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Abstract 
Species distribution models (SDMs) are valuable tools to estimate species’ distributions, but are 

vulnerable to biases in the probability of a species being observed. One such bias is habitat loss, which has 
affected a substantial and increasing proportion of the Earth. In regions of severe habitat loss, data on a 
species’ occurrence may represent a small, non-random subset of sites it once occupied. This could cause 
distorted reconstructions of species distributions, and misleading inferences of evolutionary and ecological 
processes. We present a statistical approach for quantifying the influence on SDMs of habitat loss, and 
generating distribution predictions that are robust to these biases. We explored some of the effects of 
accounting for habitat loss on inferences from common downstream biogeographic and ecological analysis 
methods. 

We used herbarium record data to model the distribution of 325 plant species in the genera Banksia and 
Hakea across Australia, using point process models. We accounted for biases in the models by including a 
proxy variable representing habitat loss, and compared the fit of models without this variable to those with it. 
We explored the influence of habitat loss by mapping biodiversity patterns predicted with and without 
accounting for it. 

Generally, accounting for habitat loss in SDMs led to increases in the mean area of modelled species 
distributions of ~10% for Banksia  and ~12% for Hakea  across Australia (in some cases, up to several 100,000 
km2 increases in predicted range), with somewhat greater average increases (11% and 15%) for species in the 
southwest Australian biodiversity hotspot. Accounting for habitat loss leads to an increase in predicted species 
richness (Alpha and Gamma diversity), but a decrease in compositional turnover (Beta diversity), across most 
of Australia. Accounting for habitat loss in SDMs had minimal influence on a downstream macroevolutionary 
analysis  (Age-Range Correlation) that utilizes species distributions, seemingly because exposure to habitat 
loss did not show a phylogenetic pattern in this taxonomic group. 

The influence of habitat loss on species distributions estimated with SDM is likely to be 
context-dependent and difficult to generalize, but will tend to cause underestimates of range sizes. This may 
have consequences for mapping spatial patterns of diversity and for some downstream analyses of 
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biogeographic, evolutionary, or ecological processes, based on species distributions, as well as conservation 
measures that rely on accurate species mapping. 

 
Keywords:  Species Distribution Models; Environmental niche models; Habitat loss; Biodiversity hotspots; 
Biogeographic analysis; Sampling bias; Biodiversity; Anthropogenic Landscapes. 
 

Introduction 
 

The description and mapping of species geographic distributions underpins many areas of research in 
ecology, evolution, and biogeography. For example, estimates of overlap in species distributions are used to 
infer the geographic mode of speciation (e.g. Anacker and Strauss 2014, Cardillo and Warren 2016), and infer 
the strength of interspecific competition (e.g. Davies et al. 2007); present-day distributions mapped onto 
phylogenies are used to infer ancestral distributions and reconstruct the biogeographic history of clades 
(Matzke 2013, Quintero et al. 2015); and the geographic patterns of species diversity or turnover in community 
composition are calculated from the conjunction of species distributions in different areas (Orme et al. 2005, 
Buckley and Jetz 2008). However, species distributions are rarely measured directly: usually, they are 
reconstructed from sets of occurrence records from specific locations, and the completeness and coverage of 
species records is often determined by practical constraints. For this reason, Species Distribution Modelling 
(SDM), a set of statistical methods that predict species distributions from their associations with environmental 
features, has emerged as a key tool in modern biodiversity research. 

Although SDM algorithms have become quite sophisticated, they still can only extrapolate from 
observed species occurrences, which means they are vulnerable to biases arising from factors that influence the 
probability of an occurrence being measured. Sampling biases resulting from differential sampling intensity 
across a region (e.g. associated with access such as road networks) have received a lot of attention in the SDM 
literature (Elith and Leathwick 2007, Phillips et al. 2009, Syfert et al. 2013, Warton et al. 2013, Fernández and 
Nakamura 2015, Fithian et al. 2015, Guillera-Arroita 2016). Other kinds of bias, including habitat loss, have 
received remarkably little attention but may have a direct role in obscuring the patterns of species distribution 
from which we try to infer evolutionary or ecological processes, or plan conservation actions. In regions where 
much of the natural habitat has been destroyed or heavily modified, we expect to find fewer occurrence records 
for many species, especially since many such regions are unlikely to have been thoroughly sampled before the 
onset of habitat conversion. With greater than 50% of the world’s natural habitat now converted to 
anthropogenic landscapes, and increasingly large, contiguous regions now almost entirely devoid of natural 
habitat (Ellis 2014), bias in occurrence records arising from habitat loss could have a potentially severe impact 
on SDM.  

The anthropogenic distortion of species distributions is likely to be especially severe in biodiversity 
hotspots. With high levels of endemic plant species richness and turnover, hotspots have been identified as 
critical conservation focus regions (Myers et al. 2000). The other defining criterion of biodiversity hotspots is 
extensive habitat loss (Myers et al 2000). This makes hotspots, by definition, potentially  susceptible to 
inaccurate reconstructions of species distributions, because  habitat loss removes critical information needed 
for accurate predictions under SDM.  This creates a double indemnity, whereby we suffer the future cost of 
losing species and populations themselves, as well as the cost of losing the valuable information their 
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observation entails. This can then compound further, since it is often the information we infer about a species’ 
distribution, and their response to the environment implicit within it, that helps us to effectively conserve those 
species. It is therefore important to quantify the influence that habitat loss has on inferred species distributions, 
and develop methods to account for this using only the data on post-habitat loss species occurrences that are 
typically available.  

Here, we present a methodological framework based on poisson point-process SDM modelling 
(hereafter referred to as PPM) to quantify and adjust for the influence of anthropogenic habitat loss on species 
distributions inferred with SDM. As case studies we use two species-rich plant genera of the Family 
Proteaceae ( Banksia and Hakea ) that are distributed widely across Australia, both within and outside  the 
southwest Australian biodiversity hotspot. Our approach is to explicitly incorporate the degree of habitat loss 
into SDMs for Banksia and Hakea species, and to compare the fit of these models to models that do not 
consider habitat loss, as well as to models that incorporate the more well-studied sampling bias associated with 
road access. We infer species distributions under SDMs accounting for habitat loss, and investigate the extent 
to which distributions are over or under-predicted when habitat loss is ignored, with particular focus on the 
southwest biodiversity hotspot. We then investigate the influence of accounting for habitat loss in SDMs on 
reconstructions of continent-wide patterns of species diversity and turnover. Finally, we present an example of 
how accounting for habitat loss in SDMs can influence the results of a downstream macroevolutionary analysis 
that utilizes data on inferred species distributions. 

Methods 

Species occurrence and environmental data 
 

We downloaded occurrence data for every species of Banksia and Hakea  (173 and 152 species, 
respectively) from the Atlas of Living Australia (http://www.ala.org.au/). We cleaned the occurrence records 
dataset by removing records that were obviously incorrect (e.g. in the sea) or well outside the bounds of expert 
range maps (e.g. cultivated specimens in botanic gardens). We downloaded data for a large number of 
environmental variables from the Atlas of Living Australia, using the R (R Core Team 2016) package ALA4R 
(Raymond et al. 2015). This included 104 variables relating to climate, soil, and topographic characteristics 
(Table S1) for coordinates corresponding to all species occurrence records, as well as for ~3 million quadrature 
points (see below). 

In order to model the distribution of species when only presence data are recorded (i.e. from occurrence 
records), we  generated a set of comparison points, known as “quadrature points” in point process SDMs 
(Renner et al. 2015). We generated one point for each 0.015 degree of latitude and longitude  across the whole 
of Australia (~3 million points in total). To apply PPM to  species, we sampled quadrature points from all of 
the terrestrial ecoregions (Olson et al. 2001) in which at least one occurrence record for the species was found 
(Barve et al. 2011) .  

 

Habitat Loss Proxy Variable 
 

In order to statistically account for habitat loss in our occurrence data, we collected a variable 
representing modern habitat loss across Australia. In agricultural landscapes, much of the native vegetation has 
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been completely or largely removed for agricultural development. For many species, there will be a greatly 
reduced probability that occurrence records from such areas exist, except where remnant native vegetation 
remains in patches large and numerous enough to support substantial populations. Even where the basic 
structure of the native vegetation is largely maintained (e.g. in some regions dominated by pastoral land uses), 
the habitat value of the vegetation may be severely diminished and species occurrence records few or 
non-existent. To quantify habitat loss we used data on dynamic vegetation land cover from Geoscience 
Australia (http://www.ga.gov.au/scientific-topics/earth-obs/landcover). This dataset uses satellite reflectance 
data to classify each 250x250m square of Australia into a set of vegetation classes (12 natural and 8 
non-natural, including agricultural). For use in the models we converted this land cover dataset into a binary 
classification (1=natural, 0=non-natural) and then used this to calculate the distance from each occurrence 
point to the nearest natural area (See Supplementary Methods 1).  

 

Accounting for Sampling Bias 
 
 Many studies have shown that the distribution of species occurrence records is often closely associated 
with road networks, because roads provide easy access and the time and cost of collecting or surveying 
increases with distance from roads (Elith and Leathwick 2007, Phillips et al. 2009, Syfert et al. 2013, Warton 
et al. 2013, Fernández and Nakamura 2015, Fithian et al. 2015, Guillera-Arroita 2016). We wanted to account 
for this potential bias while examining the effects of habitat loss. This would be particularly important if 
habitat loss was highly correlated with road access (though this correlation was not as strong as suspected: see 
Supplementary Figure 5). For each occurrence and quadrature point, we calculated the distance to the nearest 
road using road data in OpenStreetMap (https://www.openstreetmap.org; See supplement for more details.) 
and used it to account for sampling bias following the procedure of (Warton et al. 2013). 

 

Variable selection and implementation of Point Process Models  
 

Point Process Models (PPMs) are a class of Species Distribution models able to incorporate linear and 
polynomial terms of any included predictor (i.e. environmental factor). Given the large number of 
environmental predictors available from ALA, and no strongly-supported a priori framework to choose the 
predictors, we used a guided regularized random forest (GRRF) approach (Deng and Runger 2013) to conduct 
initial variable selection for each species, such that we only used the best eight variables in this analysis (see 
Supplementary Methods 2). 

We used the ppmlasso package in R (Renner and Warton 2013) to fit our PPMs. The ppmlasso function 
also includes a lasso penalty algorithm to reduce the number of variables in the model to minimize the risk of 
over-fitting. Including a proxy variable to account for bias has a rich history in the analysis of survey data in 
the social sciences, where it has been shown that the relationship between a bias-related variable and the 
probability of inclusion in a dataset is often non-linear and interacts with predictors (Gelman 2007). On the 
assumption that this principle is likely to apply to biological record data as well, we allowed habitat loss 
variables to have a more complicated relationship to the probability of occurrence than has been done before 
(e.g. Warton et al. 2013) . For each Banksia and Hakea  species we fitted seven different models, allowing 
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different levels of complexity concerning habitat loss (and sampling bias). The formulation of the models is 
summarized below. 
 
Model 1 (No Habitat Loss): Eight top environmental variables (8 terms) + all polynomial combinations of 
environmental variables of degree 2 (36 terms) (i.e. all environmental squared terms plus all pairwise 
interactions). Total terms: 44 
Model 2 (No Habitat Loss accounting for road distance): Model 1 (44 terms) + road distance (1 term) + road 
distance squared term (1 term). Total terms: 46 
Model 3 (Habitat Loss only): Model 1 (44 terms) + habitat loss (1 term) + habitat loss squared term (1 term). 
Total terms: 46 
Model 4 (Habitat Loss accounting for road distance): Model 1 (44 terms) + habitat loss and road distance (2 
terms) + all polynomial combinations of habitat loss and road distance of degree 2 (3 terms). Total terms: 49 
Model 5 (Habitat Loss only + interactions): Model 1 (44 terms) + habitat hoss (1 term) + habitat loss squared 
term (1 term) + all polynomial combinations of environmental variables and habitat loss (8 terms). Total terms: 
54 
Model 6 (No Habitat Loss accounting for road distance + interactions: Model 1 (44 terms) + road distance (1 
term) + road distance squared term (1 term) + all polynomial combinations of environmental variables and 
road distance (8 terms). Total terms: 54 
Model 7 (Full Model, or Habitat Loss accounting for Sampling Bias + interactions): Model 1 (44 terms) + 
habitat loss and road distance (2 terms) + all polynomial combinations of environmental variables, habitat loss 
and road distance (19 terms). Total terms: 65 

Of these, variables with low explanatory power had their coefficients shrunk towards zero by a L1 lasso 
regularization path algorithm. Briefly, 20 models were fit, each with an increasing shrinkage parameter applied 
to the variables, such that increasingly more coefficients with low values would be set to zero. Out of this 20, 
the model with the lowest Bayesian Information Criterion (BIC) score was retained.  

For each genus (Banksia and Hakea ) we first tested whether including habitat loss proxy variables 
improved the overall predictive power of the models. We used the Akaike weights (Burnham and Anderson 
2003)  to test the relative fit of models containing different habitat loss versus those that did not (Figure 1). 
Akaike weights measure the strength of evidence favouring a predictive model over all other models fit to the 
data. Higher values correspond to a higher probability that the model was the best predictive model out of 
those tried. We averaged Akaike weights across all species to test the overall predictive performance of the 
seven models. 
 

Effect of Habitat Loss on Probability of Occurrence 
 

We examined the effect of habitat loss by plotting the non-linear relationship between each variable and 
the density of occurrence implied by the coefficients estimated in the PPM for model 4 (Habitat Loss 
accounting for Sampling Bias; Figure 2), while setting all other coefficients to their mean (except the sampling 
bias variable which was always set to zero). For plotting we standardized both the mean probability of 
occurrence and habitat loss by dividing by their maximum values to make the relationships more easily 
comparable across species.To see how many species showed different classes of relationships with the bias 
proxy variables, we classified each relationship into positive, negative, or none (Figure 2). A relationship was 
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classified as positive or negative if the correlation coefficient between mean probability of occurrence and a 
bias proxy variable was greater than 0.3 or less than -0.3 respectively (Figure 1, Figure 2).  
 

 

Effects of Incorporating Habitat Loss 
 

We quantified the effects of incorporating habitat loss by comparing predictions made while accounting 
for habitat loss with those where it is unaccounted for. In order to control for habitat loss when predicting the 
ranges of Banksia and Hakea species, we can fix our bias proxy variables at a particular value (following 
(Warton et al. 2013)). Since we most likely observe a species if it actually occurs in areas with little or no 
habitat loss, it is reasonable to set the value of the habitat loss variable to zero when making predictions.We 
also set the sampling bias variable to zero (i.e. zero distance to a road), where sampling bias is least likely to 
occur. To explore the overall effects of fixing habitat loss during prediction, we predicted each species 
separately using the observed environmental variables and setting habitat loss to zero, or to its observed values. 
Each species was only predicted within those terrestrial ecoregions (Olson et al. 2001) from which at least one 
occurrence was recorded, to prevent biogeographically unrealistic predicted ranges that include suitable habitat 
far beyond the present-day extent of occurrence. For each species we used the best model that contained 
Habitat Loss, selected with AIC. All predictions were done at a resolution of 0.15° x 0.15°. Subsequently, we 
refer to the prediction made while not accounting for habitat loss as the “control predictions”, and those made 
while controlling for habitat loss as the “habitat loss predictions”. 
 

Effects of Incorporating Habitat Loss on Predicted Ranges 
 

We quantified the effects of incorporating habitat loss on the overall size of predicted species ranges, as 
well as any shifts in their centre of density. We calculated the change in predicted range size by subtracting the 
total predicted density while accounting for habitat loss from the total predicted species density for the control 
predictions, and then standardising it by dividing by the mean of predicted total density for the control and 
habitat loss predictions. 

We also calculated the centre of density of predicted species’ distributions by calculating the mean 
longitude and latitude of the predictions, weighted by the predicted density. The change in the centre of density 
was then visualized as a vector beginning at the control predictions and ending at the predictions that 
accounted for habitat loss (Figure 4). 
 

Effects of Incorporating Habitat Loss on Downstream Analyses 
 

PPM models make predictions of occurrence point densities. In order to make inferences about species 
richness we need to convert these density estimates to predicted presences or absences. The PPM predicted 
density was conditioned on the total number of occurrence points, such that the total density of points predicted 
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in the study area sums (approximately) to the total number of occurrence points (𝝳 tot) in the dataset. To make 
different species’ predicted densities comparable, we standardized the predicted values by multiplying them by 
a species-specific constant. We inferred the presence of a species if the the poisson probability of observing at 
least one occurrence at the predicted density ( ) was greater than 0.05. If this probability was <0.05, we ε1 −  −δ  
inferred an absence. To choose the multiplier, we calculated a value that would make the predicted total 
number of occurrence points for each species equal to the same value, that of the mean predicted number of 
occurrences across all species. 

Next, we aggregated predicted numbers at a resolution of 0.15 degree square. We then divided 
Australia into 1.05 degree by 1.05 degree grids (7 x 0.15), and calculated the species diversity of Banksia and 
Hakea at this scale across Australia. We used multiplicative diversity partitioning to decompose the predicted 
diversity into Gamma, Alpha and Beta components. Gamma diversity corresponds to the total diversity within 
each 1.05 degree square grid cell. Alpha diversity is the mean diversity of each 0.15 degree square cell within 
the 1.05 degree square. Beta diversity is Gamma/Alpha. We used the R package entropart (Marcon and Hérault 
2015)  to calculate the diversity partitions. 

We standardized all diversity values by subtracting the predicted diversity value under a model where 
all environmental variables and both bias variables (habitat loss and road proximity) were set to their observed 
values. This can be considered the control prediction, representing what we would predict without taking into 
account the difference between environmental and habitat loss variables.  

We repeated the above analysis using the standardized predicted densities themselves in an abundance 
weighted version of the Alpha, Beta, and Gamma diversities, in order to see how accounting for habitat loss 
leads to shifts in the relative predicted densities across Australia. 

We then tested the influence of accounting for habitat loss on the outcomes of Age-Range Correlations 
(ARC), a common macroevolutionary method based on the analysis of patterns of overlap in the inferred 
distributions of species.    ARC quantifies the relationship between range overlap of species pairs and their age 
of divergence, to make inferences about the prevailing geographic mode of speciation within a clade (and other 
processes: see (Fitzpatrick and Turelli 2006, Warren et al. 2008) ). We used the R package  `phyloclim` (Heibl 
and Calenge 2011) to calculate ARC  for our control and habitat loss adjusted models for Banksia and Hakea 
separately, using phylogenies for Banksia from (Cardillo and Pratt 2013) , and for Hakea from (Cardillo et al. 
2017) .  
 

Results 

Model Comparisons 
 

Habitat loss was an important predictor of species recorded occurrences in most of the models. 
Summed Akaike weights show that models including the habitat loss proxy variables were on average nearly 
twice as likely to be the best model out of all the models tried (Figure 1). Out of the models that included 
habitat loss, all had nearly equal Akaike weight sums, suggesting that including interactions or road-related 
sampling bias often provided additional predictive power to the habitat loss models. (see Supplementary Figure 
6 for a plot showing all interactions between habitat loss, sampling bias and environmental predictors in the 
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full model). For subsequent analyses we compared the prediction from the best model including habitat loss, 
against the same model with habitat loss removed, on a species by species basis. 

Effect of Habitat Loss on Probability of Occurrence 
The effect of habitat loss on the probability of species occurrence within our PPM models wasin the 

expected negative direction for most species.  Most species of both genera experienced a steep decline in the 
probability of occurrence with increasing distance from natural areas (Figure 2). A small number of species 
however, showed the opposite trend, with strong increases in the mean probability of occurrence with 
increasing distance a natural area.  

Effects of Controlling for Habitat Loss on Species’ Predicted Ranges and Diversity 
 

When we controlled for habitat loss by fixing its proxy variable at zero across the landscape, the 
predicted ranges of most Banksia and Hakea species were larger than when bias variables were not accounted 
for (Figure 3). Habitat loss had important effects on both genera, with large increases in predicted total density, 
both when sampling bias was additionally accounted for or not. This represents a mean increase of 
approximately 10% for species of Banksia and 12% for species of  Hakea . For species occurring in the 
Southwest biodiversity hotspot (defined as any species with more than 50% of its predicted range occurring at 
a Latitude < -25 degrees, and a Longitude < 126 degrees), those numbers increased to 11% and 15% 
respectively. 

For both Banksia  and Hakea , gamma diversity and alpha diversity were higher when accounting for 
habitat loss, across most of the distribution of each genus (Figure 5). Beta diversity was mostly reduced by 
accounting for habitat loss. Using abundance-weighted diversity metrics showed similar patterns, although 
generally the results were more variable, with some regions that show mainly an increase in Alpha and Gamma 
diversity, now showing a decrease. We interpret these differences as a consequence of shifting density peaks 
for some species, leading to changes in evenness across the landscape. Indeed, when we plotted vectors 
showing how the centre of predicted density changed for Banksia and Hakea species, we found that for many 
species, accounting for habitat loss shifted the centre of density, sometimes substantially (Figure 4). It is clear 
from Figure 4 that the largest shifts occurred in the Wheatbelt region of the Southwestern Australian hotspot, 
where habitat loss has been particularly severe (Saunders 1989) . 

 

Effects of Habitat Loss on Macroevolutionary Analyses 
 
We conducted an Age-Range Correlation analysis (ARC), using predictions from the control and 

habitat loss models. Figure 7 shows that the slopes and intercepts of the associations between range overlap 
and divergence times of sister clades  are not greatly changed by accounting for habitat loss, even though  there 
are some large changes in predicted overlap among sister-clade pairs, mostly at recent divergence times. Most 
likely, the averaging procedure used to calculate overlap at deeper nodes cancels out much of the variation in 
overlap in opposite directions that we see at shallower nodes, so that the overall pattern is not strongly 
influenced by the changes in the predicted distributions of particular species.  
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Discussion 
 

Species Distribution Modelling was developed because species distributions inferred directly from 
occurrence records are likely to underestimate the real, potential, or historical extent of a species’ occurrence. 
Our results show that even modelled distributions are likely to underestimate species historical or potential 
distributions if they fail to account for the sampling bias introduced by historical habitat loss. Methods for 
inferring the potential distributions of species from their observed occurrences assume that occurrences are 
sampled without spatial bias: it is assumed that wherever a species occurs, it has been recorded. Our results 
confirm that failure to explicitly account for spatial biases in the distribution of occurrences reduces model 
performance: combined Akaike weights were only ~ 0.12 for Banksia and 0.08 for Hakea species, for models 
excluding both habitat loss and road distance. Our results show that the contraction of species distributions as a 
result of historical habitat loss introduces a bias with an influence on distribution models above and beyond 
that of the better-known sampling bias associated with road networks (Elith and Leathwick 2007, Phillips et al. 
2009, Syfert et al. 2013, Warton et al. 2013, Fernández and Nakamura 2015, Fithian et al. 2015, 
Guillera-Arroita 2016). Furthermore, habitat loss modifies the predictive power of environmental variables for 
species distributions, sometimes in complex ways, since models including interactions with predictor variables 
tended to be better than models with main effects only.  This implies that to more fully account for habitat loss 
or other biases, allowing interactions with other predictors and non-linear terms should be common practice, as 
suggested, for example, by Gelman (2007)  for controlling for response bias in sociological survey analysis. For 
Banksia and Hakea species, distribution models that included habitat loss performed better, on average, than 
those that excluded habitat loss (Figure 1). Hence, most species distributions in these two genera, as inferred 
from recorded occurrences only, are spatially non-random subsets of the likely distributions prior to the recent, 
widespread conversion of much of southern and eastern Australia to anthropogenic landscapes. Given that 
Banksia and Hakea are two of Australia’s more well-known and conspicuous plant genera, the problem is 
likely to be at least as serious in other groups of plants. 

On average, distribution models that accounted for habitat loss predicted distributions 10% and 12% 
larger than those that did not account for either sampling bias or habitat loss, for Banksia and Hakea 
respectively. For many species, however, this value was far higher: 22 species had predicted distributions 
>50% larger when habitat loss was accounted for. The obvious effect of larger predicted ranges on large-scale 
diversity patterns is to increase the number of overlapping species ranges within any given area - that is, to 
increase gamma and alpha diversity. When controlling for habitat loss, the models predict increases in gamma 
and alpha diversity across most of the regions in which Banksia and Hakea are distributed (Figure 5). Of more 
concern, though, is that the influence of habitat loss on predicted diversity is geographically heterogeneous. 
Unsurprisingly, the influence of habitat loss on gamma and alpha diversity is minimal across inland and 
northern Australia, where habitat loss has been limited. The effect of habitat loss on both diversity (Figure 6) 
and mean predicted range size is most profound in the Southwest Australian biodiversity hotspot. This 
probably results from both of the criteria that qualify this region as a global biodiversity hotspot: the extensive 
conversion of natural habitat to agricultural landscapes, and the high proportion of narrowly-endemic species 
known only from very restricted areas. Spatial turnover in species composition (beta diversity) shows patterns 
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that are largely the converse of alpha and gamma diversity: there is a general pattern of decreased beta 
diversity. Because alpha and beta diversity were calculated by multiplicative partitioning of gamma diversity, 
this suggests that on average, the increases in alpha diversity under bias-explicit models were greater than the 
increases in gamma diversity. 

Our approach to incorporating habitat loss into the predictive models was to set the value of its proxy 
variables to zero, as this is the value for which we expect the least reduction in observation probabilities. 
However, this requires us to assume that the habitat loss proxy variables entirely reflect bias in the sampling of 
species occurrences, and do not have any genuine, biological influence of their own on species occurrences. In 
general, this is probably a reasonable assumption, but there may be some cases in which this assumption is 
violated. For example, the distribution of roads across a landscape may not always be random with respect to 
environmental features: in some regions, roads are more likely to traverse slightly elevated areas with 
well-drained soils than low-lying, flood-prone areas, and to follow moderate contours across the landscape 
rather than steep slopes. Each of these environments may have different soil types that differ in nutrient status, 
pH or moisture holding capacity. Species that either favour or cannot tolerate such soils will have distributions 
of occurrence records that are positively or negatively associated with roads, for genuine biological (albeit 
indirect) reasons. In the same way, the degree of historical habitat loss is also not random with respect to soil 
type and other features of the environment. In regions of southern and southwestern Australia now largely 
under wheat cropping, areas of sandy soils with low moisture-holding capacity are more likely to retain natural 
habitat than areas with soils more favourable for cropping. Although such cases of genuine association 
between species occurrence and bias proxies are likely to be uncommon, they make it difficult to be certain 
that our proxies are fully accounting for bias and not weakening or reinforcing genuine patterns of occurrence. 
One way to tease apart the bias and biological components of a variable’s association with species occurrences 
may be to use models that combine presence-only data with presence-absence data (Fithian et al 2015), 
although we do not yet have systematically-collected presence-absence data that includes all species of 
Banksia and Hakea . However, it is almost certainly preferable to estimate and account for biases imperfectly 
than to infer species distributions without considering biases at all. 

Our results  also suggest that a further reason to explicitly account for biases in distribution models is 
that the biases interact with environmental variables in the models. This means that not only are distributions 
inferred directly from occurrences an underestimate (in most cases) of modelled distributions, but the climatic 
and habitat types within the directly inferred distributions may differ from those within the modelled 
distributions. The complex nature of the interactions means that it is difficult to generalize about this kind of 
qualitative difference between directly inferred and modelled ranges. Nevertheless, this could have significant 
effects on some downstream ecological and evolutionary analyses of species environmental niches or 
responses to future environmental change. In sociology, it is well-known that variables related to biases in, for 
example, survey response, should be incorporated into regression models, and that interactions with predictors 
should also be included when possible (Gelman 2007). 

Though we compared the effect of habitat loss to that of the effect of sampling bias on observations of 
species, they do differ in a number of important ways. Sampling bias affects the probability of a species that is 
currently in a region being observed. For this reason, it is likely best practice to try and account for it in all 
cases. On the other hand, habitat loss primarily imposes  a bias in the probability of observing a species that 
historically existed in an area, but is genuinely no longer present. This means that whether or not habitat loss 
should be accounted for in SDMs will depend on the goals of the study. If the goal is to best predict where a 
species is currently found, then habitat loss should be included in the model, with its observed values used 
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during prediction (rather than setting the values to zero). This is because for many species habitat loss will be 
highly informative in predicting where a species is not currently found.   On the other hand, for many other 
kinds of questions it is of more relevance to understand the extent of species historical distributions, as the 
basis for understanding the non-anthropogenic ecological, evolutionary and biogeographic processes that shape 
species distributions.  

Inaccurate estimates of species distributions, and by extension, of spatial patterns of diversity, may 
limit or bias our inference of ecological or evolutionary processes. Age-Range Correlation, for example, is 
based upon analysis of the overlap in species’ distributions with respect to their divergence times (e.g. 
(Phillimore et al. 2008, Schnitzler et al. 2011, Anacker and Strauss 2014, Cardillo and Warren 2016). In our 
analysis, we found that SDM models accounting for habitat loss increased the estimated degree of overlap 
among species, but did not appreciably alter the intercept or slope of the ARC. As we pointed out earlier, 
however, this is likely to be due to the “averaging-out” of the overlap patterns at deeper nodes in the 
phylogeny, under the ARC method we used (Fitzpatrick & Turelli 2006), which implies that there was little 
phylogenetic signal in the impact of habitat loss on predicted species’ range for Banksia and Hakea . Other 
approaches to reconstructing geographic modes of speciation, such as the proportion of sympatric sister species 
(e.g.  (Phillimore et al. 2008, Schnitzler et al. 2011, Anacker and Strauss 2014, Cardillo and Warren 2016) , 
Cardillo & Warren 2016), are based only on shallow phylogenetic divergences and may be more sensitive to 
changes in overlap patterns that result from accounting for habitat loss in SDMs. 

A loss of accuracy in predicting species ranges due to habitat loss biases could also be a problem for 
species and ecosystem conservation. Species range estimates are often used in making decisions about species 
conservation, such as in the design of reserves, climate change planning, and invasive species modelling 
(Rodríguez et al. 2007, Guisan et al. 2013). The issues of habitat loss biases could be particularly problematic 
for conservation because those species that have experienced the highest amount of habitat loss, and are 
therefore likely to be in the most need of conservation efforts, are also the most likely to have the accuracy of 
their range predictions affected. Therefore, being able to at least estimate, and to some extent control for the 
effect of habitat loss on species range reconstructions, as we have done here, could be very important for 
improving the use of species distribution models in conservation planning. 

Data Availability 
 
Data used in this study can be retrieved from the Atlas of Living Australia. Occurrence records were cleaned 
prior to analysis by removing obviously incorrect records (such as those who coordinates referred to the 
herbarium where the sample was housed, rather than where it was collected from). Cleaned data is available 
upon request from the authors. 
 

Acknowledgements 
 
We’d like to thank Anna Simonsen for thoughtful comments on a previous version of the manuscript, and Ian 
Renner for helpful advice and conversation on using PPM models. This work was funded by Australian 
Research Council Discovery Grant DP110103168. 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 1, 2018. ; https://doi.org/10.1101/258038doi: bioRxiv preprint 

https://paperpile.com/c/oiqqew/wf8nQ+Z8d1T+qzD0y+6OV6R
https://paperpile.com/c/oiqqew/wf8nQ+Z8d1T+qzD0y+6OV6R
https://paperpile.com/c/oiqqew/UfY0b+o8g6v
https://doi.org/10.1101/258038


References 
 

Anacker, B. L. and Strauss, S. Y. 2014. The geography and ecology of plant speciation: range overlap and niche 
divergence in sister species. - Proc. Biol. Sci. 281: 20132980. 

Barve, N. et al. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution 
modeling. - Ecol. Modell. 222: 1810–1819. 

Buckley, L. B. and Jetz, W. 2008. Linking global turnover of species and environments. - Proc. Natl. Acad. Sci. U. S. A. 
105: 17836–17841. 

Burnham, K. P. and Anderson, D. R. 2003. Model Selection and Multimodel Inference: A Practical 
Information-Theoretic Approach. - Springer Science & Business Media. 

Cardillo, M. and Pratt, R. 2013. Evolution of a hotspot genus: geographic variation in speciation and extinction rates in 
Banksia (Proteaceae). - BMC Evol. Biol. 13: 155. 

Cardillo, M. and Warren, D. 2016. Analysing patterns of spatial and niche overlap among species at multiple resolutions. 
- Glob. Ecol. Biogeogr. in press. 

Cardillo, M. et al. 2017. The phylogeny and biogeography of Hakea (Proteaceae) reveals the role of biome shifts in a 
continental plant radiation. - Evolution 71: 1928–1943. 

Davies, T. J. et al. 2007. Species co-existence and character divergence across carnivores. - Ecol. Lett. 10: 146–152. 

Deng, H. and Runger, G. 2013. Gene selection with guided regularized random forest. - Pattern Recognit. 46: 
3483–3489. 

Elith, J. and Leathwick, J. 2007. Predicting species distributions from museum and herbarium records using 
multiresponse models fitted with multivariate adaptive regression splines. - Diversity and Distributions 13: 
265–275. 

Fernández, D. and Nakamura, M. 2015. Estimation of spatial sampling effort based on presence-only data and 
accessibility. - Ecol. Modell. 299: 147–155. 

Fithian, W. et al. 2015. Bias correction in species distribution models: pooling survey and collection data for multiple 
species. - Methods Ecol. Evol. 6: 424–438. 

Fitzpatrick, B. M. and Turelli, M. 2006. The geography of mammalian speciation: mixed signals from phylogenies and 
range maps. - Evolution 60: 601–615. 

Gelman, A. 2007. Struggles with Survey Weighting and Regression Modeling. - Stat. Sci. 22: 153–164. 

Guillera-Arroita, G. 2016. Modelling of species distributions, range dynamics and communities under imperfect 
detection: advances, challenges and opportunities. - Ecography 40: 281–295. 

Guisan, A. et al. 2013. Predicting species distributions for conservation decisions. - Ecol. Lett. 16: 1424–1435. 

Heibl, C. and Calenge, C. 2011. phyloclim: Integrating phylogenetics and climatic niche modelling. - R package 
accessed: September-20--2010 in press. 

Marcon, E. and Hérault, B. 2015. entropart: An R Package to Measure and Partition Diversity. - Journal of Statistical 
Software 67: 1–26. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 1, 2018. ; https://doi.org/10.1101/258038doi: bioRxiv preprint 

http://paperpile.com/b/oiqqew/wf8nQ
http://paperpile.com/b/oiqqew/wf8nQ
http://paperpile.com/b/oiqqew/Lf0hd
http://paperpile.com/b/oiqqew/Lf0hd
http://paperpile.com/b/oiqqew/7eMKF
http://paperpile.com/b/oiqqew/7eMKF
http://paperpile.com/b/oiqqew/a4eg
http://paperpile.com/b/oiqqew/a4eg
http://paperpile.com/b/oiqqew/EWFv
http://paperpile.com/b/oiqqew/EWFv
http://paperpile.com/b/oiqqew/Z8d1T
http://paperpile.com/b/oiqqew/Z8d1T
http://paperpile.com/b/oiqqew/XARa
http://paperpile.com/b/oiqqew/XARa
http://paperpile.com/b/oiqqew/Ra09
http://paperpile.com/b/oiqqew/dGo5w
http://paperpile.com/b/oiqqew/dGo5w
http://paperpile.com/b/oiqqew/pOY8A
http://paperpile.com/b/oiqqew/pOY8A
http://paperpile.com/b/oiqqew/pOY8A
http://paperpile.com/b/oiqqew/ArsoJ
http://paperpile.com/b/oiqqew/ArsoJ
http://paperpile.com/b/oiqqew/5C19m
http://paperpile.com/b/oiqqew/5C19m
http://paperpile.com/b/oiqqew/UUxV
http://paperpile.com/b/oiqqew/UUxV
http://paperpile.com/b/oiqqew/s4g5
http://paperpile.com/b/oiqqew/dXTUo
http://paperpile.com/b/oiqqew/dXTUo
http://paperpile.com/b/oiqqew/o8g6v
http://paperpile.com/b/oiqqew/ibCl
http://paperpile.com/b/oiqqew/ibCl
http://paperpile.com/b/oiqqew/rv5qq
http://paperpile.com/b/oiqqew/rv5qq
https://doi.org/10.1101/258038


Matzke, N. J. 2013. BioGeoBEARS: biogeography with Bayesian (and likelihood) evolutionary analysis in R scripts. - R 
package, version 0. 2 in press. 

Myers, N. et al. 2000. Biodiversity hotspots for conservation priorities. - Nature 403: 853–858. 

Olson, D. M. et al. 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth. - Bioscience 51: 933–938. 

Orme, C. D. L. et al. 2005. Global hotspots of species richness are not congruent with endemism or threat. - Nature 436: 
1016–1019. 

Phillimore, A. B. et al. 2008. Sympatric speciation in birds is rare: insights from range data and simulations. - Am. Nat. 
171: 646–657. 

Phillips, S. J. et al. 2009. Sample selection bias and presence-only distribution models: implications for background and 
pseudo-absence data. - Ecol. Appl. 19: 181–197. 

Quintero, I. et al. 2015. Historical Biogeography Using Species Geographical Ranges. - Syst. Biol. 64: 1059–1073. 

Raymond, B. et al. 2015. ALA4R: Atlas of Living Australia (ALA) Data and Resources in R. in press. 

R Core Team 2016. R: A Language and Environment for Statistical Computing. in press. 

Renner, I. W. and Warton, D. I. 2013. Equivalence of MAXENT and Poisson point process models for species 
distribution modeling in ecology. - Biometrics 69: 274–281. 

Renner, I. W. et al. 2015. Point process models for presence-only analysis. - Methods Ecol. Evol. 6: 366–379. 

Rodríguez, J. P. et al. 2007. The application of predictive modelling of species distribution to biodiversity conservation. - 
Diversity and Distributions 13: 243–251. 

Saunders, D. A. 1989. Changes in the Avifauna of a region, district and remnant as a result of fragmentation of native 
vegetation: the wheatbelt of western Australia. A case study. - Biol. Conserv. 50: 99–135. 

Schnitzler, J. et al. 2011. Causes of plant diversification in the Cape biodiversity hotspot of South Africa. - Syst. Biol. 60: 
343–357. 

Syfert, M. M. et al. 2013. The effects of sampling bias and model complexity on the predictive performance of MaxEnt 
species distribution models. - PLoS One 8: e55158. 

Warren, D. L. et al. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche 
evolution. - Evolution 62: 2868–2883. 

Warton, D. I. et al. 2013. Model-based control of observer bias for the analysis of presence-only data in ecology. - PLoS 
One 8: e79168. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 1, 2018. ; https://doi.org/10.1101/258038doi: bioRxiv preprint 

http://paperpile.com/b/oiqqew/ufsOQ
http://paperpile.com/b/oiqqew/ufsOQ
http://paperpile.com/b/oiqqew/XOGp6
http://paperpile.com/b/oiqqew/aWamb
http://paperpile.com/b/oiqqew/XTs4F
http://paperpile.com/b/oiqqew/XTs4F
http://paperpile.com/b/oiqqew/qzD0y
http://paperpile.com/b/oiqqew/qzD0y
http://paperpile.com/b/oiqqew/h15T1
http://paperpile.com/b/oiqqew/h15T1
http://paperpile.com/b/oiqqew/FBB2p
http://paperpile.com/b/oiqqew/kyEoS
http://paperpile.com/b/oiqqew/xKTCD
http://paperpile.com/b/oiqqew/aof2E
http://paperpile.com/b/oiqqew/aof2E
http://paperpile.com/b/oiqqew/tYuGi
http://paperpile.com/b/oiqqew/UfY0b
http://paperpile.com/b/oiqqew/UfY0b
http://paperpile.com/b/oiqqew/0krT
http://paperpile.com/b/oiqqew/0krT
http://paperpile.com/b/oiqqew/6OV6R
http://paperpile.com/b/oiqqew/6OV6R
http://paperpile.com/b/oiqqew/5EYcB
http://paperpile.com/b/oiqqew/5EYcB
http://paperpile.com/b/oiqqew/ljqd
http://paperpile.com/b/oiqqew/ljqd
http://paperpile.com/b/oiqqew/aEFPU
http://paperpile.com/b/oiqqew/aEFPU
https://doi.org/10.1101/258038


Figures 
Figure 1. Summed Akaike weights for different PPM models run on Banksia and Hakea species. The height of 
each bar represents the mean Akaike weight for that type of model across all species. Higher Akaike weights 
correspond to better predictive models.  
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Figure 2. The relationships between distance to natural area (habitat loss proxy) and the density of occurrence 
for every modelled Banksia (left panels) and Hakea (right panels) species. Each line is the relationship for a 
different species. Lines are coloured red for a negative relationship, blue for a positive one, and grey for no 
relationship. The black line is a smoothed response showing the mean effect across all species shown in the 
panel. Both axes are standardized by dividing by the maximum value of each species, to make comparisons 
between species on a common scale. 
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Figure 3. The change in the predicted range size between models accounting for habitat loss and those that do 
not. Each bar represents how many species fell in each interval on the x axis. The x axis represents the 
difference in predicted range size accounting for habitat loss, in thousands of kilometers squared, and split by 
genera; a positive value indicates that the predicted range size was larger when habitat loss was accounted for 
in the model. X axis is sign(x)sqrt(x) transformed. Vertical dotted line represents the mean difference  ~ 7000 
KM 2). 
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Figure 4. Map of changes in centre of predicted density for Banksia (red) and Hakea (yellow) species. The 
bottom of each arrow represents the predicted centre of density without accounting for habitat loss, the top 
(head) of each arrow is the predicted centre of density after accounting for habitat loss. Bottom panel is 
zoomed into the Western Australian biodiversity hotspot. 
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Figure 5. Maps showing the distribution of predicted diversity differences for Banksia (left column of panels) and 
Hakea (right column of panels) across Australia. Models controlling for habitat loss were used to predict individual 
species occurrences and the predictions were then summarised as diversity. Diversity was partitioned into Gamma (𝜸), 
Alpha (𝜶), and Beta (𝜷) diversity in 1.05 by 1.05 degree grid cells (based on sub-cells of 0.15 by 0.15 degree). Each 
diversity value was then standardized by subtracting the predicted diversity in a PPM model with the habitat loss proxy 
variable set to their observed values. Blue squares represent grid cells where diversity was higher when accounting for 
habitat loss, red squares where diversity values were lower. Grey squares were grid cells from regions in which there was 
not enough data to calculate diversity (e.g. less than 2 species). The colour scale is arcsinh transformed. 
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Figure 6. Maps showing the distribution of abundance-weighted predicted diversity differences for Banksia (left 
column of panels) and Hakea (right column of panels) across Australia. Models controlling for habitat loss were used to 
predict individual species densities and the predictions were then summarised as abundance-weighted diversity (where 
predicted density was treated at abundance). Diversity was partitioned into Gamma (𝜸), Alpha (𝜶), and Beta (𝜷) diversity 
in 1.05 by 1.05 degree grid cells (based on sub-cells of 0.15 by 0.15 degree). Each diversity value was then standardized 
by subtracting the predicted diversity in a PPM model with the habitat loss proxy variable set to their observed values. 
Blue squares represent grid cells where diversity was higher when accounting for habitat loss, red squares where 
diversity values were lower. Grey squares were grid cells from regions in which there was not enough data to calculate 
diversity (e.g. less than 2 species). The colour scale is arcsinh transformed. 
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Figure 7. Age of nodes versus predicted range overlap for Banksia and Hakea species. Range overlap was 
calculated using predicted densities from either a control model (red), or a model accounting for habitat loss 
(blue). Arrows are drawn from the control predictions to the habitat loss accounted predictions, with 
transparency proportional to the overall change. Lines are lines of best fit under a simple linear model. 
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Supplement 
Supplementary Methods 1: Calculating a Continuous Habitat Loss Measure 
 

To quantify habitat loss we downloaded raster data on dynamic vegetation land cover from Geoscience 
Australia (http://www.ga.gov.au/scientific-topics/earth-obs/landcover ), and converted it to a binary variable 
where each grid cell in Australia was classified as ‘natural’ (habitat intact) or ‘unnatural’ (habitat lost) 
vegetation. This dataset classified each 250m square grid cell in Australia into 22 vegetation classes, using 
satellite reflectance data to train a predictive machine learning model (Dynamic Markov Chain modelling). 
There were 12 categories we considered natural, and 8 categories we considered unnatural (see Supplementary 
Table 1). Bodies of water and salt lakes were excluded from the analysis. 

One potential problem with categorical data in general, and binary data particularly, is that imprecision 
or inaccuracy in spatial coordinates of occurrence records can result in the opposite vegetation state becoming 
associated with a record, if it is incorrectly recorded as being outside the boundary of the correct grid square. In 
order to reduce this problem, and to make this variable more comparable to our sampling bias proxy – which 
was the geographic distance to the nearest road (Supplementary Figures 1 and 2) – we created a proximity map 
based on area classified as ‘natural’. Using QGIS (Quantum GIS Development, 2015) we created a raster that 
calculated the distance in each 100X100m square of Australia to the nearest area classified as “natural”. 
Therefore, points falling  within a natural square were assigned a value of 0, with values increasing with 
greater distance from a natural square. Supplementary Figures 3 and 4 show maps of this variable across 
Australia, and Southwestern Australia respectively. 
 
 
Supplementary Methods 2: Point Process Models, and Variable Selection 
 
Point Process Models 
 

To model the individual distributions of each species, we used point-process models (PPM; (Renner et 
al., 2015) . PPMs model occurrence points as a spatial Poisson process, where the density of occurrences at any 
given spatial point is distributed according to a continuous Poisson distribution, whose intensity value is a 
linear function of the environmental variables. PPMs can accommodate both linear and polynomial terms, and 
interactions between variables. PPMs have been shown to be a generalization of several other well-known 
modelling frameworks, including general linear models and MAXENT (Renner & Warton, 2013). At the core, 
PPMs are linear models, so in order to model more complicated relationships between environment and 
occurrence, polynomial combinations of variables are created. Among other consequences, this means that the 
total number of variables to include in the model is limited, because the number of polynomial combinations 
increases exponentially with the number of variables. In order to keep the number of variables in our models 
reasonable, we first used a variable selection step  to choose the top 8 explanatory variables for each species. 
 
Model Selection 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 1, 2018. ; https://doi.org/10.1101/258038doi: bioRxiv preprint 

http://www.ga.gov.au/scientific-topics/earth-obs/landcover
https://paperpile.com/c/WhioHU/3F4qk
https://paperpile.com/c/WhioHU/s2FDA
https://paperpile.com/c/WhioHU/s2FDA
https://paperpile.com/c/WhioHU/s2FDA
https://paperpile.com/c/WhioHU/s2FDA
https://paperpile.com/c/WhioHU/9geO2
https://doi.org/10.1101/258038


We began with a set of 104 environmental variables from the Atlas of Living Australia (Supplementary 
Table 2). To select environmental variables from this set that were highly associated with each species’ 
distribution we ran separate correlation clustering and Guided Regularized Random Forest (GRRF) analyses 
on each species (Deng & Runger, 2013).  

 
Correlation Clustering 

We removed highly correlated variables for each species, by conducting hierarchical clustering on all 
104 variables based on their Pierson’s correlation, defining clusters by cutting the clustering tree at a 
correlation of 0.75, and then only keeping one variable from each cluster – the variable in the cluster with the 
highest importance score calculated in the next step, using GRRF.  

 
Guided Regularized Random Forest (GRRF) 

This method uses random forest for classification, a machine learning method that uses ensembles of 
classification trees (or regression trees for continuous responses) for prediction (Breiman, 2001). In this case 
we are classifying points from our full dataset as either occurrence points for a particular species, or as 
‘background’ points, using the same quadrature points we use for the PPM as background points, using all 
possible environmental variables as predictors. GRRF works by first running a regular random forest on the 
data. From this first random forest, importance scores are generated for each explanatory variable, reflecting 
how much each one contributes overall to the out of bag (OOB) estimates (based on how well the model 
predicts held back samples). A second random forest is then run on the same data, but this time variables are 
weighted by their importance when deciding on the best splits. This has the effect of regularizing the variables, 
so that the algorithm preferentially chooses the better overall predictor in cases where two or more variables 
have similar explanatory power at a particular split. After filtering the variables by choosing only the variables 
with the highest GRRF importance scores within each correlation cluster (see Correlation Clustering), we then 
further filtered the variables, by choosing only the environmental variables with the highest eight importance 
scores, excluding our bias variables. In the PPM analysis, we used these best eight variables plus our two bias 
variables for a total of 10 variables for each species. To highlight the influence of the two bias variables, we 
also constructed PPMs using only the eight environmental variables, and compared these with the 10-variable 
models. 
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Supplementary Table 1. Classes from the dynamic vegetation land cover dataset from Geoscience Australia. 
Each class was determined to be natural or not natural, as specified in the second column, for further analysis.  

Class Natural? 

Closed Tussock Grassland Yes 

Open Tussock Grassland Yes 

Open Hummock Grassland Yes 

Scattered shrubs and grasses Yes 

Dense Shrubland Yes 

Open Shrubland Yes 

Closed Forest Yes 

Open Forest Yes 

Woodland Yes 

Open Woodland Yes 

Rain fed cropping No 

Irrigated cropping No 

Rain fed sugar No 

Irrigated sugar No 

Rain fed pasture No 

Irrigated pasture No 

Mines and Quarries No 

Cities and towns No 

Wetlands Yes 

Alpine meadow Yes 
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Lakes and dams Excluded 

Salt lakes Excluded 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 1, 2018. ; https://doi.org/10.1101/258038doi: bioRxiv preprint 

https://doi.org/10.1101/258038


Supplemental Table 2. Atlas of Living Australia id and description for 104 variables used in SDM models for 
Banksia and Hakea . Some were later discarded due to too much missing data. Variables with “(BioXX)” are 
from the bioclim dataset. 
 

id description 

cl1053 Terrestrial Ecoregional Boundaries 

el1077 Gross Primary Productivity (2012-03-13) 

el1078 Normalized Difference Vegetation Index (2012-03-05) 

el1079 Enhanced Vegetation Index (2012-03-05) 

el1080 Fraction of Photosynthetically Active Radiation (fPAR) 

el1081 Leaf Area Index (LAI) - 2012-03-05 

el2016 Euclidean Distance to Coast (metres) 

el597 Erosivity 

el603 Nitrogen 

el607 Dolomite (physical) 

el608 Gypsum 

el609 Potassium 

el610 Dolomite (acidity) 

el615 Phosphorus 

el616 Lime 

el661 Erodibility 

el662 Water holding capacity 

el663 ph 

el665 Carbon - organic 

el666 Drainage - variability 

el667 Moisture - variability 

el668 Evaporation - average 

el669 Moisture - average 
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el670 Drainage - average 

el671 Evaporation - variability 

el672 Runoff - average 

el673 NDVI Mean 

el674 Elevation 

el675 Slope length 

el676 NPP Mean 

el680 Aspect 

el728 Humidity - annual mean relative 

el806 Bulk density 

el807 Lithology - mean age (log) 

el808 Lithology - mean age 

el809 Lithology - mean age range (log) 

el810 Distance - to any water (weighted) 

el811 Phosphorus - plant-available pre-European 

el812 Water holding capacity - plant-available 

el814 Clay % 

el815 Valley bottom % 

el816 Soil depth 

el817 Phosphorus pre-European 

el819 Distance - to coast 

el820 Distance - to non-permanent water (weighted) 

el821 Nitrogen concentration pre-European 

el822 Nitrogen store pre-European 

el824 Magnetic anomalies 

el825 Pedality hydrological score 

el826 Topographic wetness index 
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el827 Topographic relief 

el828 Phosphorus - plant-available total pre-European 

el829 Calcrete 

el830 Distance - to permanent water (weighted) 

el831 Nitrogen - plant-available pre-European 

el832 Bouguer gravity anomalies 

el833 Hydrologic conductivity - average saturated 

el834 Ridge top flatness 

el835 Lithology - age range 

el836 Topographic slope (%) 

el837 Carbon store pre-European 

el838 Lithology - fertility 

el840 Valley bottom flatness index 

el841 Soil pedality 

el844 Topographic roughness 

el845 Soils - coarse 

el849 Wind speed - annual mean 9am 

el859 Wind speed - annual mean 3pm 

el860 Wind run - annual mean 

el861 Radiation - driest quarter (Bio25) 

el862 Temperature - annual range (Bio07) 

el863 Precipitation - coldest quarter (Bio19) 

el864 Moisture Index - lowest quarter mean (Bio33) 

el865 Moisture Index - highest quarter mean (Bio32) 

el866 Precipitation - wettest period (Bio13) 

el867 Temperature - coldest period min (Bio06) 

el868 Moisture Index - warmest quarter mean (Bio34) 
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el869 Radiation - coldest quarter (Bio27) 

el870 Temperature - wettest quarter mean 

el871 Radiation - lowest period (Bio22) 

el872 Precipitation - driest period (Bio14) 

el873 Moisture Index - coldest quarter mean (Bio35) 

el874 Temperature - annual mean (Bio01) 

el875 Temperature - driest quarter mean (Bio09) 

el876 Temperature - coldest quarter mean (Bio11) 

el877 Radiation - wettest quarter (Bio24) 

el878 Precipitation - warmest quarter (Bio18) 

el879 Temperature - warmest period max (Bio05) 

el880 Radiation - highest period (Bio21) 

el881 Radiation - annual mean (Bio20) 

el882 Precipitation - seasonality (Bio15) 

el883 Temperature - isothermality (Bio03) 

el884 Moisture Index - highest period (Bio29) 

el885 Moisture Index - seasonality (Bio31) 

el886 Precipitation - wettest quarter (Bio16) 

el887 Radiation - seasonality (Bio23) 

el888 Temperature - diurnal range mean (Bio02) 

el889 Precipitation - driest quarter  (Bio17) 

el890 Temperature - warmest quarter (Bio10) 

el891 Moisture Index - annual mean (Bio28) 

el892 Temperature - seasonality (Bio04) 

el893 Precipitation - annual (Bio12) 

el894 Radiation - warmest quarter  (Bio26) 

el895 Moisture Index - lowest period (Bio30) 
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Supplementary Figure 1. Map of distance to road sampling bias proxy variables across Australia. Colour bar 
is square root transformed.
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Supplementary Figure 2. Map of distance to road sampling bias proxy variables for Southwestern corner of 
Australia, where Proteaceae reaches its diversity peak.. Colour bar is square root transformed.
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Supplementary Figure 3. Map of distance to natural area habitat loss bias proxy variable across Australia. 
Colour bar is square root transformed.
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Supplementary Figure 4. Map of distance to natural area habitat loss bias proxy variables for Southwestern 
corner of Australia, where Proteaceae reaches its diversity peak. Colour bar is square root transformed. Apart 
from a band running just inland from the west coast (which are dominated by steep escarpments), the 
Southwest is mostly a patchwork of remaining natural areas embedded in mostly farmland (lighter blue 
colours are non-natural areas).
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Supplementary Figure 5. Plot showing the relationship between distance to roads and distance to natural 
areas for ~3 million points across Australia. There is a weak negative relationship (r = -0.11). 
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Supplementary Figure 6. Estimated coefficients for the different effects of bias proxy variables in PPM 
models, for Banksia (yellow) and Hakea (red) species. The left three panels show every non-zero coefficient 
(those that ‘survived’ the regularization process) for distance to natural area (first panel from left), distance to 
road (second from left), and their interaction (middle panel). On the x axis for the first three panels is the 
exponent, referring to whether the coefficient was from the first or second degree polynomial expansion of the 
variable (second degree polynomial terms model non-linearities in the response). The right two panels show 
second degree polynomial coefficients involving either distance to natural areas (second from right), or 
distance to roads (far right panel) and environmental variables. The x axis shows the coefficients rank, 
ordering the coefficient values from highest absolute value (1) to lowest (8). There is a maximum of 8 second 
degree polynomial terms, one for each environmental variable included in the model. Below each set of 
coefficients is printed the number of non-zero coefficients for Banksia (in yellow), and Hakea (in red). The y 
axis is plotted with an arcsinh (inverse hyperbolic sin) transformation, which shrinks estimates similarly to a 
log transformation but allowing negative values. 
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