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ABSTRACT 

 

Mammalian DNA is replicated in a highly organized and regulated manner. Large, 

Mb-sized regions are replicated at defined times along S phase. DNA Replication 

Timing (RT) has been suggested to play an important role in shaping the mammalian 

genome by affecting mutation rates. Previous analyses relied on somatic DNA RT 

profiles, while to fully understand the influences of RT on the mammalian genome, 

germ cell RT information is necessary, as only germline mutations are passed to 

offspring and thus affect genomic composition. Using an improved RT mapping 

technique that allows mapping the RT from limited amounts of cells, we measured RT 

from two stages in the mouse germline - primordial germ cells (PGCs) and 

spermatogonial stem cells (SSCs). The germ cell RT profiles were distinct from those 

of both somatic and embryonic tissues. The correlations between RT and both 

mutation rate and recombination hotspots were not only confirmed in the germline 

tissues, but were shown to be stronger compared to correlations with RT of somatic 

tissues, emphasizing the importance of using RT profiles from the correct tissue of 

origin. Expanding the analysis to additional genetic features such as GC content, 

transposable elements (SINEs and LINEs) and gene density, also revealed a stronger 

correlation with the germ cell RT maps. GC content stratification along with multiple 

regression analysis revealed the independent contribution of RT to SINE, gene, 

mutation and recombination hotspot densities. Taken together, our results point to the 

centrality of RT in shaping multiple levels of mammalian genome composition.  
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INTRODUCTION 

DNA replication follows a highly regulated temporal program consisting of 

reproducible RT of different genomic regions (Goren and Cedar 2003; MacAlpine et 

al. 2004; Norio et al. 2005; Schwaiger and Schubeler 2006; Karnani et al. 2007; 

Farkash-Amar et al. 2008; Desprat et al. 2009; Hiratani et al. 2009; Schwaiger et al. 

2009). RT is conserved across species (Farkash-Amar et al. 2008; Ryba et al. 2010; 

Yaffe et al. 2010; Pope et al. 2012), and within a species about 50% of genomic 

regions have stable RT across cell types, while the other 50% have variable RT 

between cell types (Hiratani et al. 2010; Rivera-Mulia and Gilbert 2016). The 

importance and role of this temporal organization are still unclear.  

RT correlates with many genomic and epigenomic features including transcription 

(Braunstein et al. 1982; Gilbert 1986; Farkash-Amar et al. 2008; Hiratani et al. 2008), 

gene density (Cohen et al. 1998), chromatin state (Farkash-Amar and Simon 2010; 

Farkash-Amar et al. 2012), retrotransposon density (Woodfine et al. 2004; Hiratani et 

al. 2008), lamina proximity (Farkash-Amar et al. 2012), topological state (Pope et al. 

2014; Dileep et al. 2015; Kenigsberg et al. 2016), and GC content (White et al. 2004; 

Woodfine et al. 2005; Farkash-Amar et al. 2008; Kenigsberg et al. 2016). RT is also 

associated with mutation rates both in cancer (Donley and Thayer 2013; Lawrence et 

al. 2013) and in the germline (Stamatoyannopoulos et al. 2009; Chen et al. 2010). 

Late replicating regions are enriched with point mutations (Chen et al. 2010; Cui et al. 

2012), whereas the association between CNVs and RT is more subtle and depends on 

the mechanism of CNV generation (Koren et al. 2012) and on the organism (reviewed 

in (Blumenfeld et al. 2017)).  We recently investigated the correlation between RT 

and GC content and found that different substitution types have different associations 

with RT: late-replicating regions tend to gain both As and Ts along evolution.  

whereas early replicating regions tend to lose them (Kenigsberg et al. 2016). 

Measuring the levels of free dNTPs at different time points along S phase revealed an 

increase in the dATP+dTTP to dCTP+dGTP ratio along S, suggesting that a 

replication timing-dependent deoxynucleotide imbalance may underlie this mutation 

bias.  

The association between RT and germline mutation frequency points to the 

importance of RT in shaping the genome sequence. To fully understand this 

association would require profiles of replication timing in germ cells. However, all 

previous studies used somatic tissue RT profiles as proxies for the investigation of the 

evolutionary impacts of RT. Thus, it is crucial to measure the RT in germ cells.  

 

Germ cells refer to all the cells in an organism that pass on their genetic material to 

progeny. Mouse oogenesis and spermatogenesis involve 25 and 37- 62 cell divisions, 

respectively (Drost and Lee 1995). Mutations occurring at each step of this process 

are inherited by the next generation and thus all steps in this process are important 

from an evolutionary standpoint. RT has been measured in the early stages of this 

process (ESC to EpiSC (Hiratani et al. 2010)), but there is no data regarding 

replication timing at later stages during which the majority of cell divisions occur 

(Drost and Lee 1995) and during which a high percentage of germline mutations 
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likely accumulate. In order to start filling this gap, we have measured RT at two 

different stages along the germline: primordial germ cells (PGCs, isolated directly 

from gonads of E13.5 mouse embryos) and spermatogonial stem cells (SSCs, isolated 

directly from testes of p5 pups).  The main limitation for measuring RT in these stages 

is the small amount of available cells. The current methods for measuring genome 

wide RT (reviewed in (Gilbert 2010) and (Farkash-Amar and Simon 2010) ), are 

usually applied on millions of growing cells (Farkash-Amar et al. 2008; Dileep et al. 

2012), which is not feasible for many cell types including in vivo germ cells. 

  

By improving the RT mapping method, we were able to generate reliable RT maps 

from as few as 1000 S-phase cells. We first demonstrated the reliability of this 

method on small populations of mouse embryonic fibroblasts (MEFs). We then 

measured the RT of in vivo PGCs and of isolated SSCs. RT patterns of germ cells 

were highly correlated to each other, and were more similar to early embryonic tissues 

than to somatic cells. Both germline mutation and recombination hotspot densities 

correlated more strongly with the RT of the germ cell compared to that of somatic 

tissues, as expected. Mapping RT in the germline enabled us to similarly explore 

other genomic features such as GC content, LINEs, SINEs and gene density, all of 

which correlated better with germ cell RT. GC content stratification, as well as 

multiple regression analyses revealed that germ cell RT contributes to SINE, gene and 

recombination hot spot densities as well as to mutation rates, independently from the 

contributions of GC content. Taken together, our results suggest a role for germ cell 

RT in shaping multiple features of the genome sequence.   

 

RESULTS  

 

RT maps from small amounts of cells 

RT maps are usually generated from at least 100,000 S-phase cells (Yehuda et al. 

2017). In order to measure RT in germ cells, we first established our ability to map 

RT from as few as 1000 S-phase cells. To this end, we optimized the RT profiling 

technique to minimize cell loss by optimizing fixation conditions, avoiding material 

transfer between tubes, using a slow flow rate during cell sorting and optimizing DNA 

extraction and library preparation protocols (see supplementary methods). Using this 

improved technique, we measured RT of MEFs using 10
3
, 10

4
 or 10

5
 S-phase cells.  

Triplicates were highly similar for 10^4 and 10^5 samples (R>0.91 and R>0.95, 

respectively) and quite similar even in the 10^3 triplicates (R>0.76). Moreover, the 

RT maps from all cell  numbers were quite similar to each other and to published RT 

map (Hiratani et al., 2010) and distinct from RT profiles generated from other tissues 

(Figure 1).  

Moreover, autocorrelation analyses performed on the different samples were almost 

identical (Figure S1). Taken together, our results demonstrate the ability to obtain 

reliable RT maps from as little as 1000 S phase cells.  
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Figure 1. RT mapping of small populations of cells. A) RT maps of 10

3
,10

4
 and 10

5
 

MEF cells, in triplicates, along a ~80 Mb region on chromosome 1. B) PCA analysis 

of RT profiles. Plot of PC1 vs PC2 for RT profiles of multiple MEF samples 

(described in A or published) and other somatic cells either sequenced by us (L1210 

and PreB) or published (CH12 and CD4). The MEF samples mapped in this paper 

are color coded as in A. C) A heatmap of spearman correlation coefficients between 

different RT profiles.  

Replication timing profiles of the mammalian germline  

To evaluate germ cell RT we concentrated on the two stages in mouse germline 

development in which most germ-cell divisions occur: PGC and SSC (Figure 2A). 

We isolated 1,000 to 10,000 G1 and S phase cells in triplicates from PGCs (both male 

and female) and SSCs, and generated RT maps (see methods). Despite the small 

amounts of cells used, PGC and SSC RT maps showed high reproducibility (R>0.8 

and R>0.85, respectively) and correlated with many genomic features (Figure S2), as 

had been shown for other RT maps (Farkash-Amar and Simon 2010). Interestingly, 

we found high similarity between the different PGC samples regardless of their 

gender (Figure S3). Moreover, as expected, PGC and SSC RT showed specific 

association with chromatin accessibility in germ cells (Figure S4), further supporting 

their accuracy.  
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Figure 2. Germ cell RT. A) Schema of the germline including the main stages from 

the zygote to the gonads, both for male and female mice. The number of cell divisions 

in each stage is shown (data taken from (Drost and Lee 1995)). B) RT map of 

triplicates of PGCs, SSCs and MEFs (10^5) along ~16Mb region of mouse Chr1. 

Below, three graphs are shown depicting the Bonferroni-corrected p values of the 

likelihood ratio test for a pairwise comparison between two cell types. Differential 

regions are highlighted in green.  C) Bar graphs showing the total size (in 

megabases) of the differential regions, each bar graph is divided into two portions 

depicting the size of the regions that are earlier in the SSC (Blue), PGC (light blue) 

and MEF (red). D) Boxplots showing the distribution of PGC chromatin accessibility 

data in regions showing differential RT between SSC or PGC and MEF. Chromatin 

accessibility distribution was separated into MEF early versus germ cells early. P 

values (two sided t test) are shown above the box plots.  E) RT profiles from the 

current work along with published embryonic tissues (Hiratani et al. 2010) were 

hierarchically clustered. Only switching RT regions (see methods) were included.  F) 

PCA of RT profiles, plot of PC1 vs PC2 for RT profiles of different types, using the 

same color code and regions as in E.   

 

The PGC and SSC profiles were very similar to each other (R=0.86), but showed 

significantly less similarity to the MEF RT profile (R= 0.74 for both PGC and SSC) 

(Figures 2B-C and S2B). We identified statistically significant differential RT 

regions (see methods) between SSCs, PGCs and MEFs (Figure 2B-C). Overall, we 

found approximately 400Mb and 370Mb of differential RT between MEFs and SSC 

or PGC, respectively (Figure 2C). On the other hand, the SSC and the PGC profiles 
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were very similar (Figure 2B-C), with only 14 Mb of differential RT. We confirmed 

the accuracy of these differential regions by analyzing their chromatin accessibility 

using published PGC data (Guo et al. 2017). Indeed, early-replicating regions in PGC 

or SSC were significantly more accessible than regions replicating later in the germ 

cells (Figure 2D).   

In order to put the germ cell RT maps in a broader context, PGCs and SSCs were 

compared to many published RT maps, expanding the work of Hiratani et al. (Hiratani 

et al. 2010). As was previously reported, embryonic tissues RT clustered into early 

and late embryonic stages (Hiratani et al. 2010). The germ cells clustered as a third 

embryonic cells cluster, distinct from terminally differentiated cells (Figures 2E and 

2F).  

 

Mutation rate and recombination hotspot density correlate most strongly with 

the RT of germ cells 

Although the mechanism(s) responsible for the association between mutation rates 

and replication timing is still under investigation, it is clear that it stems from 

differences between early and late replicating regions, either in mutation rates directly 

or in DNA repair rates (Blumenfeld et al. 2017). As inter-mammalian divergence 

reflects germline mutation rates, we expected to find a stronger correlation with germ 

cell RT than with somatic cell RT. Indeed, we found stronger correlations between 

inter-mammalian divergence and PGC or SSC RT than MEF RT (R=-0.63 and -0.65 

versus -0.52; Figure S5A). To further emphasize this trend, we used published data 

that divided the mouse genome into two types of regions – those that show similar RT 

across 28 mouse RT datasets (constitutive RT) and those that show variability 

between tissues (developmental or switching RT) (Hiratani et al. 2010). As expected, 

in switching RT regions the correlation was much stronger in germ cells than in 

somatic cells (Figure 3A-C). Further analysis of the differential regions between 

MEFs and germ cells revealed that Germ-Early MEF-Late regions have significantly 

lower mutation rates than Germ-Late MEF-Early regions (Figures 3D), further 

demonstrating that the mutation rates follow germ cell RT more strongly than somatic 

cell RT.  

Another germ cell related feature is meiotic recombination hotspots (Lange et al. 

2016). In order to analyze its association with germ cell RT, we took advantage of the 

recently published dataset depicting the genome-wide recombination hotspots using 

Spo11 pull-down in mouse sperm cells (Lange et al. 2016). Analyzing the 

recombination hot spots data (in 1Mb windows) revealed a stronger correlation with 

germ cell RT for both PGC and SSC (Figures 3E-H and S5B) compared to somatic 

cell RT. Taken together, these results emphasize the centrality of replication timing in 

determining germline mutation and recombination rates, and establish a resource for 

further studies of the influence of replication timing on germline genetic and 

epigenetic events.  
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Figure 3. Mutation rate and recombination hotspots correlate better with germ cell 

RT. The stronger association between inter-mammalian divergence (A-D) and 

recombination hot spots (E-H) with germ cell RT is shown as RT maps (A, E), box 

plots in 5 RT bins (B, F), and bar graphs capturing the Spearman correlation 

coefficients along with confidence intervals (bars) for multiple cell types (C,G) and 

boxplots (as in Figure 2D) showing the distribution in differential regions (D,H). B, 

C, E, and F were calculated using only the switching RT regions of the genome 

(Hiratani et al. 2010).  

 

Germline RT is associated with GC content and gene and transposon densities  

Having demonstrated that germline RT provides the best proxy, so far, for germline 

mutation and recombination rates, we turned to search for additional genetic 

properties that specifically relate to germline RT. Finding such features, would 

suggest that they originated in the germ cells probably as a consequence of RT. On 

the other hand, finding a feature that is associated with the RT in all tissues to the 

same extent, would suggest that this feature is most probably affecting the RT and 

thus it has the same effect in all tissues.  

We explored four additional genomic features that are known to be associated with 

RT but for which the causative relationship with RT has been unclear – GC content, 

and SINE, LINE and gene density. Early replicating regions tend to have higher GC 

content (Woodfine et al. 2004; Farkash-Amar et al. 2008).  LINEs are known to 
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populate mainly late replicating regions (Hiratani et al. 2008), whereas SINEs and 

genes are known to populate mainly early replicating regions (Woodfine et al. 2004; 

Woodfine et al. 2005). We have previously shown that the genomic GC distribution 

(GC content) depends on RT, in a mechanism by which RT affects the type of 

mutations that occur at early and late S (Kenigsberg et al. 2016). According to this 

explanation, we expect to obtain higher correlations to GC content when using germ 

cell RT data. Indeed, using the same strategy as with mutation rates, we found 

stronger correlations of GC content with germ cell RT than with somatic cells RT 

(Figures 4A and S6). Interestingly, using the same approach, we found that LINE, 

SINE and gene density also correlate better with RT in germ cells (Figures 4B-D and 

S6). Thus, our findings suggest that it is less likely that either gene or retrotransposon 

densities affect RT, but rather point to an influence of RT on those features through a 

germline-related mechanism.  

 
Figure 4. Cell-type specific association of RT with additional genomic features. RT 

association with GC content (A), LINE counts (B), SINE counts (C) and gene 

coverage (D) in 100kb windows. Left: bar plots showing the spearman correlation 

coefficients (along with confidence intervals) with the RT of different cell types, in the 

switching RT regions of the genome; Right: box plots (as in Figure 2D) showing the 

distribution of these features in differential RT regions.   

 

RT directly associates with SINE, gene, mutation and recombination hotspot 

densities  

The aforementioned correlations between germ cell RT and the density of various 

genetic features do not necessarily imply independent associations between them. We 

have previously shown that RT has a causative role in determining the genomic GC 

content (Kenigsberg et al. 2016).  Therefore, we wanted to assess the unique 

contribution of RT to five genomic features independently from the contribution of 

GC content. To this end, we stratified the RT data (PGC) according to GC content and 
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analyzed the association between RT and each genomic feature in each bin (Figure 

5A). We found that for LINE density, the contribution of RT was small relative to the 

contribution of GC content. On the other hand, for SINE density, mutations rates and 

recombination hotspots density, germ cell RT was a major contributor even after 

accounting for GC content. Gene density showed an intermediate pattern in which RT 

contributed only in genomic regions of low GC content, and was not important in 

other parts of the genome.    

To corroborate this point further, we built a multiple regression model, which allowed 

us to see the additional contribution of RT over the contribution of GC content. We 

simultaneously built two models either starting with GC content or with germ cell RT. 

These models revealed that for LINE the additional contribution to the percent 

variance explained (PVE) of RT beyond GC content was very small. On the contrary, 

when predicting SINE density, gene density, mutation rate and recombination 

hotspots density, adding RT as a predictor increased the PVE by a factor of 20%, 

25%, 34% and 35%, respectively, relative to the PVE from using only GC content 

(Figure 5B). Further confirmation of this conclusion was obtained by partial 

correlation analysis (Figure S8). Taken together, these results demonstrated the 

independent association between RT and multiple genomic features, suggesting it 

may has a causative role in their formation.  

Figure 5. Independent association of RT with genomic features. (A) Scatter plot 

showing the association between RT and GC content and its stratification into four 

GC content groups; associations between multiple genomic features and RT stratified 

by GC content, are shown using the same colors as in the scatter plot.   (B) Barplots 

depicting relative contribution of RT and GC content to percent variance explained 

for LINE, SINE, gene coverage, mutation rate and recombination hot spots.  For each 

predicted feature, the model was created twice beginning with either RT or GC 

content. The order of the addition of the predictors to the model is from bottom to 

top.  Similar results were obtained with SSC RT data (Figure S7). 

 

DISCUSSION 

 

By improving the RT profiling technique, we were able for the first time, to map the 

RT of two stages of the mouse germline. We have profiled both E13.5 PGCs and in 
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vitro-grown SSCs, and found that their RT profiles are similar. Our results add a new 

dimension to previous efforts to map the RT of multiple mouse developmental stages 

(Hiratani et al. 2010). We found that the two stages of germ cell development 

clustered together, and to a lesser extent, clustered with other embryonic tissues while 

remaining distinct from terminally differentiated cells. The similarity between the RT 

maps of PGCs and embryonic tissues is not surprising since PGCs are taken from an 

early embryonic stage prior to terminal differentiation. Though SSCs are isolated 

from young mice and therefore may reflect later developmental stages, our finding of 

their similarity to embryonic stages may reflect their stemness (Komeya and Ogawa 

2015) resembling many of the embryonic stages examined. Further research is needed 

to expand our study to additional germ cells models (Geijsen et al. 2004; Seandel et 

al. 2007; Hikabe et al. 2016; Mitsunaga et al. 2017), which reflect other stages in 

germ cells development.   

 

It is well established now that RT is associated with both germline and somatic 

mutations (reviewed in (Blumenfeld et al. 2017)), however, due to a lack of 

information regarding germ cell RT, previous studies of germline mutations used 

somatic cell replication profiles as a proxy. By profiling RT in germ cells, we showed 

that the correlation between mutation rate and RT is stronger than when using somatic 

cell RT profiles. More generally, obtaining germline-specific RT data is very 

important for understanding the regional variation in mutation rate (RViMR) along 

the genome (Hardison et al. 2003; Hodgkinson and Eyre-Walker 2011; Makova and 

Hardison 2015). It has been shown that RViMR is dependent mainly on RT and 

transcription activity (Lawrence et al. 2013), which both differ between tissues. Using 

the correct tissue data improves RViMR estimation (Polak et al. 2015; Supek and 

Lehner 2015) and accordingly, germ cell RT data is especially important for 

estimation of germline RViMR. Obtaining a correct cancer related RViMR turned out 

to be crucial for the identification of new cancer-associated genes (Lawrence et al. 

2013). Similarly, obtaining a reliable germline RViMR is important for understanding 

the selection forces acting on various genes (Caporale 2000; Martincorena and 

Luscombe 2013), for interpreting the importance of genetic variation and de novo 

mutations for diseases (Samocha et al. 2014), and for reliably performing inter species 

alignments (Li and Miller 2003). Performing similar experiments in human germ cells 

will be even more informative, since i) there is more data regarding mutations and 

CNVs in humans than in mice, and ii) getting a better estimate for the local mutation 

frequency in humans may allow better understanding of disease-related mutations.     

 

We found that the strongest correlations for germline mutation rate and for 

recombination hotspots density are found with germ cell RT profiles. This suggests 

that the strength of the correlation is indicative of the tissue of origin of the studied 

association. Indeed, correlation between RT and an epigenetic feature (like chromatin 

accessibility) is found to be stronger when both the RT and the chromatin 

accessibility data are from the same tissue (Figure S4).  
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We found the strongest correlation between RT and GC content in germ cells, 

supporting our previous finding that the mutation spectrum in genomic late replication 

domains shapes mammalian GC content (Kenigsberg et al. 2016). Expanding this idea 

to other genomic features such as SINE, LINE, and gene density, revealed that all 

those features correlate more strongly with germ cell RT profiles, suggesting that 

germline tissues are indeed the relevant tissues of origin for these correlations. This 

finding implies that it is less likely that these features are involved in affecting RT, 

either directly or indirectly, since in that case we would expect them to influence RT 

in all tissues similarly. Rather, our findings suggest that the association of these 

features with RT occurs in the germline. Nevertheless, it does not necessarily imply 

that RT is directly affecting these features, since it can be that other processes, 

associated with RT, like certain chromatin modifications, chromatin accessibility, or 

the association of certain proteins with chromatin in germ cells, are the direct 

effectors. Reliable chromatin data from germ cells is required for further evaluating 

this point.   

Previous work has shown that the strongest correlation between RT and both GC 

content and retroelement density is obtained when using ectoderm tissue RT profiles 

(Hiratani et al. 2010), but the reason for this phenomenon remained obscure. Our 

results explain this finding, since germ cells are from ectoderm origin and thus their 

RT maps are similar (Figure S9).   

By using the germ cell RT data we were able, for the first time, to address the relative 

contribution of RT and GC content to multiple genomic features. Interestingly, we 

found an independent contribution of RT to all examined genomic features besides 

LINE density. It was shown that L1 elements (LINE) are associated with AT-rich, 

late-replicating regions, whereas Alu elements (SINE) are associated with GC rich, 

early-replicating regions. Detailed analysis of old and new SINE and LINE elements 

revealed that both integrate preferably into AT rich regions, but SINEs are 

preferentially deleted from those regions and thus old SINEs are enriched in high GC, 

early replicating regions whereas new SINEs are enriched in low GC, late replicating 

regions (Lander et al. 2001; Deininger and Batzer 2002). Our results, showing GC-

content independent RT association only with SINEs but not LINEs densities, suggest 

that RT plays a role in the deletion process rather than in the integration process. This 

conclusion is consistent with the finding that both point mutations and deletions are 

more prevalent in late replicating regions (Blumenfeld et al. 2017).  

The independent association between mutation rate and RT has been reported before 

using somatic cells RT data (Chen et al. 2010). Our new germ cell RT data confirms 

previous results and further demonstrates the importance of RT in determining 

germline mutation rates.   

The association between recombination hot spots and somatic cells RT was studied in 

humans and revealed a stronger association in females than in males (Koren et al. 

2012). This study estimated recombination events by analyzing 15,000 Icelandic 

parent-offspring pairs. Using a direct measurement of the locations of the DNA 

recombination associated double strand breaks (Spo11 oligo mapping) in mouse 

sperm cells, we were able to show a strong correlation between germ cell RT and 
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recombination hotspots density (in 1Mb windows). Interestingly, our results differ 

from the previous report in two aspects – i) we found a much stronger correlation with 

male recombination hotspots than previously reported. ii) In the current study, we 

found that RT contributes to recombination hotspots even after controlling for GC 

content whereas the previous report suggested that the association between RT and 

recombination strongly depends on GC content. Differences between the studies in i) 

the organism studied (mouse versus human); ii) the source of the RT data (germ cell 

versus somatic cells) and iii) the definition of a recombination hotspot (DSB versus 

recombination events) may explain this discrepancy.  

 

Our methodology produces reliable RT profiles (supplementary information) and 

paves the way for similar experiments in which RT can be determined for other 

samples with limited number of cells, in particular in vivo cell populations. As far as 

we know, RT profiling of in vivo vertebrate cells was done only in zebrafish (Siefert 

et al. 2017); this is the first time it has been performed in mammalian cells. This 

technique is especially relevant in the field of cancer, in which it was shown that 

using the correct tissue of origin RT can best explain mutation rate (Polak et al. 2015; 

Supek and Lehner 2015). Currently, there are no RT profiles of primary tumors and 

the association between RT and mutation rates has been based so far on tissue culture 

cells. Measuring RT from in vivo tumors may help elucidate the correct mutation rate 

and aid in understanding the mutational spectrum in a given cancer.   

 

In summary, by optimizing the RT profiling methodology we were able to determine 

the RT of two types of mouse germ cells. These novel RT profiles allow the 

identification of the tissue of origin of many genomic features. Moreover, they 

suggest a fundamental role for RT in determining multiple facets of genomic 

composition. Further research is needed for understanding the precise mechanisms by 

which this is achieved.  

 

METHODS  

 

Tissue culture 

Mouse embryonic fibroblasts (MEFs) were cultured in DMEM medium (BI) 

supplemented with penicillin, streptomycin, L-Glutamine and 20% v/v heat-

inactivated (56°C, 30 min) FBS (BI). L1210 were cultured in L-15 medium (BI) 

supplemented with penicillin, streptomycin, L-Glutamine and 10% v/v heat-

inactivated FBS (BI). Cells isolated from the bone marrow of 

female C57BL6 mouse (10 weeks old) were grown in RPMI 1640 media 

(Gibco) supplemented with 10% fetal bovine serum (Hyclone), penicillin–

streptomycin (Gibco), L-glutamine (Gibco) and 50 μM of β-Mercaptoethanol 

(Gibco) on irradiated ST2 feeder cells. IL-7 conditioned medium (collected 

from J558L-IL7 secreting cells provided by A. Rolink) was added to the cells 

to select for pre-B cell populations for 14 days.  
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Isolation of PGCs 

Oct4-GFP+/+, Sox2-GFP+/- and M2rtTA+/+ mice were obtained from Jackson Labs. 

Oct4-GFP+/+ mice and Sox2-GFP+/- mice were bred to M2rtTA mice and females 

were sacrificed on day 13.5 of pregnancy. GFP positive cells were isolated from 

E13.5 gonads of either Oct4-GFP+/+ or Sox2-GFP+/- mouse embryos, resulting a 

pure population of PGCs (Yabuta et al. 2006), according to the following procedure. 

Embryos were dissected in PBS under the microscope. GFP-positive gonads were 

chosen by observation in fluorescent microscope and 4-8 embryos were processed per 

experiment. Gonads and mesonephros were first dissected and then separated into 

single cells using trypsin (BI) and 700µg/ml DNAse (sigma), followed by 

neutralization using FBS (BI). Cells were washed with PBS (BI), and filtered through 

35µm mesh into 5ml polystyrene tubes (BD). GFP+ cells were isolated using 

FACSARIA III (BD) using cold conditions, into new 5ml polystyrene tubes, and 

fixated as described below.  

 

Preparation and growing of SSCs 

SSC culture was prepared from the testis of 4-7 days old F1 C57/Bl6 crossed with 

DBA male mice, according to Kubota et al. (Kubota and Brinster 2008) with minor 

modifications. Testis cells suspensions were obtained using trypsin (BI) and DNAse 

(Sigma). Thy1+ cells were isolated using magnetic microbeads conjugated with anti-

Thy-1 antibody (Miltenyi Biotec). Cells were examined for their replenishment 

potential in busulfan treated NODSCID mice. 

SSCs were seeded on irradiated MEFs and grown in StemPro-34 medium (Invitrogen) 

as described by Kanatsu-Shinohara et al. (Kanatsu-Shinohara and Shinohara 2010). 

Cells were supplemented with 1% FBS (BI), human GDNF 20ng/ml (R&D systems), 

human LIF 50ng/ml (PeproTech), human FGF basic 1 ng/ml (PeproTech) and mouse 

EGF 20ng/ml (PeproTech). Cells were cultured for 4-6 weeks and split every 5 days. 

 

Fixation 

MEFs and SSCs were washed with ice-cold PBS (BI), detached using trypsin (BI), 

and neutralized using the growth medium. Cells were moved to a 5ml Polystyrene 

tube (BD). All following reactions until filtration were done in the same tube and 

samples were kept at 4°C along the entire process. Cells were gently washed twice 

with ice-cold PBS, and resuspended in 250µl cold PBS. PGCs were diluted with up to 

250µl cold PBS. For all cells, 800µl 100% high purity EtOH (Gadot) was added 

dropwise while slowly vortexing. Cells were kept for 1h to 24h at 4 °C.  

 

Propidium iodide staining  

Fixed cells were washed twice with 1ml cold PBS and spun down at 500g for 10min 

at 4 °C after each wash. Cells were resuspended in 0.2ml PI-mix (PBS with 50µg/ml 

Propidium Iodide (PI) (sigma) and 50µg/ml RNAse-A (sigma)) and filtered through a 

35µm mesh into a new 5ml polystyrene tube (BD). In order to enhance cell recovery 

another 0.2ml PI-mix was added and filtered to the new tube. For higher amounts of 
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cells, we kept a concentration of 2.0×10
6
 cells per ml of PI-mix. PI-stained cells were 

incubated for 15-30 min at the dark before sorting. 

 

Flow cytometry  

Cells were sorted using FACSARIA III (BD) based on their PI- intensity to G1 and S 

phases (Yehuda et al. 2017), using a flow  rate of 1. Sorted cells were collected into 

1.5ml Protein-LoBind tubes (Eppendorf) and moved to ice.  

 

DNA elution 

DNA was extracted using DNeasy-kit (QIAGEN) and eluted twice with 2x200µl of 

the kit elution buffer (AE). DNA was moved to a 1.7ml MaxyClear tube (Axygen) 

which is compatible with the PureProteom Magnetic Stand (Milipore). X1.8 

Agencourt AMPure XP beads (Beckman Coulter) were used to lower the elution 

buffer volume and gDNA was eluted from beads in 50µl EB (Qiagen). DNA amounts 

were measured using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific). 

 

Sonication 

Samples of 50µl gDNA were transferred to a microTUBE Screw-Cap (520096, 

Covaris). Sonication was performed in the M220 Focused-ultrasonicator (Covaris) 

using 50W, 20% Duty Factor at 20°C for 120s, in order to reach an average target 

peak size of 250 bp. Sonication was verified using the D1000 or D1000 High 

Sensitivity ScreenTape using the Electrophoresis 2200 TapeStation system (Agilent).  

 

Library preparation for whole genome sequencing 

Library preparation was done similar to Blecher-Gonen et al. (Blecher-Gonen et al. 

2013) with some changes. Briefly, Sonicated DNA was subjected to a 50µl end repair 

reaction using 1µl End repair mix (E6050L, NEB), cleaned by 1.8X AmpureXP 

beads, followed by a 50µl A-tail reaction using 2µl Klenow fragment exo- (M0212L, 

NEB). The products were cleaned by 1.8X beads and were ligated by 2µl quick ligase 

(M2200, NEB) to 0.75µM illumina compatible forked indexed adapters. Ligation 

products were size selected by 0.7X PEG (considering the PEG in the ligation buffer) 

in order to remove free adaptors. 12-19 cycles of amplification were performed by 

PFU Ultra II Fusion DNA polymerase (600670, Agilent) with the following Primers:  

P7 5'AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC 3’,  

P5 5' CAAGCAGAAGACGGCATACGAGAT 3’.  

Amplified DNA was size selected for 300-700bp fragments by taking the supernatant 

after using 0.5X beads (which removed fragments greater than 700bp) followed by a 

1.0X beads cleaning (which removed remaining primers and adapter dimers). The 

final quality of the library was assessed by Qubit and TapeStation. Libraries were 

pooled and sequenced on NextSeq (illumina) for 75 bp paired-end sequencing, 

generating 10M reads per each library (60M per experiment for triplicates of G1 and 

S). 

 

Generation of RT maps 
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RT measurements were performed as described (Yehuda et al. 2017). Briefly, 

sequencing reads were mapped using Bowtie 2 software. Discordant reads and PCR 

duplicated were removed.  Every 200 G1 phase reads were binned in order to 

establish genomic windows. Corresponding S phase reads were counted in order to 

determine an S/G1 ratio for each window. Ratio data was normalized by subtracting 

the mean and dividing by the standard deviation. Continuous data was smoothed and 

interpolated using the Matlab csaps function (10e-16) at a resolution of 100kb 

(approximate average size of the windows). Continuous segments containing under 15 

informative windows were removed from the analysis. 

Published Replication Timing profiles were obtained from replicationdomain.com 

accessions: Int26004257, Int62905691, Int3190888, Int20705995, Int93235019, 

Int83562596, Int52548116, Int87752970, Int17857752, Int62150809, Int88652090.  

Data was smoothed and interpolated similar to smoothing of RT profiles generated in 

the lab. 
 

Determination of Differential Regions 

Differential regions were determined using the likelihood ratio test at each window.  

The null model assumes that at a given point, all six measures come from the same 

distribution with a given mean. The alternative model assumes that the replicates of 

each sample belong to two separate distributions each with its own mean.  

Probabilities were calculated using the normal distribution probability density 

function. The variance used was estimated as the average of the normally distributed 

genome-wide variance of each sample.  

∏ 𝑃(𝐴𝑖|𝜇0𝜎1
2)

𝑛𝐴
𝑖=1 ∏ 𝑃(𝐵𝑖|𝜇0𝜎2

2)
𝑛𝐵
𝑖=1

∏ 𝑃(𝐴𝑖|𝜇1𝜎1
2)

𝑛𝐴
𝑖=1

∏ 𝑃(𝐵𝑖|𝜇2𝜎2
2)

𝑛𝐵
𝑖=1

 

A chi squared p value was calculated for -2ln value of the ratio with 1 df. Bonferroni 

correction was used to control for multiple testing. All regions with a corrected p 

value below 0.01 were selected as differential and extended until the corrected p value 

exceeded 0.05. 

 

Statistical analyses 

In analyses including multiple datasets, RT data was filtered to only include windows 

containing informative data in all datasets. In addition, sex chromosomes were 

excluded from the analyses, resulting in approximately 20,000 windows or 2Gb.  

Where applicable, RT data was filtered to include only the RT switching regions as 

determined by Hiratani et al. (Hiratani et al. 2010). Clustering was performed using 

the python seaborn clustermap using the correlation metric and the average method. 

Correlations were calculated according to Spearman and confidence intervals were 

calculated by bootstrapping the data (n=1000). LINE, SINE and GENEID data were 

obtained from the UCSC genome browser.  Gene content was calculated as the 

percentage of bases covered by genes (from start to end of transcription) for each 

window.  For mutation data we used mouse-rat diversity data which exons, splicing 
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junctions and CpGs were excluded as described (Chen et al. 2010). Recombination 

hot spots are taken from (Lange et al. 2016). All genomic features were analyzed in 

100Kb windows besides for recombination hot spots which are sparser and thus were 

analyzed in 1Mb windows. Chromatin accessibility was downloaded from the GEO 

database (GSM2442671, GSM2098124, GSM1014153, GSM1014149) (Yue et al. 

2014; Guo et al. 2017; Li et al. 2017) and calculated in 100kb windows. 

PCA was performed using the python sklearn PCA function.  For experiments 

utilizing fixed GC content or chromatin accessibility, the relevant feature was sorted 

and split into four equally sized groups for further analysis.  RT bins containing fewer 

than 50 or 15 windows for the 100kb windows data or megabase windows data 

respectively, were removed from analysis. Multiple regression analysis was 

performed using the python statsmodels OLS function.  Autocorrelations were 

performed using the plot_acf function from the python statsmodels package.  Partial 

correlations were calculated using a custom script based on the Matlab partialcorr 

function. 

DATA ACCESS 

The data have been deposited in NCBI's Gene Expression Omnibus (Edgar et al. 

2002) and are accessible through GEO Series accession number GSE109804. 
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