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Abstract 16 

Molecular competition is ubiquitous, essential and multifunctional throughout diverse 17 

biological processes. Competition brings about trade-offs of shared limited resources 18 

among the cellular components, and it thus introduce a hidden layer of regulatory 19 

mechanism by connecting components even without direct physical interactions. By 20 

abstracting the analogous competition mechanism behind diverse molecular systems, 21 

we built a unified coarse-grained competition motif model to systematically compare 22 

experimental evidences in these processes and analyzed general properties shared 23 

behind them. We could predict in what molecular environments competition would 24 

reveal threshold behavior or display a negative linear dependence. We quantified how 25 
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competition can shape regulator-target dose-response curve, modulate dynamic 26 

response speed, control target expression noise, and introduce correlated fluctuations 27 

between targets. This work uncovered the complexity and generality of molecular 28 

competition effect, which might act as a hidden regulatory mechanism with multiple 29 

functions throughout biological networks in both natural and synthetic systems.  30 

 31 

Keywords 32 

systems biology, computational modelling, molecular competition regulation, synthetic 33 

biology, network motif 34 
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Introduction 36 

Competition for limited resources matters at all scales of biology. Competition among 37 

different species can alter population distributions and ecological niches (Connell, 1983; 38 

Hardin, 1960; Schoener, 1983). Competition among individuals of the same species 39 

may slow down the growth rates of all competitors, driving natural selection and 40 

evolution (Bolnick, 2004; Svanback & Bolnick, 2007; Zwietering et al., 1990). 41 

Competition among adjacent cells in an organism can regulate their growth and viability, 42 

and enhance the dominance of cells with better fitness (Chang et al., 2015; Johnston, 43 

2009; Khare & Shaulsky, 2006; Laird, 1964). In a microscopic scale, biological 44 

molecules within cells also face competition. Competition brings about trade-offs of 45 

shared limited resources among the cellular components (Hui et al., 2015; Scott et al., 46 

2010; Weisse et al., 2015), and it thus introduces a hidden layer of regulatory 47 

mechanism by connecting components even without direct physical interactions. 48 

Miscellaneous phenomena caused by molecular competition have been reported in a 49 

variety of biological processes in diverse organisms. For example, DNA binding sites 50 

on plasmids can compete for transcription factor (TF) LacI to dictate its target gene 51 

expression in E. coli (Brewster et al., 2014). Noncoding RNAs transcribed from 52 

enhancer or promoter region can competitively bind to TF Yin-Yang 1 to trap the TF 53 

locally thus maintain gene expression stability in mouse embryonic stem cells (Sigova 54 

et al., 2015). mRNA, long-noncoding RNA and circular RNA molecules can 55 

competitively bind to microRNAs (miRNAs) to regulate various processes, such as cell 56 
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growth (Zheng et al., 2016), cell differentiation (Cesana et al., 2011) and tumor 57 

suppression (Sumazin et al., 2011). Competition between RNA binding proteins PGL-58 

3 and MEX-5 for mRNA drives polar positioning of phase-separated liquid 59 

compartments in C. elegans embryos (Saha et al., 2016). Furthermore, competition 60 

effects are especially important in synthetic gene circuits. Every synthetic gene 61 

inevitably competes for common resources with each other in circuits and with 62 

endogenous biological processes, introducing unexpected circuit failures or host 63 

metabolic burdens (Cardinale & Arkin, 2012; Qian et al., 2017; Wu et al., 2016). In 64 

addition, when one genetic element drives two or more downstream elements, 65 

competition will modulate the dynamics of signal transduction (Jayanthi et al., 2013; 66 

Jiang et al., 2011). As a result, characteristics of each single component are insufficient 67 

for the accurate prediction of the whole circuit behavior, posing a serious obstacle in 68 

synthetic circuit design and application.  69 

Several mathematical frameworks and synthetic gene experiments have been built 70 

to quantitatively understand the diverse biological phenomena caused by competition. 71 

For example, a thermodynamic model was used to explain the TF titration effect in E. 72 

coli (Brewster et al., 2014). Kinetic model has been adopted to analyze competing 73 

endogenous RNA (ceRNA) regulation (Ala et al., 2013), and we further quantified the 74 

ceRNA effect through synthetic gene circuits in human cell line (Yuan et al., 2015). A 75 

minimal model based on delay differential equations was established to describe 76 

ribosome allocation between endogenous and synthetic genes in E. coli (Gorochowski 77 
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et al., 2016). Queueing theory was introduced to describe the protein degradation 78 

process in E. coli, where target proteins as queues compete for degradation machine 79 

ClpXP as server (Cookson et al., 2011; Mather et al., 2010). However, common 80 

properties and underlying competition mechanisms in essence behind these diverse 81 

phenomena have not been systematically analyzed yet.  82 

Here we propose that regulations by competition are ubiquitous, essential and 83 

multifunctional through diverse biological regulatory processes. By abstracting the 84 

analogous competition motif shared by diverse molecular systems, we built a unified 85 

coarse-grained kinetic model to systematically integrate experimental evidences in 86 

diverse biological processes and analyze the common properties shared among them. 87 

We organized these properties from steady-state behavior to dynamic responses, to 88 

quantify how competition could introduce constraints and indirect regulations among 89 

the targets and how the existence of competitors might influence regulator-target 90 

response characteristics. This work demonstrated the complexity and generality of the 91 

molecular competition effect, which is a ubiquitous hidden regulatory mechanism with 92 

diverse functions throughout different biological processes in both natural and synthetic 93 

life systems.  94 

 95 

Results 96 

A unified coarse-gained competition motif model 97 
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A number of phenomena caused by molecular competition have been reported in 98 

diverse biological systems recently (Brewster et al., 2014; Saha et al., 2016; Sigova et 99 

al., 2015; Zheng et al., 2016). Do they share any common properties? Could they be 100 

described by a unified model? We summed up several representative competition 101 

scenarios following the life cycle of gene expression (Figure 1), including competitions 102 

for transcription factors by DNA binding sites (Figure 1B), competitions for miRNAs 103 

and ribosomes by RNA molecules (Figure 1C and 1D), and competitions for 104 

degradation enzymes by target proteins (Figure 1E). Inspired by previous models 105 

studying ceRNA effect (Ala et al., 2013; Yuan et al., 2015), we proposed a generalized 106 

competition motif model, in which two target molecule species (target#1 and #2, T1 and 107 

T2) competitively bind with a shared regulatory molecule species (regulator, R) (Figure 108 

1A), to describe the similar competition topology these cases share. In this model, each 109 

molecule species is produced and degraded with certain rates, and the regulator is 110 

dynamically bound to targets following biochemical mass-action laws to form 111 

complexes (Figure 1F, SI Material and Methods). Loss rates of regulator (α) and its 112 

competing targets (β) were introduced to describe reactions from pure stoichiometric 113 

(α ~ 1, β ~ 1) to pure catalytic (α ~ 1, β ~ 0 where enzymes act as competitors, or α ~ 0, 114 

β ~ 1 when substrates act as competitors) (Ala et al., 2013). In different biochemical 115 

scenarios, experimentally measured signals may reflect different component levels of 116 

the competition motif. For example, the activity of targets could be mainly reflected by 117 
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the abundance of complexes (TC) when the regulator is an activator, or by the abundance 118 

of the free targets (TF) when the regulator is a repressor.  119 

This unified model can describe competitions in various biological processes 120 

(Figure S1A-D). Despite of different parameter settings, all these cases share the core 121 

competition motif structure, suggesting that they may share common characteristics. In 122 

the following sections, we used this model to analyze, in the scenario of either steady-123 

state behavior or dynamic response, how the competition introduces indirect 124 

regulations between targets and how the existence of the competitors influences the 125 

property of regulator-target response. 126 

 127 

Relative abundance determines the regulatory patterns between competitors 128 

Competition can cause crosstalk between targets. By quantifying the competition effect 129 

of one target upon the abundance of another target, recent studies have reported two 130 

apparently different steady-state behaviors named “threshold behavior” of ceRNA 131 

regulation in mammalian cells (Ala et al., 2013) and “negative linear dependence” 132 

behavior of synthetic gene expression in bacteria (Carbonell-Ballestero et al., 2016; 133 

Gyorgy et al., 2015). How could competition generate such two vastly different 134 

phenomena? 135 

The model predicted that the relative abundance between regulator and target 136 

determines the diverse behaviors. Figure 2A and S2A illustrates how molecular 137 

abundance changes along with the gradual increment of T2’s production rate. The 138 
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system went through three regimes: “R abundant”, “R near-equimolar” and “R scarce”, 139 

which are mainly determined by the production rate and loss rate of each component 140 

(SI Material and Methods). In the “R abundant” regime, free T1 level (T1F) is not 141 

sensitive to the increment of free T2 level (T2F), but when the system enters the “R near-142 

equimolar” regime, T1F becomes more sensitive to T2F changes, thus generates the 143 

threshold behavior (Figure 2B and S2B). In contrast, T1 complex level (T1C) is 144 

substantially unchanged with respect to T2 complex level (T2C) except in the “R scarce” 145 

regime, where T1C displays a negative linear dependence with T2C (Figure 2C).  146 

In the case of ceRNA regulation, where miRNA is a repressor, target activity can 147 

be reflected by the free mRNA level. Increments of ceRNA2 (T2F) can raise free ceRNA1 148 

(T1F) level indirectly by sequestering shared miRNAs. Such derepression caused by 149 

ceRNA effect is negligible when the level of ceRNA2 is far less than that of miRNA (in 150 

the “R abundant” regime), but becomes detectable when the level of ceRNA2 is 151 

comparable to that of miRNA (in the “R near-equimolar” regime) (Ala et al., 2013; 152 

Yuan et al., 2015). In contrast, when the regulator is an activator, target activity can be 153 

represented by the level of complexes. Recently a phenomenon called “isocost line” 154 

behavior, originally studied in economics, was also found in synthetic biological 155 

systems (Carbonell-Ballestero et al., 2016; Gyorgy et al., 2015) that the expressions of 156 

two fluorescent proteins in E. coli displayed negative linear dependence, which was 157 

caused by competition for the transcription and translation resources (acting as activator) 158 
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 9 

by the two synthetic genes. Due to the high expression level of these genes, the system 159 

was always restricted to the “R scarce” regime, thus showed negative linear dependence.  160 

In summary, threshold behavior and negative linear dependence are two aspects 161 

generated by the same competition motif. The threshold behavior is observed when the 162 

regulator is a repressor and the system transfers from the “R abundant” to the “R near-163 

equimolar” regime; while the negative linear dependence occurs when the regulator is 164 

an activator and the system is restricted to the “R scarce” regime. 165 

 166 

Competition can shape dose-response curve 167 

How does competition modulate the response of target to varying levels of a regulator? 168 

The dose-response curve, which quantitatively describes the magnitude of such 169 

responses, was systematically analyzed. Firstly, the dose-response curve of free T1 (T1F) 170 

level to the total regulator (R) level without competition effect (without T2) was 171 

calculated as the baseline. As expected (Buchler & Louis, 2008), T1F was not sensitive 172 

to the regulator changes in the “R scarce” regime, but became sensitive in the “R near-173 

equimolar” regime, thus forming some “threshold behavior” (black line in Figure 2D-174 

E). Then we analyzed how the molecular levels and the kinetic parameters of the 175 

competitor T2 might influence the shape of the R-T1F dose-response curve. We first 176 

considered the case that T1 and T2 have the same kinetic parameters to bind R. 177 

Increments of T2 production could elevate the maximum sensitivity to enhance the 178 

threshold behavior, and shift the position of the maximum sensitivity to a higher R level 179 
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 10 

in the new “R near-equimolar” regime (Figure 2D-E). We next fixed T2’s production 180 

rate and analyzed the influence of other kinetic parameters. The relative binding affinity 181 

was found as the key parameters to modulate the R-T1F dose-response curve. If T2C was 182 

formed slowly (small k2+) or dissociated rapidly (large k2-), T2 could hardly alter the R-183 

T1F response. Along with the increment of T2 binding affinity (increasing k2+ or 184 

decreasing k2-), T2’s competition blunted the sensitivity in the R~T1 near-equimolar 185 

regime considering only R and T1, meanwhile enhanced the sensitivity in the R~T1+T2 186 

near-equimolar regime in the presence of T2 (Figure 2F-G and S2C-E). 187 

The model analysis is consistent with the experimental observations in diverse 188 

molecular competition scenarios reported previously. In the case of ceRNA (Figure 1C), 189 

the RNA competitors with comparable binding affinities can enhance the maximum 190 

sensitivity and shift their positions in the miRNA-target dose-response curve, and a 191 

higher competing RNA level can cause a stronger enhancement and shift (Yuan et al., 192 

2015). Similarly, in the studies on the TF titration effect (Figure 1B), introducing high 193 

affinity competitive binding sites can greatly shift and sharpen the response of primary 194 

target gene expression to the TF (Brewster et al., 2014; Lee & Maheshri, 2012). In 195 

contrast, in the case of buffer solutions in chemistry, for example the ammonium buffer, 196 

the weak base NH4+ compete with H+ for OH-, and NH4+ has a much lower binding 197 

affinity with OH- than H+ (Figure S1E). When a mild change of OH- (e.g. adding 198 

moderate amounts of NaOH or HCl) is introduced into the solution, NH4+ can buffer 199 

the response of free H+ to OH-, thus keeping pH (potential of hydrogen) almost constant 200 
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in a certain range (SI Material and Methods). In summary, introducing the competitors 201 

can shape the R-T1F dose-response curve. A high affinity competitor can enhance the 202 

maximum sensitivity and shift its position to a higher R level; while a low affinity 203 

competitor may buffer the response. The extents of such modulations are dictated by 204 

the abundance of competitors. 205 

However, it should be noticed that when it comes to the response curve of a free 206 

primary target to the level of a free regulator (RF-T1F), the curve was not influenced by 207 

the existence of competitor at all (Figure 2H). This is because, rather than the total 208 

regulator abundance, the free regulator abundance is the one effectively determines the 209 

kinetic reaction rate with each single target (Jens & Rajewsky, 2015). Thus, responses 210 

of two or more targets to the shared regulator are mutually independent given the level 211 

of RF, which provides an efficient way, by using RF level as the medium, to analyze the 212 

relative regulatory efficiency among multi-targets (Yuan et al., 2016). Once given the 213 

dose-response of each component (RF-TiF, which could be separately measured or 214 

calculated) and the expected regulatory efficiency of a specific target, the level of all 215 

other targets could be immediately predicted because they are all exposed to the same 216 

free regulator level (Figure 2I, SI Material and Methods). Such property is especially 217 

important for designing synthetic circuits, where we know the characteristics of each 218 

single part and would like to predict the whole system’s behavior when putting them 219 

together. This property has been applied to siRNA design principle: by both in silico 220 

simulation and experimental validation, we found that the influence of a high off-target 221 
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gene expression level could be compensated by introducing a suitable number of 222 

siRNAs, whereas off-target genes with strong binding affinity should be avoided (Yuan 223 

et al., 2015; Yuan et al., 2016). In summary, the dose-response to the free regulator level 224 

is not influenced by any competitors, therefore providing an efficient way to extract the 225 

relative response relations in multi-target networks. 226 

 227 

Competition can delay or accelerate dynamic response  228 

How does the existence of competitors influence the dynamic behavior of the system 229 

in response to a time-varying regulator? To answer this question, we simulated the 230 

response of a switching system with regulator level changing between “ON” and “OFF” 231 

states (Figure 3A). On the rising edge of R’s change, the existence of T2’s competition 232 

always delays the response of both T1F and T1C, because it can sequester R from binding 233 

with T1 and may cause additional R loss via T2C degradation, both of which resist the 234 

increment of available R to regulate T1. However, on the falling edge, competing can 235 

either accelerate or delay the response depending on the kinetic parameters (Figure 3B-236 

C and S3A-F, SI Material and Methods). On the one hand, T2C dissociation could 237 

compensate R’s decrease, but on the other hand, T2C degradation may cause R loss, and 238 

these two opposing effects can dominate the final modulation of the dynamic response. 239 

T2 with a large complex degradation rate (g2) and a large loss rate (α2) could lead to a 240 

quick response by mediating more R loss (Figure 3B); while T2 with different binding 241 

affinities could either accelerate or delay the response under different parameter settings 242 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2018. ; https://doi.org/10.1101/258129doi: bioRxiv preprint 

https://doi.org/10.1101/258129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

(Figure 3C and S3C-F), because T2 with a strong binding affinity can enhance both R 243 

compensation and R loss via T2C degradation at the same time. 244 

Recently, it has been experimentally observed that the competition for LacI binding 245 

in E. coli delayed the rising edge response, but accelerated the falling edge response 246 

because of the loss of the regulator binding with targets through degradation and 247 

dilution (large α2) (Jayanthi et al., 2013). On the contrary, the existence of competitive 248 

binding sites for transcription factor SKN7m in S. cerevisiae was found to delay the 249 

response of the primary target on both the rising and the falling edges (Mishra et al., 250 

2014), which implied that the regulator might be protected from degradation when 251 

binding with targets (g2 is small) (Burger et al., 2010; Jayanthi et al., 2013). In summary, 252 

competition can modulate the dynamic response of some targets to their upstream 253 

regulators. This may implicate a general parameter tuning method to adjust the response 254 

dynamics in the presence of the competitors.  255 

 256 

Competition can modify target expression noise level 257 

Competition can modulate the sensitivity and the speed of a target response to a 258 

changing regulator, both of which are highly relevant to target fluctuation (Blake et al., 259 

2003; Chen et al., 2013). A natural question is how the existence of competitors may 260 

influence noise in the system? Here we took miRNA regulation as an example to 261 

analyze the noise level of protein products (Figure 3D, SI Material and Methods). In 262 

systems without R and T2, T1 expression noise is derived from fluctuations in 263 
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transcription, translation and degradation, and the coefficient of variance (CV) of T1 264 

gene expression approaches the “power law”, as expected by the “  rule” 265 

proposed by Schrödinger (Schrödinger, 1944). The introduction of R (miRNA) as 266 

repressor can decrease the noise of lowly expressed genes, meanwhile generate a noise 267 

peak in the “R near-equimolar” regime for highly expressed genes (Figure 3E), 268 

consistent with previous studies (Bosia et al., 2017; Schmiedel et al., 2015). 269 

Theoretical results indicated that the competition effect of T2 could modify T1 270 

expression noise significantly. As expected, introducing T2 weakens R’s ability to 271 

suppress T1, thus may impair the noise reduction in the low expression zone. 272 

Interestingly, in the high expression zone of T1, T2 with strong binding affinity with R 273 

may elevate T1 noise level (Figure 3F); while T2 with weak binding affinity may 274 

substantially depress T1 noise level (Figure 3G). Therefore, comparing with the one-275 

regulator-one-target scenario, introducing higher level of miRNAs and compensable 276 

weak competitors could reduce target expression noise at the low expression zone and 277 

suppress the noise peak introduced by miRNA at the high expression zone at the same 278 

time, thus could repress gene expression noise in a wide range (Figure 3H). In summary, 279 

competition effects may modulate gene expression noise level, and in particular, 280 

abundant weak competitors have the capability to buffer gene expression noise globally 281 

(Figure S3G-J).  282 

 283 

Competition can introduce correlated fluctuation between targets 284 

1/ N
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Competition can not only modify the strength of target fluctuation, but also couple 285 

fluctuations between these targets (Figure 3I). Dynamic analysis of the model’s 286 

behavior around steady state with different molecular environments predicted that the 287 

free T1 (T1F) and T2 (T2F) are positively correlated (Figure 3J), while the competitor 288 

complexes (T1C and T2C) are negatively correlated (Figure 3K). The correlation 289 

strengths in both cases are maximized in the “R near-equimolar” regime, and gradually 290 

decrease with the system away from the regime.  291 

This phenomenon has been predicted as the “correlation resonance” by some 292 

previous theoretical analysis on gene translation (Mather et al., 2013) and protein 293 

degradation (Cookson et al., 2011; Mather et al., 2010). Two kinds of proteins (T1F and 294 

T2F) competing for degradation enzyme ClpXP (R) showed positive correlated 295 

fluctuation, which reached the maximum when the sum of two protein production rates 296 

approached to the ClpXP’s processing capacity (Cookson et al., 2011; Mather et al., 297 

2010). Another theoretical analysis showed that in translation process, fluctuations of 298 

mRNA-ribosome complexes (T1C and T2C) were negatively correlated (Mather et al., 299 

2013). In summary, competition can introduce negatively correlated fluctuation 300 

between free targets and positively correlated fluctuation between complexes, and both 301 

of their strength reach the maximum in the “R near-equimolar” regime. 302 

 303 

Regulator allocation to multiple targets 304 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2018. ; https://doi.org/10.1101/258129doi: bioRxiv preprint 

https://doi.org/10.1101/258129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

Regulators often bind more than two target species simultaneously. How will regulator 305 

be allocated to multiple target species? A system with multiple targets competing for 306 

the same regulator can be described by the set of allocation equations (Figure 4A), 307 

where the proportion of the regulator occupied by a certain target in steady state is 308 

mainly determined by this target’s abundance and its capabilities to bind to (and hence 309 

to consume) the regulator (SI Material and Methods). It was noticed that, the form of 310 

the regulator allocation equation is analogous to Kirchhoff’s laws in current divider 311 

circuits, where R’s production rate is analogous to the total current, the capability of TiC 312 

to consume R is analogous to the ith branch current, and the capability of TiF to occupy 313 

R is analogous to the ith branch conductance (the reciprocal of resistance) (Figure 4B). 314 

Therefore, electronic circuits and biological systems with competition may exhibit 315 

similar properties, such as the “negative linear dependence” behavior when resources 316 

are insufficient (in the “R scarce” regime) (Carbonell-Ballestero et al., 2016).  317 

Such allocation equations have displayed in diverse mathematical models, such as 318 

the reaction rates of product formation in enzymatic reactions when multiple substrates 319 

competing for the same catalytic enzyme under the Michaelis-Menten kinetics (Chou 320 

& Talaly, 1977), and the probabilities of promoter-TF binding when multiple promoters 321 

competing for the same TF under the thermodynamic model (Bintu et al., 2005). 322 

Meanwhile, this property has helped quantify the allocations of the transcription or the 323 

translation resources for synthetic gene circuits (Carbonell-Ballestero et al., 2016; Qian 324 

et al., 2017). We also applied such property to predict the miRNA occupancy on each 325 
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target site in a specific cell type with the miRNA and the target RNA expression levels, 326 

and significantly improved the accuracy of the miRNA target prediction (Xie et al., 327 

2014). Those miRNAs with significant occupancy changes during tumorigenesis could 328 

serve as potent biomarkers in addition to differentially expressed miRNAs. 329 

 330 

Discussion 331 

Competition for limited resources is ubiquitous throughout diverse molecular reactions 332 

in both natural and synthetic biological systems. Using a coarse-gained mathematical 333 

model, we systematically analyzed the steady-state behavior and the dynamic 334 

properties of various competition network motifs, from the view of indirect regulations 335 

among the competitors as well as the effects of the competitors on the regulator-target 336 

response (Table 1). It should be noticed that, most of the mentioned properties are 337 

connected with the concept of the regimes determined by the regulator-target relative 338 

abundance (Figure 2A-C): threshold behavior occurs when system transfers from the 339 

“R abundant” to the “R near-equimolar” regime, and linear negative dependence 340 

happens when system is in the “R scarce” regime; while the sensitivity of the dose-341 

response curve, the correlated fluctuation, and the noise of the target level are all 342 

maximized in the “R near-equimolar” regime.  343 

Competition motif is a common network component. It seldom functions as an 344 

isolated module in real-world biological systems, but often interacts with other 345 

components to form complex networks. For example, simulation analysis on ceRNA 346 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2018. ; https://doi.org/10.1101/258129doi: bioRxiv preprint 

https://doi.org/10.1101/258129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

regulation suggested that additional targets and regulators connected with different 347 

topology could enhance or weaken the ceRNA effect (Ala et al., 2013). Theoretical 348 

analysis predicted that competition for degradation enzyme could either promote or 349 

suppress the robustness of biological oscillating circuit with different topological 350 

structures (Rondelez, 2012). In addition, competition motif could perform a variety of 351 

functions by combining with other network motifs. For example, cooperating with the 352 

positive feedback motif, competition can generate the winner-take-all (WTA) behavior 353 

(Kim et al., 2004), which have been applied to design in vitro molecular circuits for 354 

supervised learning and pattern classification using DNA strand displacement (Genot 355 

et al., 2013; Lakin & Stefanovic, 2016). 356 

The unified competition model gives inspirations for transferring knowledge 357 

among different molecular scenarios, since similar molecular network topology may 358 

perform similar functions. For example, the case that ceRNA competition can sharpen 359 

the dose-response curve of miRNA regulation (Yuan et al., 2015) is quite similar to that 360 

observed for TF titration effect (Brewster et al., 2014). Such generality and feasibility 361 

give us confidence to make new predictions based on the competition model. For 362 

instance, the properties of pH buffer solutions demonstrated that some weak 363 

competitors could desensitize the response of the primary target to the regulator, which 364 

implies the potential role of many competitors as noise buffer. Functions of numerous 365 

miRNA target sites have long been a mystery that each miRNA species in mammalian 366 

cell could bind to hundreds target RNA species, but only a small portion of the targets 367 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2018. ; https://doi.org/10.1101/258129doi: bioRxiv preprint 

https://doi.org/10.1101/258129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

with multiple high affinity binding sites could be moderately repressed (rarely exceeds 368 

2-folds). That is to say, in most cases, miRNA binding are not functioned as intensive 369 

repression (Seitz, 2009). Why are there so many evolutionary conserved miRNAs and 370 

potential targets if this is an inefficient regulatory mechanism? The competition model 371 

provides a possible explanation that such widespread miRNA competitors with low 372 

binding affinity could buffer noise and stabilize gene expression.  373 

Competition effect is one of the major challenges for circuits design in synthetic 374 

biology. Synthetic gene expression can lead to intracellular resource reallocation, which 375 

may affect the performance of both exogenous gene circuits and host gene networks 376 

simultaneously. It may change the network structure of the original designed circuits 377 

by introducing a hidden layer of regulation, making it difficult to predict the whole 378 

circuit’s behavior based on the characteristic of each individual component. For 379 

example, competition for cellular resources may reshape the response of genetic 380 

activation cascades in E. coli (Qian et al., 2017), and multiple downstream genes 381 

competing for upstream signal molecules may accentuate the “retroactivity” (Brophy 382 

& Voigt, 2014). It has been found that the induction strength of the synthetic gene 383 

oscillator could influence the growth rate of host cell, the expression of endogenous 384 

genes, and the performance of the oscillator, such as amplification and period (Weisse 385 

et al., 2015). On the other hand, interestingly, using competition effect properly to 386 

rebalance synthetic circuits’ relation to the host cell is emerging as an effective way to 387 

refine circuits performance. For example, the robustness of the synthetic oscillator can 388 
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be greatly improved by introducing competing binding sites for TF LacI to sharpen 389 

target gene dose response curves and suppress gene expression noise (Potvin-Trottier 390 

et al., 2016). Models incorporating circuit-host competition effects can predict synthetic 391 

gene behaviors better (Liao et al., 2017). Reallocating the cellular translational 392 

resources by introducing the endoribonuclease MazF circuit can significantly enhance 393 

exogenous enzyme expression to promote metabolite production (Venturelli et al., 394 

2017). Utilizing synthetic miRNA and its competitive binding RNA sponges, a RNA-395 

based AND gate circuit was designed for selectively triggering T cell-mediated killing 396 

of cancer cells (Nissim et al., 2017).  397 

As discussed in this paper, competition of molecules matters in diverse biological 398 

processes, not only convoluting regulations in cell, but also introducing plentiful 399 

functions. The concept of competition motifs and its coarse-gained model may provide 400 

a unified insight to understand diverse molecular competition phenomena, and 401 

modulate biological networks by coupling or decoupling components on the hidden 402 

layer. 403 

 404 

Materials and Methods 405 

Detailed information about mathematical derivations and simulations is available in SI 406 

Materials and Methods. Parameters for simulations are shown in Table S1. 407 

 408 
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Figure 1 The coarse-gained competition motif model. 

(A) Basic structure of the competition motif. Downstream products can be produced 

from either free targets or complexes. 

(B-E) Competition motifs abstracted from diverse competition scenarios: (B) DNA 

binding sites competing for TFs; (C) RNA molecules competing for miRNAs; (D) 

mRNA molecules competing for ribosomes; (E) proteins competing for proteases. 

(F) Unified kinetic model of the competition motif.  
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Figure 2 Steady state behaviors of competition systems.  

(A-C) Regimes of competition systems. (A) Abundances changes of each component 

with the increment of T2’s production rate (kT2). (B) Abundance of T1F as a function of 

that of T2F. (C) Abundance of T1C as a function of that of T2C. Blue, white and green 

areas represent “R abundant”, “R near-equimolar” and “R scarce” regime respectively. 

Grey lines represent the approximate threshold (SI Materials and Methods).  

(D-G) Dose-response curves modulated by competition. (D-E) R-T1F dose-response 

curves (D) and their derivatives (E) with different T2’s production rate (kT2). (F-G) R-

T1F dose-response curves (F) and their derivatives (G) with different T2C’s dissociation 

rate (k2-). R represents the total abundance of regulator (RF+T1C+T2C). Black lines 

represent the dose response curve without T2 (kT2=0). 

(H) RF-T1 dose-response curves with different kT2. T10 represents the abundance of T1F 

without R. Black line represents the dose response curve without T2 (kT2=0). All the 

curves with different kT2 are exactly overlapped. 

(I) Repression folds of all targets are determined by the same RF abundance in a multi-

target repression system.  
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Figure 3 Dynamic properties of competition systems. 

(A) Quantitative measurements of response time. Δtr and Δtf represent the alteration of 

response time on the rising and falling edge of R’s change respectively. Here response 

time is defined as the time taken by T1C level to change from 0% to 90% between its 

initial and final steady states. 

(B-C) Heatmaps of Δtf under different α2 and g2 (B), or k2+ and g2 (C). 

(D) Schematic diagram of the target expression noise in the miRNA-target competition 

scenario. 

(E-H) Modification of target expression noise by competition. (E) Product expression 

noise (CV(P1)) with different R’s production rates (kR). (F) CV(P1) with different T2’s 

production rates (kT2) where T2 acts as a strong competitor. (G) CV(P1) with different 

kT2 where T2 acts as a weak competitor. (H) Comparison of CV(P1) with or without 
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competition. Here miRNA-RNA competing system is taken as an example. Black lines 

represent system without R. Dashed blue lines are highlighted as the basal lines in (F) 

and (G). The thick blue and green lines in (H) are taken from (E) and (G) respectively. 

Black dots represent the approximate threshold (there are no black dots on some curves 

because kT2 is too large to form the threshold). 

(I-K) Correlated fluctuations introduced by competition. (I) Stochastic simulations of 

each component’s abundance in competition motif. (J-K) Correlations of T1F and T2F 

(J), or T1C and T2C (K) changing with T2’s production rate (kT2). Black dots represent 

the approximate threshold. 
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Figure 4 Regulator allocation for multi-target competition. 

(A) Regulator allocation equations and schematic graph representation. Rtotal represent 

the total abundance of regulator, including free regulator and regulator in complexes. 

(B) Kirchhoff’s laws in current divider circuits. 
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Table 1 Properties of regulation by competition  

 

 Regulation between targets 
Influences on 

regulator-target response 

Steady-state 

behavior 

Threshold behavior 

Negative linear dependence 

Regulator allocation 

Shaping dose-response curves 

Dynamic 

responses 
Correlated fluctuation 

Response time modulation 

Noise modification 
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SI Materials and Methods

1. A unified coarse-gained competition motif model.

Parameters involved in the competition motif model (Figure 1F) where two target molecule
species (target#1 and #2, T1 and T2) competitively bind with a shared regulatory molecule species
(regulator, R) are described as follows. In general, T1, T2 or R is produced with a rate of kT 1, kT 2

or kR, respectively. Free T1 (T F
1 ), T2 (T F

2 ) or R (RF) degrades at a rate of gT 1, gT 2 or gR. T F
1

or T F
2 binds to RF to form target-regulator complex T C

1 or T C
2 at a rate of k1+ or k2+, and T C

1

or T C
2 dissociates into RF and T F

1 or T F
2 at a rate of k1− or k2−. T C

1 or T C
2 degrades at a rate of

g1 or g2. Regulators on the complex degrade with the possibility of α1 or α2, and targets on the
complex degrade with the possibility of β1 or β2, thus regulator would recycle from T C

1 or T C
2 with

the possibility of 1 − α1 or 1 − α2, target would recycle from T C
1 or T C

2 with the possibility of 1 − β1

or 1 − β2, and regulator and target would degrade together with the possibility of α1 + β1 − 1 or
α2 + β2 − 1 . When R is a repressor, T F

1 or T F
2 may generate production P1 or P2 at a rate of kP 1

or kP 2. In contrast, when R is an activator, T C
1 or T C

2 may generate production P1 or P2 at a rate
of kP 1 or kP 2. P1 or P2 degrades at a rate of gP 1 or gP 2.

The competing model is described in the following differential equations:

d RF

d t
= kR − gRRF − (k1+T F

1 + k2+T F
2 )RF + k1−T C

1 + k2−T C
2 + (1 − α1)g1T

C
1 + (1 − α2)g2T

C
2 [1]

d T F
1

d t
= kT 1 − gT 1T

F
1 − k1+T F

1 RF + k1−T C
1 + (1 − β1)g1T

C
1 [2]

d T C
1

d t
= k1+T F

1 RF − k1−T C
1 − g1T

C
1 [3]

d T F
2

d t
= kT 2 − gT 2T

F
2 − k2+T F

2 RF + k2−T C
2 + (1 − β2)g2T

C
2 [4]

d T C
2

d t
= k2+T F

2 RF − k2−T C
2 − g2T

C
2 [5]

We used this model to describe competitions in various biological processes. In the competition
for TF by DNA binding sites (Figure 1B), T1 and T2 represent TF binding sites on DNA and R

represents TF. The production and degradation rates of DNA binding sites are set to zero because
they are negligible. Complexes degrade with only TF loss (α ∼ 1, β ∼ 0). When g1 or g2 are
set to zero, there is no TF loss. For TF as activator, DNA-TF complexes (T C

1 and T C
2 ) can be

transcribed into RNA, while for TF as repressor, free DNAs (T F
1 and T F

2 ) can be transcribed
(Figure S1A). In the competition for miRNA by RNA molecules (Figure 1C), T1 and T2 represent
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two RNA molecule species and R represents miRNA. The loss of miRNA is relatively small so
β is set to zero (Figure S1B) and as miRNA acts as a repressor, only free RNAs (T F

1 and T F
2 )

translate into proteins. In the case of ribosome allocation (Figure 1D), where T1 and T2 represent
two RNA molecule species and R represents ribosome, β is also set to zero (Figure S1C). In protein
degradation competition (Figure 1E), where T1 and T2 represent two protein molecule species and
R represents the protein degradation machine, β is set to zero too (Figure S1D). The topology of
miRNA-target competition, ribosome-mRNA competition and protein degradation competition are
identical except that components generating further production are different.

2. Theoretically analysis for molecular environment determining shapes of the regulation be-

tween competitors.

2.1. Solving steady states. Eqs. 1-5 can be solved for steady state when giving all differentials as
zero. By adding Eqs. 2 and 3 , we get

T C
1 = kT 1 − T F

1 gT 1
β1g1

[6]

By adding Eqs. 1, 3 and 5, we get

RF = kR − α1T C
1 g1 − α2T C

2 g2
gR

[7]

Combining Eqs. 6 and 7, we get

RF =
kR − α1

β1
(kT 1 − T F

1 gT 1) − α2
β2

(kT 2 − T F
2 gT 2)

gR
[8]

Substituting Eqs. 6 and 8 into Eq. 3, we get

(T F
1 )2 − T F

1 (T 0
1 − λ1 − θ1 + φ21) − λ1T

0
1 = 0 [9]

Where

T 0
1 = kT 1

gT 1
T 0

2 = kT 2
gT 2

[10]

λ1 = gR

α1k1+
(k1−

g1
+ 1) λ2 = gR

α2k2+
(k2−

g2
+ 1) [11]

γ1 = β1
α1gT 1

γ2 = β2
α2gT 2

[12]

θ1 = γ1kR θ2 = γ2kR [13]

φ21 = γ1
γ2

(T 0
2 − T F

2 ) φ12 = γ2
γ1

(T 0
1 − T F

1 ) [14]
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Parameters were lumped to represent certain physical meanings to simplify the result. T 0
i represents

the free level of target #i (Ti) without regulators. 1/λi is proportional to ki+, and negatively
correlated with ki−, thus could reflect the strength of binding affinity between Ti and regulator. θ

is proportional to kR, thus could reflect the level of regulator. φji exhibits the competing regulation
effects by target #j upon to target #i.

Eq. 9 is a quadratic equation of T F
1 . Thus, the steady state abundance of free targets can be

expressed as

T F
1 = 1

2(T 0
1 − λ1 − θ1 + φ21 +

√
(T 0

1 − λ1 − θ1 + φ21)2 + 4λ1T 0
1 ) [15]

T F
2 = 1

2(T 0
2 − λ2 − θ2 + φ12 +

√
(T 0

2 − λ2 − θ2 + φ12)2 + 4λ2T 0
2 ) [16]

2.2. Explanations on regimes and related phenomena. Assuming that the binding between targets
and regulator is very strong, λi becomes negligible, thus Eq. 15 can be simplified as follows:

T F
1 ≃

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1T 0
1

θ1 − T 0
1 − γ1

γ2
(T 0

2 − T F
2 ) ≃ 0 , if T 0

1 + φ21 < θ1

T 0
1 − θ1 + γ1

γ2
(T 0

2 − T F
2 ) , if T 0

1 + φ21 > θ1

[17]

Meanwhile, the steady-state abundance of T C
1 and T C

2 can be calculated from Eq. 6:

T C
1 = gT 1

β1g1
(T 0

1 − T F
1 ) T C

2 = gT 2
β2g2

(T 0
2 − T F

2 ) [18]

and can be simplified using Eq. 17:

T C
1 ≃

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gT 1
g1β1

T 0
1 , if T 0

1 + φ21 < θ1

gT 1
g1β1

(θ1 − α2g2β1
α1gT 1

T C
2 ) , if T 0

1 + φ21 > θ1

[19]

The turning point in Eqs. 17 and 19:

T 0
1 + φ21 = θ1 [20]

can be regarded as a threshold to distinguish regimes of the system: “R abundant” (T 0
1 +φ21 ≪ θ1),

“R equimolar” (T 0
1 + φ21 ≃ θ1) and “R scarce” (T 0

1 + φ21 ≫ θ1). Eqs. 17 and 19 explain why
the relationships between competitors are piecewise (Figure 2A-C). For T F

1 and T F
2 , according to

Eq. 17, in “R abundant” regime (T 0
1 + φ21 ≪ θ1), almost all targets bind with R, so the level of

T F
1 approaches to zero. In the contrary, in “R scarce” regime (T 0

1 + φ21 ≫ θ1), T F
1 increases with
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the increment of T F
2 , which is because when the production rate of T2 raises to sequester R, T C

2

increases thus T 0
2 −T F

2 increases according to Eq. 18. Given the above, when the production rate of
T2 increases to switch the system from R “abundant” regime to “R scarce” regime, the abundance
of T F

1 will exhibit a “threshold behavior” (Figure 2B).

Similarly, Eq. 19 suggested that the relationship between T C
1 and T C

2 is piecewise linear. If R

is abundant (T 0
1 + φ21 ≪ θ1), T C

1 would keep substantially unchanged, while when R is scarce
(T 0

1 + φ21 ≫ θ1), T C
1 would decrease linearly with the increment of T C

2 , thus shows “negative linear
dependence” (Figure 2C).

2.3. Approximation of the regime threshold. The threshold (Eq. 20) can be approximated based on
the strong binding assumption. It is equivalent to:

kT 1
gT 1

+ α2β1gT 2
α1β2gT 1

(kT 2
gT 2

− T F
2 ) = β1kR

α1gT 1
[21]

From Eq. 3, we get

T F
1 = k1− + g1

RFk1+
T C

1 [22]

According to Eq. 17, before the system reaches the threshold (T 0
1 + φ21 ≤ θ1) in the process of

increment of production of T2, T F
1 is much smaller than T C

1 and approaches to zero, and so does T F
2 .

Thus, the threshold point (T 0
1 + φ21 = θ1) could be approximated from Eq. 21 as:

α1
β1

kT 1 + α2
β2

kT 2 = kR [23]

Eq. 23 gives an approximation of the threshold position to estimate the regime of a competing
system roughly.

3. Competition can shape the regulator-target response curve.

3.1. How competition shapes regulator-target response curve. According to Eq. 9, there are

F (kR, T F
1 , T F

2 ) = (T F
1 )2 − T F

1 (T 0
1 − λ1 − θ1 + φ21) − λ1T

0
1 = 0 [24]

G(kR, T F
1 , T F

2 ) = (T F
2 )2 − T F

2 (T 0
2 − λ2 − θ2 + φ12) − λ2T

0
2 = 0 [25]
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Thus,

∂T F
1

∂kR
=

∣∣∣∣∣∣∣

∂F
∂kR

∂F
∂T F

2
∂G
∂kR

∂G
∂T F

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∂F
∂T F

1

∂F
∂T F

2
∂G

∂T F
1

∂G
∂T F

2

∣∣∣∣∣∣∣

= − γ1

1 + λ1T 0
1

λ2T 0
2
(T F

2
T F

1
)2 + λ1T 0

1
(T F

1 )2

[26]

∂ log T F
1

∂ log kR
= kR

T F
1

∂T F
1

∂kR
= − γ1kR

T F
1 + λ1T 0

1
λ2T 0

2

(T F
2 )2

T F
1

+ λ1T 0
1

T F
1

[27]

Eq. 27 describes the derivative of regulator-target response curve (Figure 2E and 2G).
Similarly, the buffer capacity, which quantifies the ability to resist pH changes in buffer solution,

can be calculated as

B = − ∂kR

∂ log T F
1

= 1
γ1

(T F
1 + λ1T 0

1
λ2T 0

2

(T F
2 )2

T F
1

+ λ1T 0
1

T F
1

) [28]

3.2. Competition in buffer solution. For any buffer solution with a weak acid (HA) and its conjugate
base (A– ) or a weak base (BOH) and its conjugate acid (B+), there are

H2O ! H+ + OH−

HA ! H+ + A−

BOH ! B+ + OH−

Here we take ammonium buffer solution (NH3 · H2O and NH4Cl) as an example. In a aqueous
solution with a mol/L NH3 · H2O and b mol/L NH4Cl, there are

H2O ! H+ + OH−

NH3 · H2O ! NH4
+ + OH−

The equilibrium constants of these two reactions are

K1 = [H+][OH−]
[H2O] [29]

K2 = [NH4
+][OH−]

[NH3 · H2O] [30]

Because the concertation water of in an aqueous solution is almost invariant, the equilibrium con-
stant of water (ion-product constant) is defined as

Kw = [H+][OH−] = K1[H2O] ≃ 10−14 mol · L
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Here, we consider H+ (T1) and NH4
+ (T2) competing for OH– (R). Thus, Eqs. 29 and 30 is

equivalent to

K1 = T F
1 RF

T C
1

[31]

K2 = T F
2 RF

T C
2

[32]

Meanwhile, because there are no production and degradation of any component, every substance is
conserved as

T F
1 + T C

1 = T A
1 = w [33]

T F
2 + T C

2 = T A
2 = a + b [34]

T C
1 + T C

2 + RF = RA = a + w [35]

Combining Eqs. 33-35, we get

RF = RA − T A
1 − T A

2 + T F
1 + T F

2 [36]

Combining Eqs. 31, 32 and 36, we get

T F
1 =1

2(T A
1 + T A

2 − RA − T F
2 − K1 +

√
(T A

1 + T A
2 − RA − T F

2 − K1)2 + 4K1T 0
1 ) [37]

which is a degenerate form of Eq. 15, where

α1 = α2 = β1 = β2 gT 1 = gT 2

K1 = gR

α1k1+
(k1−

g1
+ 1) K2 = gR

α2k2+
(k2−

g2
+ 1)

T A
1 = kT 1/gT 1 T A

2 = kT 2/gT 2

RA = kR/gT 1 = kR/gT 2

According to Eq. 28, the buffer capacity of this solution is

B = ∂R

∂pOH = T F
1 + Kw

K2T A
2

(T F
2 )2

T F
1

+ Kw
T F

1
= [OH−] + K2(a + b)[OH−]

(K2 + [OH−])2 + [H+] [38]

Eq. 38 indicates that when a mild change of OH– is introduced to the solution, the buffer capacity
guarantees the stable of pOH (and pH). More buffer substance (NH4

+ and NH3 · H2O, a + b) can
lead to a larger buffer capacity, and the buffer capacity may maximize when pH = pK2.
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3.3. Dose-response curve of free target to free regulator. Substituting Eq. 22 into Eq. 2, we get

kT 1 − T F
1 gT 1 − k1+RFT F

1 + (k1− + (1 − β1)g1)T C
1 = 0 [39]

Thus,
T F

1
T 0

1
= 1

1 + O1RF , where O1 = β1k1+

gT 1(1 + k1−
g1

)
[40]

In system with n targets competing for same regulator, for the ith target (i = 1, 2, · · · , n), this
result can be extended as:

T F
i

T 0
i

= 1
1 + OiRF , where Oi = βiki+

gT i(1 + ki−
gi

)
[41]

Similarly,
T C

i

T 0
i

= gT i

βigi
(1 − 1

1 + OiRF ) [42]

Eqs. 41 and 42 indicate that the level of T F
i and T C

i are determined only by the free level of
R, and some chemical kinetic parameters of Ti and R. In another wordsif two or more tagets
compete for shared R, the relative abundances of each free target or complex are independent of
other targets when giving the free level of R. In the siRNA design strategy (Yuan et al., 2015;
Yuan et al., 2016),this property guarantees that no matter what expression of the off-target gene is
(unless the expression is zero), the amount of free siRNA required to repress the target gene to a
certain extent would always repress the off-target gene to a certain extent, which is determined by
Oon and Ooff , as described in Eq. 41. When giving the expression of any target gene, siRNA could
act as a medium to predict the expression of other target genes. This property also guides how to
select suitable chemical reaction parameters: a good siRNA should have large Oon and small Ooff .

4. Competition can delay or accelerate dynamic response.

When R level changes, comparisons of d RF

d t tells how competition affects the dynamic response
speed of T1 with respect to R. According to Eq. 1 and 5,

d RF

d t
=kR − gRRF − k1+T F

1 RF + k1−T C
1 + (1 − α1)g1T

C
1

−k2+T F
2 RF + k2−T C

2 + g2T
C
2︸ ︷︷ ︸

A

−α2g2T
C
2︸ ︷︷ ︸

B

[43]

Item A equals to −d T C
2

d t , and indicates the ability of T2 to sequester R when T C
2 forms (−d T C

2
d t < 0),

or release R when T C
2 dissociates (−d T C

2
d t > 0). Item B indicates the level of R loss mediated by T C

2

degradation.
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On the rising edge of R, T C
2 forms so item A < 0, meanwhile item B < 0 all the time, thus d RF

d t

is smaller than non-competing system, leading to a slower response. On the falling edge of R, item
A > 0 while item B < 0, thus the response speed depends on the relative magnitude of item A and
B. As g2 or α2 increases, the absolute value of item B increases to alter the response from delay to
acceleration. As k+

2 increases or k−
2 decreases, item A increases while the absolute value of item B

also increases because T C
2 becomes larger, thus delay the response when there is no R loss mediated

by T C
2 (g2 = 0, Figure S3D), alter the response from delay to acceleration when g2 is moderate

(Figure S3E), or accelerate the response when g2 is large enough (Figure S3F).

5. Noise and correlated flucuation evaluation.

The variances and co-variances of the molecular species in the system can be estimated with
linear noise approximation. Fluctuation-dissipation theorem provides a general way to quantifies the
fluctuations. The fluctuation-dissipation equation was solved numerically to calculate the covariance
matrix C, the diagonal elements of which are the variance of corresponding entities, while the off-
diagonal elements of which describe the co-variances between molecular species. The noise of a
molecular species i is defined as coefficient of variation σ(xi)/x̄i and the correlation between two
molecular species i and j is defined as cov(x, y)/(σ(xi)σ(xj)), where xi and xj are random variables
representing the abundance of molecular species i and j.

Taking miRNA competing system as an example (where miRNA acts as repressor), the vector of
molecular number

N =
[
RF T F

1 T F
2 T C

1 T C
2 P1 P2

]
[44]

Transition rates vector is

f(x) =
[

kT 1 gT 1T F
1 k1+T F

1 RF k1−T C
1 g1 (1 − β1) T C

1 kT 2 gT 2T F
2

k2+T F
2 RF k2−T C

2 g2 (1 − β2) T C
2 kR gRRF g1 (1 − α1) T C

1

g1 (α1 + β1 − 1) T C
1 g2 (1 − α2) T C

2 g2 (α2 + β2 − 1) T C
2 kP 1T F

1

gP 1P1 kP 2T F
2 gP 2P2

]

[45]

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 23, 2018. ; https://doi.org/10.1101/258129doi: bioRxiv preprint 

https://doi.org/10.1101/258129
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stoichiometric matrix is

S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 −1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 −1 1 0 1 −1 1 1 0 0 0 0 0 0
0 0 1 −1 −1 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 0 0 0 −1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[46]
In the steady state, the rate equations can be linearized by the Jacobian matrix:

J = S · ∂f (x)
∂N

[47]

The diffusion matrix D is
D = S · diag (f (x)) · S⊤ [48]

Therefore, the covariance matrix C can be calculate numerically by solving the fluctuation dissipa-
tion equation:

J · C + C · J⊤ + D = 0 [49]

6. Regulator allocation to multiple targets.

When there are n targets, similarly to Eqs. 1-5, there are

d RF

d t
= kR − gRRF +

n∑

i=1
(−ki+T F

i RF + ki−T C
i + (1 − αi)giT

C
i ) [50]

d T F
i

d t
= kT i − gT iT

F
i − ki+T F

i RF + ki−T C
i + (1 − βi)giT

C
i [51]

d T C
i

d t
= ki+T F

i RF − ki−T C
i − giT

C
i [52]

At steady states, by adding Eqs. 50 and 52, we get

RF = kR − ∑
i αiT C

i gi

gR
[53]

Solving Eq. 52, we get
T F

i = ki− + gi

RFki+
T C

i [54]

Combining Eqs. 53 and 54, we get
RF = kR

gR + ∑
i Qi

[55]
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where
Qi = αigi

ki+
ki− + gi

T F
i [56]

Thus,
αigiT

C
i = Qi

gR + ∑
j Qj

kR [57]

Eq. 57 has the exact form of current divider rule in electronics:

Ii =
1

Ri
1

R0
+ ∑

j
1

Rj

Itotal [58]

It inspires that R’s production rate (kR) is analogous to the total current (Itotal); the capability
of T C

i to consume R (αigiT C
i ) is analogous to the ith branch current (Ii); and the capability of T F

i

to occupy R (Qi) is analogous to the ith branch conductance (1/Ri).
When R is scarce, T F

i ≃ T 0
i , thus Eq. 56 is approximated to

Qi ≃ αigi
ki+

ki− + gi
T 0

i [59]

which indicates that in the “R scarce” regime, the capability of Ti to occupy R (resistance) is only
determined by the parameter settings of Ti.

For catalytic reactions with a constat level of enzyme (regulator) and substances (targets), Eqs.
50-52 degenerate as

d RF

d t
=

n∑

i=1
(−ki+T F

i RF + ki−T C
i + giT

C
i ) [60]

d T F
i

d t
= −ki+T F

i RF + ki−T C
i [61]

d T C
i

d t
= ki+T F

i RF − ki−T C
i − giT

C
i [62]

Under the assumption of Michaelis-Menten kinetics that d T C
i

d t = 0, define Ki = (ki− + gi)/ki+, then
we get

T C
i = T F

i

Ki
RF [63]

Thus,

Rtotal = RF +
∑

j

T C
j = RF(1 +

∑

j

T F
j /Kj) [64]

RF = 1
1 + ∑

j T F
i /Ki

Rtotal [65]

T C
i = T F

i /Ki

1 + ∑
j T F

j /Kj
Rtotal [66]
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Which is the formation of enzyme allocation in Michaelis-Menten kinetics systems (Chou and Talaly,
1977).

7. Simulation parameters for drawing figures.

The scales of simulation parameters are referenced from previous publications across different
competition scenarios, such as transcription (Jayanthi et al., 2013), post-transcription (Ala et al.,
2013; Schmiedel et al., 2015),translation (Gorochowski et al., 2016),degradation (Cookson et al.,
2011)and chemical buffer solutions. Table S1 lists the parameters for drawing figures, the scales of
which are derived from from previous researches on ceRNA effects (Ala et al., 2013; Yuan et al.,
2015; Yuan et al., 2016)All gradually changing parameters are shown in figures. In Figure 2F-G
and S2D-E, kT 2 = 1 × 10−2. In Figure 2I, kT 2 = 1 × 10−4, and parameters of T3 are shown in Table
S1. In Figure 3A-C and S3A-F, g1 = 4 × 10−5, kT 2 = 1 × 10−4. In Figure S3A, g2 = 3.2 × 10−4. In
Figure 3E-H, for dashed blue lines, kR = 5 × 10−3; for thick blue lines, kR = 7.81 × 10−5; for thick
green lines, kR = 5 × 10−3, kT 2 = 3.21 × 10−2. In Figure S3G-J, kT 1 = 5 × 10−3.
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Table S1. Primary parameters for simulations

Primary parameters
Additional parameters

for Figure 2I

R T1 T2 T3

kR 5 × 10−3 kT 1 1 × 10−3 kT 2 8 × 10−3 kT 3 5 × 10−4

gR 1 × 10−4 gT 1 1 × 10−5 gT 2 1 × 10−5 gT 3 1 × 10−5

k1+ 1 × 10−4 k2+ 1 × 10−4 k3+ 1 × 10−6

k1− 5 × 10−5 k2− 5 × 10−5 k3− 5 × 10−5

g1 8 × 10−5 g2 8 × 10−5 g3 1 × 10−5

α1 1 α2 0.5 α3 0.5

β1 1 β2 1 β3 1

kP 1 1 × 10−2

gP 1 5 × 10−6
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Figure S1 Detailed descriptions under the unified coarse-gained competition motif 

model for diverse competition scenarios.  

(A) DNA TF binding sites (TFBS) competing for TFs. Left: TF acts as an activator; 

right: TF acts as a repressor.  

(B) RNA molecules competing for miRNAs.  

(C) RNA molecules competing for ribosomes.  

(D) Proteins competing for proteases.  

(E) Competition in the ammonium buffer solution, where H+ and NH4+ compete for 

OH-. 
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Figure S2 Steady state behaviors of competition systems. 

(A) Abundances of each component in Figure 2A on linear scales. 

(B) Derivatives of the curve in Figure 2B. Each component’s abundance in competition 

motif changing with T2’s production rate (kT2). Colors, lines and parameter settings are 

the same with Figure 2A-C. 

(C) Schematic diagram depicting the maximum sensitivity (Smax) and its position (R*) 

of R-T1 dose-response curves. Dose-response curves are adopted from Figure 3G.  

(D-E) Relative binding affinities of T1 and T2 (k1- and k2-) shape R-T1 dose-response 

curves. (D) Fold change of Smax compared with that of non-competing system (kT2=0). 

Competition of T2 buffers the response of T1F to R when log10FC(Smax)<0, but introduces 

larger sensitivity when log10FC(Smax)>0. (E) Changes of R*.  
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Figure S3 Dynamic properties of competition systems. 

(A-F) Modifications of response time on the falling edge of R’s change under different 

kinetic parameters: (A) different 2 and 2; (B) different g2 and 2; (C) different k2- and 

g2; (D-F) different k2+, k2- and g2 (values of g2 are shown in figures). 

(G-J) Abundant weak competitors can buffer target expression noise better. (G-H) P1 

level changing with T2’s production rate (kT2) and T2’s association rate (k2+) (G), or kT2 

and T2’s dissociation rate (k2-) (H). Black lines are T1F level isolines. (I-J) Target 

expression noise changes on the isolines in (G) and (H) respectively. Along the 

direction of the arrows, T2’s production increases and T2’s binding affinity decreases, 

bringing about lower expression noise. 
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