacteria in nature often face fluctuating 

environments, with nutritional upshifts and downshifts. We therefore ask whether there are 

growth laws that apply to changing environments. We derive a law for strong upshifts using an 

optimal resource-allocation model that was previously calibrated at steady-state growth: the 

post-shift growth rate equals the geometrical mean of the pre-shift growth rate and the growth 

rate on saturating carbon. We test this using chemostat and robotic batch culture experiments, 

as well as previous data from several species, and find good agreement with the model 

predictions. The increase in growth rate after an upshift indicates that ribosomes have spare 

capacity. We demonstrate theoretically that spare ribosomal capacity has the cost of slow 

steady-state growth, but is beneficial in fluctuating environments because it prevents large 

overshoots in intracellular metabolites after an upshift and allows rapid response to change. We 

also provide predictions for downshifts for future experimental tests. Spare capacity appears in 

diverse biological systems, and the present study quantifies the optimal degree of spare 

capacity, which rises the slower the growth rate, and suggests that it can be precisely regulated.  

Keywords 

Systems biology, Bacterial growth laws, Nutritional upshifts / downshifts, Non-equilibrium, 

Cellular regulation, Resource allocation, Optimality, Biological physics, Safety factors, 

Quantitative evolutionary design 

 

Introduction 

Systems biology aims to find principles for complex biological phenomena. One way to identify 

principles is by understanding patterns in biological data.  A prime example of such patterns are 

bacterial growth laws that relate exponential growth rate to cellular and environmental 

parameters. Although the growth rate 𝜇 depends on thousands of molecular reactions, it 

follows surprisingly simple rules. For example, there is a linear relation between 𝜇 and the 

ribosomal content of the cell R (Ecker and Schaechter, 1963), a law that has been extensively 

replicated (Scott et al., 2010; Zaslaver et al., 2009), and which inspired foundational 
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mathematical modelling of bacterial resource allocation (Bremer and Dennis, 2008; Churchward 

et al., 1982; Ehrenberg and Kurland, 1984; Kremling et al., 2007).  

The linear relation between growth rate  𝜇 and ribosomal content 𝑅 also inspired contemporary 

work by Hwa and co-workers that identified new bacterial laws that connect 𝜇 and cellular 

content (Hui et al., 2015; Scott et al., 2010; You et al., 2013). For example, the proteome fraction 

for carbon utilization, 𝐶, is a decreasing linear function of growth rate, and 𝑅 + 𝐶 is 

approximately constant across growth rates on limiting carbon. These laws generated vigorous 

research (Bosdriesz et al., 2015; Giordano et al., 2016; Kafri et al., 2016; Maitra and Dill, 2015; 

Pavlov and Ehrenberg, 2013; Towbin et al., 2017; Weiße et al., 2015), with mathematical models 

that explain phenomena such as dependence of cellular content on antibiotics (Scott et al., 

2014) and the switch between carbon utilization strategies (Basan et al., 2015; Mori et al., 

2017a).  

Most growth laws until now apply to steady-state exponential growth, which occurs when 

bacteria have been growing for at least several generations in constant conditions (Maaløe and 

Kjeldgaard, 1966; Shachrai et al., 2010; Wang et al., 2010).  In nature, however, bacteria often 

face changing environments. In particular, they often go from poor conditions with slow growth 

to richer conditions with more rapid growth, changes known as nutritional upshifts (Poulsen et 

al., 1995). Despite the considerable experimental and theoretical research going back to Maaløe 

and Koch on nutritional upshifts (Brunschede et al., 1977; Dennis, 1974; Ehrenberg et al., 2013; 

Erickson et al., 2017; Giordano et al., 2016; Koch and Deppe, 1971; Maaløe and Kjeldgaard, 

1966; Mori et al., 2017b; Pavlov and Ehrenberg, 2013; Sloan and Urban, 1976), no simple upshift 

growth law was yet described.  

Here, we combine theory and experiment to quantify nutritional upshift dynamics. We apply a 

resource allocation model, which was previously calibrated on steady-state growth experiments 

(Towbin et al., 2017), and use it to study nutritional upshifts. The model predicts that the growth 

rate after a large upshift, 𝜇1, is equal to the geometrical mean of the pre-shift growth rate 𝜇0 

and the growth rate on saturating carbon 𝜇𝑠𝑎𝑡,  𝜇1 = √𝜇0𝜇𝑠𝑎𝑡 . Intuitively, this square-root law 

stems from an increase in both ribosomal sector and ribosomal saturation level with growth 

rate.  We test the model predictions using chemostat and batch-culture experiments with 

different carbon sources and temperatures, as well as re-analysis of published data, and find 

that the square-root law fits the data across conditions, experimental systems and species. This 

finding precisely quantifies the degree of sub-saturation or spare capacity for growth, showing 

that ribosomes are sub-saturated in all but the highest growth rates. We propose that ribosomal 

sub-saturation supplies benefit by i) preventing large overshoots in intracellular metabolites 

after an upshift and ii) allowing faster growth immediately after an upshift, at the cost of a 

reduction in steady-state growth rate. Ribosomal sub-saturation, and the upshift growth law, 

are therefore selectable in environments where upshifts occur frequently. 

Results 
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Optimal resource allocation model predicts that the immediate growth rate after large 

upshifts is the geometric mean of the pre-shift and saturating growth rates 

To study upshifts we employ a minimal resource allocation model, which was developed and 

calibrated for steady-state growth in diverse carbon sources by Towbin et al (Towbin et al., 

2017). Here we generalize the model and take it out of steady-state to derive a prediction for 

growth rate after an upshift. 

In the model (Fig. 1a-b), carbon uptake and biomass synthesis are described as a two-enzyme 

system, composed of a catabolic sector (denoted as the C sector) and a ribosomal sector 

(denoted as the R sector). The catabolic sector, which includes carbon transporters and 

catabolic enzymes, is responsible for carbon uptake and conversion into intracellular substrates 

(denoted by x). The ribosomal sector, which includes ribosomes and translational machinery, 

take these substrates and converts them into biomass. A third sector (the Q sector, Text S1) 

includes all other proteins, which under limiting carbon conditions do not change with growth 

rate (Scott et al., 2014). The experimentally observed tradeoff between making 𝑅 and 𝐶 sector 

proteins is summarized by  𝑅 + 𝐶 = 1 (You et al., 2013). 

The exponential growth rate 𝜇 is the product of the ribosomal sector size 𝑅 and the average rate 

of the ribosomes, 𝑔. Both 𝑅 and 𝑔 depend on intracellular substrates 𝑥:  

(1)  𝜇 = 𝜇𝑠𝑎𝑡𝑅(𝑥)𝑔(𝑥) 

𝑔(𝑥) and 𝑅(𝑥) are normalized between zero and one, such that 𝜇𝑠𝑎𝑡 is the growth rate when 𝑥 

is saturated. 𝑔(𝑥), the average elongation rate, is an increasing function of 𝑥, describing 

ribosome utilization (Dai et al., 2016). A sub-saturated ribosomal sector 𝑔(𝑥) < 1 can be the 

result of either a differential elongation rate or a fraction of inactive ribosomes – both are 

equivalent in terms of this model. 

The internal substrate 𝑥 dynamics are in turn a balance between utilization for biomass 

production at rate 𝜇, and the import of nutrients by the 𝐶 sector: 

(2)  
𝑑𝑥

𝑑𝑡
= 𝛽𝐶ℎ(𝑥) – 𝜇 

Nutrients are imported and catabolized by the 𝐶 sector at a rate 𝛽ℎ(𝑥), where 𝛽 represents 

nutrient availability. ℎ(𝑥), the import rate, is a decreasing function of 𝑥 which describes 

inhibition of the transporters by intracellular substrates (Doucette et al., 2011).  

The dynamics of 𝑅 are a balance of production and dilution by cell growth: 

(3) 
𝑑𝑅

𝑑𝑡
= 𝜇 (𝑓(𝑥) − 𝑅) 

The function 𝑓(𝑥) describes transcriptional control that determines the fraction of the total 

biomass production rate 𝜇 that goes to the 𝑅 sector (Dalebroux and Swanson, 2012). At steady-

state, 𝑅 = 𝑓(𝑥). For a detailed derivation of the model see SI (Text S1).  
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A key feature of this model is that growth rate in a given nutrient 𝛽 depends on the control 

function 𝑓(𝑥), because too few or too many ribosomes result in slow growth (Fig. 1c, Text S2). 

In rich environments (large 𝛽) more ribosomes are needed, whereas in poor environments more 

transporters are needed to provide the fastest growth. While the activity curves of the C and R 

sector rates, ℎ(𝑥) and 𝑔(𝑥), define the possible set of steady-states (i.e. the curve in Fig. 1c), 

𝑓(𝑥) determines the chosen steady-state among this set. Importantly, Towbin et al 

experimentally found that the wild-type level of ribosomes, R, maximizes the steady-state 

exponential growth rate under many conditions (Towbin et al., 2017). We hence asked whether 

there exists an optimal 𝑓(𝑥) that provides the fastest growth for any environment 𝛽 . Using a 

calculus-of-variations approach (Text S3), we found that indeed such an optimal 𝑓(𝑥) exists:  

(4)  𝑓(𝑥) =
1

1−𝑔′(𝑥)ℎ(𝑥)/𝑔(𝑥)ℎ′(𝑥) 

Intuitively, this optimal regulation function 𝑓(𝑥) determines the best trade-off between 𝑅 and 

𝐶, by balancing the relative advantage of investing in each of these sectors according to the 

logarithmic sensitivities of their activity curves ℎ′/ℎ and 𝑔′/𝑔 (Rosenheim et al., 2010). 

With the optimal 𝑓(𝑥) of Eq. (4), cells are guaranteed to find the optimal growth rate for any 

nutrient 𝛽. However, the value of the optimal growth rate can change for different choices of 

ℎ(𝑥), 𝑔(𝑥), which set the transporter and ribosome activity at a given substrate level. In 

particular, when ribosomes and transporters are fully saturated (𝑔 = ℎ = 1), growth rate is 

higher than if they are unsaturated (compare tent-like curve to the more rounded curves in Fig. 

1c). 

Towbin et al calibrated the model for steady-state growth in different carbon sources, using 

Michaelis-Menten-like (MM) saturation curves ℎ(𝑥) =
𝑘1

𝑘1+𝑥
, 𝑔(𝑥) =

𝑥

𝑘2+𝑥
. The halfway 

saturation points for pumps and ribosomes are 𝑘1 and 𝑘2 respectively. The ratio between these 

halfway coefficients κ=k2/k1 represents the cellular saturation level (Fig. 1d, Text S4). Full 

saturation, in which ribosomes and transporters work close to saturation in a wide range 

substrate levels, is captured by κ≪1 (Fig. 1d left). Extreme sub-saturation in which ribosomes 

and transporters work far from their full capacity in most conditions means κ≫1 (Fig. 1d right). 

Medium sub-saturation in which the halfway coefficients of ribosomes and transporters are 

equal is captured by κ=1 (Fig. 1d middle). Towbin et al experimentally manipulated the C sector 

and measured the resulting growth rate as in Fig. 1c. These experiments indicated that the 

saturation halfway points are approximately equal, 𝑘1 = 𝑘2, and hence κ~1 .  

Here, we take the model out of steady-state, and use it to study upshifts. Upshifts are modelled 

by increasing nutrient availability 𝛽 from a low to a high value. We use the parameter κ=1. We 

also model full saturation and sub-saturation by varying κ.  

The model allows us to calculate the growth rate before the upshift, 𝜇0, and immediately after 

the shift 𝜇1 (Fig. 2a). This yields a relation between the normalized post-shift and pre-shift 
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growth rates  𝜇1̃ = 𝜇1 𝜇𝑠𝑎𝑡⁄ , 𝜇0̃ = 𝜇0 𝜇𝑠𝑎𝑡⁄   for large upshifts (upshifts into saturating carbon, 

such that long after the upshift, the growth rate is 𝜇𝑠𝑎𝑡, Text S4), as a function of κ (Fig 2b): 

(5) 𝜇1̃ = 𝜇0̃ (1 − 𝜅) + √𝜅√𝜇0̃ − (1 − 𝜅)𝜇0̃
2 

At full saturation, κ≪1 , the expression reduces to 𝜇1̃ = 𝜇0̃, because when ribosomes are 

saturated before the shift, growth rate cannot immediately increase after the upshift. At 

extreme sub-saturation, κ≫1, the model gives a linear relation between the normalized pre-

shift and post-shift growth rates with an intercept of ½ (Fig. 2b, dashed lines). 

When κ=1, as suggested by the findings of Towbin et al., this expression yields a simple 

prediction: the Immediate growth rate after an upshift is the geometric mean of the pre-shift 

and saturating growth rates,  

(6) 𝜇1 = √𝜇0𝜇𝑠𝑎𝑡 

Intuitively, this square-root law results from the following situation: in poor conditions both 

ribosomal content R and saturation level g are a small value 𝜖, and the growth rate is 𝜇0~𝜖2, 

whereas soon after the upshift, ribosomes are still 𝜖 but saturation is high due to the presence 

of nutrient, resulting in 𝜇1~𝜖. In supplementary note S5 we relax the assumption that h(x) and 

g(x) are MM-like, and derive a similar square-root law for general h(x), g(x) functions (Text S5). 

In the case 𝜅 = 1, the upshift law can be expanded to include general upshifts and downshifts 

(Text S6), not only large ones as assumed above, resulting in the formula:  

(7) 𝜇1̃ = √𝜇0̃𝜇𝑝𝑜𝑠�̃�
(1−𝜇0̃)

(𝜇0̃−2𝜇0̃𝜇𝑝𝑜𝑠�̃�+𝜇𝑝𝑜𝑠�̃�)
 

Where the growth rate far after the shift is denoted 𝜇𝑝𝑜𝑠𝑡  and  𝜇𝑝𝑜𝑠�̃� = 𝜇𝑝𝑜𝑠𝑡 𝜇𝑠𝑎𝑡⁄ . In the case 

of large upshifts to saturating carbon, 𝜇𝑝𝑜𝑠�̃� = 𝜇𝑠𝑎𝑡, and the formula reduces to the square root 

formula of Eq. 6 (Text S6).  

The upshift law can be recast in terms of the spare capacity of the cells for growth (Diamond, 

2002). Cells grow at 𝜇0 and then jump to 𝜇1, indicating that they were operating below full 

capacity. The spare capacity U can be defined as the fold-change in growth rate after the shift, 

𝑈 =
𝜇1

𝜇0
. This definition, together with Eq. (6), leads to a spare capacity of 

(8)  𝑈 = √𝜇𝑠𝑎𝑡/𝜇0  

as shown in (Fig. 2c). Spare capacity is smallest (U=1) when cells are close to their saturating 

growth rate. Spare capacity increases the poorer the medium (the smaller 𝜇0/𝜇𝑠𝑎𝑡). For 

example, in a medium that allows only 10% of the growth rate on saturating carbon, 𝜇0/

𝜇𝑠𝑎𝑡=0.1, the cell grows 𝑈 = √10 ~3  times faster when shifted to saturating carbon.  
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The present model predicts that at zero growth rate 𝜇0 = 0 there is no upshift, 𝜇1 = 0. This 

cannot capture the irreducible ribosomal fraction of the bacterial proteome that allows recovery 

from stationary phase (Dai et al., 2016; Madar et al., 2013). The model can be extended to 

include such an irreducible ribosomal fraction (Text S7). 

Experimental tests for nutritional upshifts support the square root formula  

To test the model predictions, we carried out experiments in which E. coli MG1655 cells were 

shifted from exponential growth in a poor medium to saturating glucose medium. We used two 

experimental systems: (i) a chemostat, in which slowly dividing cultures in glucose-limited 

medium (0.02%) were shifted to growth in 0.2% glucose (Fig. 3a, Fig. S1). (ii) Batch culture in a 

multi-well robotic assay at several temperatures (25˚C, 30˚C, 37˚C) in which cultures growing 

exponentially on different carbon sources (acetate, sorbitol, rhamnose or pyruvate) were shifted 

to 0.4% glucose medium (Fig. 3b, Fig. S2,S3). Because we are interested in biomass growth rate, 

we measured the optical density (OD) of the cells at a temporal resolution of 0.5 min in the 

chemostat and 3.6 min in the batch culture, with an error of 4-10% in growth rate between 

biological repeats.  

We find that growth rate increased abruptly after the upshift by up to 3.3-fold, starting from an 

initial value 𝜇0 before the shift and stabilizing after about 15-30 minutes at a new value 𝜇1 (Fig. 

3a,b, Fig. S1, Fig. S3). No such increase was found in control experiments in which pre-growth 

medium was added instead of glucose, or in the case where cells were shifted from saturating 

glucose to higher levels of glucose. After the initial increase, the growth rate further increased 

more slowly on the timescale of hours. We also measured the growth rate on saturating carbon, 

𝜇𝑠𝑎𝑡, defined for a given medium and temperature as the exponential growth rate in batch 

culture with saturating glucose (Fig. S4).   

The rapid increase in growth rate from 𝜇0 to 𝜇1 cannot be explained by synthesis of new 

ribosomes (Koch and Deppe, 1971). As suggested by Koch and others (Harvey, 1973; Koch, 

1988), this hints that cells in slow growth have a higher translational capacity than is actually 

being used.  

In addition to the experiment performed here, we collected data from previous studies on a 

different strain, E. coli 15T¯, on a different bacterial species, S. typhimurium (Maaløe and 

Kjeldgaard, 1966; Sloan and Urban, 1976), and on the yeast Saccaromyces cerevisae (Metzl-Raz 

et al., 2017). In these experiments, cells were transferred from various carbon sources 

(fumarate, succinate, aspartate, glyoxylate, galactose or glycerol) to rich carbon sources 

(saturating glucose or broth), corresponding to strong upshifts. Growth rate was measured by 

radioactive amino acid incorporation (Maaløe and Kjeldgaard, 1966), OD measurements (Sloan 

and Urban, 1976) or microscopy (Metzl-Raz et al., 2017) (Methods). Together, the different data 

sources span a range of conditions, growth rates (0.07 - 1.67 h-1), strains and measurement 

methods (Table S1). 
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Analyzing the results for the pre-shift growth rate 𝜇0 vs. the post-shift growth rate  𝜇1  did not 

reveal a clear pattern, because the same pre-shift rate 𝜇0 could result in different post-shift 

rates 𝜇1 depending on the conditions (Fig. S5). However, a data collapse occurred when taking 

into account the condition-dependent value of the saturating growth rate, 𝜇𝑠𝑎𝑡 (Fig. 3c) As 

predicted by the model, the data is well-described by Eq. (6): the growth rate right after an 

upshift is well described by the geometric average of the pre-shift and saturating growth rates 

(Fig. 3c,d, Fig. S6, Table S1, Pearson correlation=0.99, p-value <10-26).  

We also compared the data to the model with different values of 𝜅. Fitting equation (5) to the 

data, we find that the best-fit saturation level 𝜅 is 1.3 (0.7, 2.5 95% confidence interval, Fig. 3e, 

Text S4), providing independent support to the steady-state evidence of Towbin et al that the 

halfway coefficients of ribosomes and transporters are similar.  

We also tested alternative mathematical relationships for the data, such as linear regression 

𝜇1 = 𝑎 𝜇0 + 𝑏 𝜇𝑠𝑎𝑡 + 𝑐  as described in the SI. Such relationships have free parameters, 

whereas Eq. (6) is a fit with no free parameters. Despite these free parameters, the best-fit error 

of the alternative formula is comparable or higher than Eq. (6) (R2, Table S2). Future 

experiments with lower error can further test the present predictions. 

Ribosome spare capacity prevents large substrate overshoot, and is beneficial in frequently 

changing environments 

The experiments indicate that ribosomes at low growth rates work far from saturation, because 

growth increases abruptly after the upshift (Erickson et al., 2017; Mori et al., 2017b). This sub-

saturation raises a question, because steady-state exponential growth rate is maximal when 

ribosomes are saturated (Fig. 1c). Maximum growth rate is the reason why many previous 

models assumed ribosomal saturation (Neidhardt, 1999). 

We hypothesize that there are evolutionary benefits to ribosome sub-saturation. The first 

potential benefit is that sub-saturation of ribosomes and pumps prevents large overshoots of 

the carbon intermediate x upon upshifts. Such overshoots can be toxic due to osmotic and 

hydration effects. The saturated model shows an overshoot of tens to thousands of folds in x 

after an upshift, because the ribosomes have no spare capacity to process the excess carbon, 

and the pumps cannot reduce their rate effectively to reduce influx. Since many metabolites in 

central carbon metabolism are in the mM range (Albe et al., 1990), an overshoot of 1000 would 

raise them to the 1M range which is biologically unfeasible. In contrast, the unsaturated model 

shows only a small (e.g. ten-fold) transient increase in x upon upshift (Fig 4a,b).  

A second benefit of spare capacity is a growth advantage at early times after an upshift (Mori et 

al., 2017b). Saturated ribosomes do not allow an increase in growth rate right after an upshift, 

and result in 𝜇1 = 𝜇0. This is because all ribosomes are already working full speed before the 

shift, and an increase in growth rate cannot immediately occur but rather requires synthesis of 

new ribosomes (Koch, 1988). Sub-saturation therefore has an advantage when upshifts occur 

often: the benefit of increased growth rate after the shift can offset the cost of lower 
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exponential growth rate at steady-state. In contrast, in conditions in which upshifts are rare, 

cells with saturated ribosomes have an advantage due to their higher steady-state growth.  

To test this hypothesis, we simulated batch growth in which cells with saturated and 

unsaturated ribosomal strategies competed over limiting nutrient (Fig. 5, Text S8). The model 

allows us to simulate bacteria with different amounts of spare capacity (sub-saturation), by 

introducing different values of  𝜅 =
𝑘2

𝑘1
.  

In the simulations, the two populations (𝜅 =1 and 𝜅 =0.001) were diluted into fresh medium 

resulting in an increase in nutrient availability 𝛽 (Fig. 5a), and competed over the nutrient. As 

cells grew, they depleted the nutrient at rate proportional to their number times their growth 

rate (Jacques Monod, 1949). As cells consumed the nutrient, growth rate declined to zero, 

simulating limiting nutrient conditions (Bren et al., 2013). The proportion between the two 

populations was estimated after stabilizing at a constant value (Fig. 5b). We repeated this for 

different initial cell concentrations (different initial dilutions), which determined the number of 

generations of growth until nutrient runs out. 

As expected, we found that at steady-state, higher growth rate is always achieved by using the 

saturation strategy. However, after the dilution, non-saturation achieves higher growth for the 

first few generations (Fig. 5c). After these few generations, the saturation population managed 

to catch up and achieved faster growth rate again. The relative advantage of the early gain and 

the long-term loss in growth depends on the number of generations of growth that the cells 

went through. For example, for a typical parameter set, non-saturation wins over the saturation 

strategy (selection coefficient>1) when the number of generations until nutrient runs out is 

smaller than 6 (Fig. 4d, for 𝜇0 = 0.06𝜇𝑠𝑎𝑡 , 𝜇𝑠𝑡 = 0.7𝜇𝑠𝑎𝑡, where 𝜇 is computed with 𝜅 = 1. See 

Fig. 4e for other parameters). Due to the exponential nature of the growth, even the transient 

advantage given by the spare capacity has long-lasting implications 6 generations later. 

To generalize these findings, we performed a parameter scan to find the optimal level of spare 

capacity as a function of the frequency of upshifts in the environment, and on the strength of 

the upshift (difference between pre and post steady-state growth rates). We find that using full 

saturation (𝜅 ≪ 1, zero spare capacity) is beneficial in environments in which upshifts are rare 

and mild (small difference between pre and post media). In contrast, the more frequent the 

upshift and the stronger it is, sub-saturation is more beneficial.  

An experimental finding by (Gyorfy et al., 2015) supports this prediction. Gyofry et al compared 

strains deleted for some of the ribosomal RNA operons (Δrrn) to wild type strains in chemostat 

and batch culture. The Δrrn strains outcompeted wild-type strains in a chemostat but not in 

batch culture conditions. We Interpret these findings in the light of the present model: the Δrrn 

strains have fewer ribosomes (Gyorfy et al., 2015) and hence ribosomes are more saturated. 

They do better under steady-state conditions (chemostat) due to their higher steady-state 

growth rate. But Δrrn stains do worse after an upshift (shift from overnight to fresh batch 

culture), due to the predicted benefits of sub-saturation in the wild-type strain.  
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A further implication of the model is a growth law for nutritional downshifts. Like upshifts, 

downshifts are prevalent in nature, since bacteria tend to exhaust their nutrient resources 

during the last generations of exponential growth (Bren et al., 2013). In very rich environments, 

ribosomes work near saturation, but the transporters are sub-saturated. In downshifts, the 

model suggests that it is the sub-saturation of transporters/utilization systems that is 

advantageous: In rich environments few transporters (small 𝐶 sector) are needed, but after the 

transition to a poor medium, cells need to produce new transporters and catabolic systems 

(increased 𝐶 sector) to reach optimal growth. Moreover they need to produce these 

transporters despite the low nutrient influx in the poor medium. If transporters were saturated, 

growth rate would plummet in the poor condition; however, when transporters are unsaturated 

before the shift, there is spare capacity to prevent a strong decrease (Fig. S7). Thus, transporter 

sub-saturation is selectable in conditions with frequent downshifts. The model analytically 

predicts a growth law for downshifts from a rich medium, 

(9)  
𝜇1

𝜇𝑠𝑎𝑡
=

𝜇𝑝𝑜𝑠𝑡

𝜇𝑠𝑎𝑡
(1 − √

𝜇0

𝜇𝑠𝑎𝑡
)    

(see Text S6 for the range of validity of this formula, and for a more general formula) where 

𝜇𝑝𝑜𝑠𝑡  is the steady-state growth rate in the post-shift medium. Since downshifts are 

experimentally harder to explore, we defer a test of this prediction to future studies. 

Discussion  

We derive a law for growth immediately after an upshift from a model of optimal control of 

transcriptional regulation in cells. This growth law is supported by experiments in chemostat and 

robotic batch culture conditions in different media and temperatures, and re-analysis of 

previous data on E. coli, Salmonella and yeast. The growth law is also a quantitative measure of 

the spare capacity of cells for growth. We suggest that sub-saturation of ribosomes can be 

beneficial in frequently changing environments, since it prevents large overshoots in metabolic 

intermediates and allows rapid initial increase in growth rate following an upshift.  

The question of whether ribosomes work at saturation has a long history. There seem to be at 

least two schools of thought. In one school, exemplified by Maaløe and co-workers (Maaløe and 

Kjeldgaard, 1966), ribosome saturation is almost a law in itself (as for example in a review by 

Neidhart (Neidhardt, 1999)). This postulate is due to the fact that balanced exponential growth 

is maximal at ribosomal saturation. The second school of thought suggests that ribosomes are 

substantially sub-saturated under all but the best conditions, often assuming a fraction of 

inactive ribosomes. Examples of this way of thinking can be found in work on upshifts by Koch 

(Koch, 1971, 1988; Koch and Deppe, 1971), Harvey (Harvey, 1973) and subsequent models 

(Ehrenberg et al., 2013) and experiments (Borkowski et al., 2016; Dai et al., 2016; Metzl-Raz et 

al., 2017). The present study supports the second school. Importantly, it quantifies the extent of 

sub-saturation, predicting the spare capacity U for growth as a function of the growth rate 𝜇0 
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and the saturating growth rate 𝜇𝑠𝑎𝑡, namely 𝑈 = √
𝜇𝑠𝑎𝑡

𝜇0
. Spare capacity is larger the poorer the 

medium (the smaller 
𝜇0

𝜇𝑠𝑎𝑡
) 

Sub-saturation is selectable in frequently changing environments, because it prevents large 

overshoots in intracellular metabolites after an upshift which are likely to be toxic. Spare 

capacity also confers rapid growth after upshifts and downshifts, which may offset the cost of 

the reduction in growth rate at steady-state. A potential experimental test could compare 

different bacterial strains and species in terms of their upshift performance and their ribosome 

saturation. Our model predicts that the higher the saturation, the slower the post-shift 

improvement, a prediction which is supported by experiments on rrn deletion strains (Gyorfy et 

al., 2015). This hints at a tradeoff situation (Klappenbach et al., 2000; Shoval et al., 2012; Weiße 

et al., 2015), in which higher steady-state growth comes at the expense of rapid response to 

changes. Mori et al., in a paper published during the publication process of this study, reached a 

similar conclusion (Mori et al., 2017b), elegantly showing how the basal fraction ribosomes is 

optimal for a given frequency of environmental change. 

More generally, metabolomic experiments indicate that sub-saturation is the norm for many 

metabolic enzymes, which under typical conditions work well below their maximal rate (Davidi 

et al., 2016). This sub-saturation is often thought of as a “safety factor”, which is beneficial when 

enzymatic load is uncertain (Diamond, 2002). It would be interesting to check in other systems 

whether the present quantitative relationship for spare capacity is found (e.g does spare 

capacity increase at low steady-state system flux or activity (Suarez et al., 1997)) or whether 

other types of laws govern spare capacity in each context. 

The upshift growth law can be tested in additional strains, organisms and conditions. The model 

predicts specific forms for the ribosomal and transporter saturation and regulation functions 

which can in principle be tested experimentally. More generally, this study suggests that growth 

laws can be found for dynamic situations, not only for steady-state growth, deepening our 

understanding of how bacterial growth dynamics work and what tasks they evolved for.  
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Figure Captions 

Figure 1: Optimal resource allocation model for bacterial growth. (a) Schematic description and 

(b) equations for the cellular resource allocation model. (c) Growth curves describe the relation 

between the allocated ribosomal fraction and the steady-state growth rate in a given 

environment. Too little or too many ribosomes result in a sub-optimal steady-state growth rate. 

The optimal regulation function 𝑓(𝑥) brings steady-state ribosomal content 𝑅 to its optimal 

value in terms of growth – the maxima of the curves. Different ℎ(𝑥), 𝑔(𝑥) offset the curve, with 

a tent-like curve with high optimal steady-state for functions close to saturation (red curve) and 

a shallow rounded curve with low optimal steady-state growth rate for sub-saturated functions 

(blue curve). We use MM functions ℎ(𝑥) = 𝑘1/(𝑘1 + 𝑥), 𝑔(𝑥) = 𝑥/(𝑘2 + 𝑥), and measure 

saturation level by 𝜅 = 𝑘2/𝑘1 (Text S4). Small 𝜅 values reflect a regime where both transporters 

and ribosomes work close to full saturation for a large range of substrate levels (red pointy 

curve in c, left bottom panel in d). 𝜅 = 1 corresponds to sub-saturation of transporters and 

ribosomes (purple curve in c, middle panel in d). 𝜅 ≫ 1  leads to extreme sub-saturation with a 

large substrate range in which both ribosomes and pumps are not efficient (blue shallow curve 

in c, right panel in d). We used 𝛽 = 2 to compute all growth curves. Data points are taken from 

(Towbin et al., 2017), and represent perturbation experiments in which the allocation to 

catabolic and ribosomal sectors was tuned by externally supplying cAMP to a mutant strain 

which cannot endogenously produce it (Methods). The data is described best by 𝜅 values on the 

order of 1, suggesting that ribosomes and transporters work at sub-saturation. These 

experiments suggest that while optimality is reached within a given curve, the curve itself is not 

optimized for steady-state growth. Error bars are STE of 3 day-day repeats (sometimes smaller 

than marker). 

Figure 2: The model provides predictions for growth rate after an upshift (a) Typical growth 

rate dynamics during nutritional upshift. The growth rate before the shift is 𝜇0.  Upon addition 

of a rich carbon source (red line), the growth rate rises within minutes to reach a new value 𝜇1, 

and then slowly increases on the time scale of hours until it reaches its new steady-state value 

𝜇𝑠𝑎𝑡. The growth rate dynamics were computed from the model with parameter values 

𝜂0 = 0.1, 𝜂1 = 10, 𝜅 = 1 (Text S8).  (b),(c): Model predictions with different 𝜅 values, which 

correspond to different levels of saturation for the normalized growth rate. (d),(e): Saturation 

level of ribosomes and transporters as function of the growth rate for different 𝜅 values.  

Figure 3: Experimental data support the upshift growth law. (a) Growth rate in a chemostat 

upshift experiment. Cells in limiting-glucose M9 minimal medium (0.02%) with varying doubling 

times (here 4h) were shifted into high glucose medium (0.2%) (red line). The curves represent 3 

biological repeats. (b) Growth rate in a multi-well batch culture upshift experiment. 

Exponentially growing cells on M9 minimal medium with a poor carbon source (here acetate) 

were either supplemented with high glucose medium (0.4%) (blue curves) or with the pre-shift 

medium as a control (gray curves). The red line marks addition time. Curves are 3 biological 

repeats. Growth rate was computed from a window of time-points (Methods), precluding an 

accurate estimate for about 9 min after the shift, resulting in a gap in the plot. (c) Post shift 
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growth rate as a function of pre-shift growth rate is well described by 𝜇1/𝜇𝑠𝑎𝑡 = √𝜇0/𝜇𝑠𝑎𝑡 

(black line), which corresponds to Eq. 6. Dashed lines – model predictions when ribosomes and 

carbon transporters work at full saturation (𝜅 ≪ 1) or very far from saturation (𝜅 ≫ 1). Yellow 

dots – robotic batch culture experiments, blue dots - chemostat experiments (error bars are STE 

of 3 day-day repeats repeats), red dots – data from (Maaløe and Kjeldgaard, 1966) / (Sloan and 

Urban, 1976). Purple dot – yeast data from (Metzl-Raz et al., 2017) (error bars described in SI). 

For a detailed description of the data points see Fig. S6, Table S1. Inset: data plotted versus Eq. 

6. (d) Spare capacity for growth computed form the data, and from the model with 𝜅 = 1 (full 

line), and with high and low saturation (dashed lines). (e) Comparison of data (gray points) with 

model for different values of 𝜅. Model with the best fit 𝜅 = 1.3 is in heavy dashed line, with 95% 

confidence intervals in gray.  

Figure 4: Model predicts that sub saturation of ribosomes avoids large overshoots in 

metabolic intermediates after an upshift. (a) Model results for the substrate x after an upshift 

(increase in 𝛽 from 0.2 to 5, corresponding to a change in steady-state growth rate of 4 fold, 

similar to a shift from acetate to glucose). A large overshoot is seen for saturated ribosomes 

(𝜅 = 10−3), and a much smaller overshot for 𝜅 = 1. Inset: log of the change in x (log10(x(t)/x(0)) 

where x(0) is the pre-shift steady state value. (b) Substrate overshoot after an upshift, relative 

to pre-shift steady state, max(x(t))/x(0), as a function of 𝜅 and the upshift strength (relative 

change in steady state growth rate).  

Figure 5: Competition simulations show that sub-saturation is selectable in sufficiently 

fluctuating environments. (a) In nutritional upshift simulations, two populations, one with sub-

saturated ribosomes (𝜅 = 1, blue curve in middle and bottom panels), and one with saturated 

ribosomes (𝜅 = 10−3, orange curve in middle and bottom panels), were co-diluted into fresh 

medium. The two populations competed over the shared limited nutrient resource and depleted 

it at a rate proportional to their number times their growth rate (top panel). The proportion 

between the two populations was estimated after stabilizing at a constant value (pie diagram, 

middle panel). (b) This was repeated for different initial cell concentrations, which determined 

the number of generations of growth until nutrient runs out (typical time between upshifts). The 

threshold number of generations between upshifts for which saturation and sub-saturation are 

equally beneficial is marked with a black dot. (c) This threshold was computed for different 

initial and psot-shift steady-state growth-rates.  
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