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 818 

Figure S1: Additional statistical data (A-B) PDFs of the amplitude and peak speed of the 746 contraction 819 

events from Fig. 2H-I, only in percentage units. (C) A PDF of the time interval between sequential 820 

contraction events. 86 such intervals were measured in 64 cells from the dataset in Fig 2. Inset: PDF of the 821 

number of events per cell in that dataset of 1 minute (D) Detailed example of a single cell that underwent 822 

sequential repetitive contractions (Mov. 6 inset). Blue is area, red is area change rate.  823 
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 824 

Figure S2: Cytoskeleton, cell and tissue morphology (A) a dark field image of T. adhaerens from dorsal 825 

(top) view. (B-D) Fluorescence images from dorsal (top) view of the dorsal epithelium in vivo, using a live 826 

membrane stain (CMO) (B) Cell tiles are shown to stack/partially overlap (areas of higher intensity are due 827 

to more layers of fluorescent membrane).  (C-D) Stack of two images in two colors representing two 828 

different planes of the same tissue segment (taken from a spinning disk confocal Z stack). In red is the plane 829 

showing tile-borders. In blue is the plane located 1.5 um towards outside of the animal, where membrane 830 

excursions are visible. In green is the plane located 1.5um inside the animal, where nucleus sacs are visible 831 

(E-F) SEM images of a fixed animal from dorsal (top) view. (E) A series of zoom-ins, from a whole animal 832 

to single cell shapes, some of which seem stretched as if responding to a global strain field. (F) Further 833 

zoom-in shows dorsal cells apical surface. A single cilia is at the center of each cell. The apical surface is 834 

ruffled. (G-J) Actin presence in dorsal cell tiles. (G) A confocal image of an animal that was relaxed before 835 

fixation and stained with CMO and phalloidin (methods). Actin filaments are seen only in cells’ periphery. 836 

(H) In an animal that did not undergo relaxation, the dorsal epithelium is due to some contraction prior to 837 

the fixation. Contracted cells are smaller and seen in the center of a ‘rosette’ (i.e. neighboring cells are 838 
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expanded). (I-J) Zoom-in on a cells ‘rosette’. Filamentous actin signal is enhanced throughout the 839 

contracted cell tile.   840 
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 841 

Figure S3: Possible microstates for a motor with 4 connected heads (k=2). Depicted are all possible 842 

states of actin orientations relative to a motor filament with 4 connected heads. We exclude from the picture 843 

states that are symmetric to the depicted ones, either right-left or top-bottom. Therefore, instead of 21 844 

possible states depicted are 13 states. The crossing line is marking static states that are not contracting at 845 

all. The star marks represents states that are contracting at half speed. The equations stated hold for any 846 

symmetric motor filament (even k). 847 

  848 
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Movies S1-S10 849 

1. Supplementary Video #1: Fluorescent fluctuations – the dorsal epithelium at low magnification. 850 

Dorsal (top) view of a live T. adhaerens using fluorescent membrane stain (CMO). The microscope 851 

stage is moving to keep the animal in the field of view, as it glides freely in the XY plane, in a 40um 852 

thick chamber. “Flashes” of increased fluorescence, about one second long, are seen sparsely across 853 

the tissue. 854 

2. Supplementary  Video #2: Sparse cellular contractions in TADE 855 

Dorsal (top) view of a live T. adhaerens using fluorescent membrane stain (CMO). The microscope 856 

stage is moving to keep the animal in the field of view, as it glides freely in the XY plane, in a 40um 857 

thick chamber. In addition, computational registration is performed to center the animal and correct for 858 

rotations. Individual cells are seen contracting in mostly uncorrelated locations and times. A contraction 859 

is correlated with an increased fluorescent signal. Right: On top of the original movie, color represents 860 

area change rate, as calculated via PIV. Red range marks expansions, blue range marks contractions. 861 

Low values, on both regimes, are excluded for clarity. 862 

3. Supplementary  Video #3: A radial contraction wave in TADE 863 

Dorsal (top) view of a live T. adhaerens using fluorescent membrane stain (CMO). The microscope 864 

stage is moving to keep the animal in the field of view, as it glides freely in the XY plane, in a 40um 865 

thick chamber. In addition, computational registration is performed to center the animal and correct for 866 

rotations. A radially propagating contraction wave is seen in the tissue. Right: On top of the original 867 

movie, color represents area change rate, as calculated via PIV. Red range marks expansions, blue range 868 

marks contractions. Low values, on both regimes, are excluded for clarity. 869 

4. Supplementary  Video #4: Uniaxial contraction waves in TADE 870 
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Dorsal (top) view of a live T. adhaerens using fluorescent membrane stain (CMO). The microscope 871 

stage is moving to keep the animal in the field of view, as it glides freely in the XY plane, in a 40um 872 

thick chamber. In addition, computational registration is performed to center the animal and correct for 873 

rotations. Propagating contraction waves are seen in the tissue, mostly propagating in a uniaxial 874 

manner. Right: On top of the original movie, color represents area change rate, as calculated via PIV. 875 

Red range marks expansions, blue range marks contractions. Low values, on both regimes, are excluded 876 

for clarity. 877 

5. Supplementary  Video #5: Asynchronous contractile dynamics in high magnification and Individual 878 

cell cycles 879 

Dorsal (top) view of a live T. adhaerens using fluorescent membrane stain (CMO). The animal glides 880 

freely in the XY plane, in a 40um thick chamber. Contractions seem mostly asynchronous, yet the tissue 881 

is kept intact. A contraction is correlated with an increased fluorescent signal. Right: Individual cells 882 

are tracked computationally to show individual contraction cycles. Top right scale bar labells all single 883 

cell videos. The clock is joint to all parts of the video. 884 

6. Supplementary  Video #6: Sparse contractions mode in TADE – discrete and continuous analysis 885 

Dorsal (top) view of a live T. adhaerens using fluorescent membrane stain (CMO). The animal glides 886 

freely in the XY plane, in a 40um thick chamber. On top of the raw images, color represents area change 887 

rate, as calculated via PIV. Red range marks expansions, blue range marks contractions. Low values, 888 

on both regimes, are excluded. These thresholds on the continuous analysis follows individual cell 889 

borders accurately. Bottom right: discrete area measurements and statistical analysis is achieved by 890 

segmenting and tracking individual cells. The central cell at the inset is contracting three times. The 891 

clock is joint to all movie parts. 892 

7. Supplementary  Video #7: Hyperlinked contractions mode in TADE:  893 
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Dorsal (top) view of a live T. adhaerens using fluorescent membrane stain (CMO). Majority of the cells 894 

are exhibiting repetitive active cycles of contraction/expansion. This state is related to high stress 895 

(animal experiences recent transfer/ sudden light increase /strong media flows). 896 

8. Supplementary  Video #8: Optical planes separation analysis 897 

Left: Dorsal (top) view movie of a live T. adhaerens using bright field illumination. The dorsal 898 

epithelium is at the focal plane, however as it is transparent only speckles on top of it are seen sharply. 899 

The ventral epithelium is out of the focal plane and is seen dark at the background. The layers are seen 900 

to move separately, sometimes in opposite directions. At time [00:07 sec] a contraction is seen at the 901 

top right of the animal.   Middle: we split the movie by spatial frequency into two separate movies. The 902 

low and high frequency movies contain the ventral and dorsal data respectively. Top right: Planar 903 

displacement fields within each layer are calculated using PIV and represented as colored lines – dorsal 904 

(green) ventral (blue) and the difference between them (red). Bottom right: A heat map representing 905 

the local separation between the epithelia (the length of the difference vector). Values reach as high as 906 

70um/sec (PIV is calculated on 1 sec intervals). 907 

9. Supplementary  Video #9: Ionomycine effect on TADE 908 

Dorsal (top) view of a live T. adhaerens using fluorescent membrane stain (CMO). At time [00:04] the 909 

drug Ionomycine is introduced. All cells immediately respond in contraction. Minimal area is achieved 910 

within approximately 10sec. The contracted state lasted until drug was washed away. 911 

10. Supplementary  Video #10: TADE cell shape variability under spontaneously generated stress 912 

Dorsal (top) view movies of a live T. adhaerens using fluorescent membrane stain (CMO). The movies 913 

demonstrate that TADE cells experience extreme fluctuations in the stress levels and their orientations 914 

at the scale of seconds. These fluctuations originate from the animal locomotion (the ciliary array at the 915 

ventral side gliding on the surface) and the overall animal shape changes.  At the same time scales, cells 916 

change their size and their shape, and accommodate a continuous, intact tissue at all times. 917 
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