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Abstract

Bayesian models of behavior have advanced the idea that humans combine prior beliefs
and sensory observations to minimize uncertainty. How the brain implements
Bayes-optimal inference, however, remains poorly understood. Simple behavioral tasks
suggest that the brain can flexibly represent and manipulate probability distributions.
An alternative view is that brain relies on simple algorithms that can implement
Bayes-optimal behavior only when the computational demands are low. To distinguish
between these alternatives, we devised a task in which Bayes-optimal performance could
not be matched by simple algorithms. We asked subjects to estimate and reproduce a
time interval by combining prior information with one or two sequential measurements.
In the domain of time, measurement noise increases with duration. This property makes
the integration of multiple measurements beyond the reach of simple algorithms. We
found that subjects were able to update their estimates using the second measurement
but their performance was suboptimal, suggesting that they were unable to update full
probability distributions. Instead, subjects’ behavior was consistent with an algorithm
that predicts upcoming sensory signals, and applies a nonlinear function to errors in
prediction to update estimates. These results indicate that inference strategies humans
deploy may deviate from Bayes-optimal integration when the computational demands
are high.

Introduction

Sensorimotor control depends on accurate estimation of internal state variables [1–5].
Numerous experiments have used Bayesian estimation theory to demonstrate that
humans estimate internal states by integrating multiple sources of information including
prior beliefs and sensory cues from various modalities [6–16]. Bayesian estimation is
typically formulated in terms of three components: prior distributions representing a
priori beliefs about state variables, likelihood functions derived from noisy sensory
measurements, and cost functions that characterize reward contingencies [17]. In this
formulation, the likelihood function and prior distribution are combined to compute a
posterior distribution and the cost function is used to extract an estimate that
maximizes expected reward. This formulation is the basis of most psychophysical
studies of Bayesian integration [9–15,18–20].

Implicit in this formulation is the assumption that the brain has access to priors,
likelihoods, and cost functions. Access to these quantities is appealing as it could

1/34

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/258434doi: bioRxiv preprint 

https://doi.org/10.1101/258434
http://creativecommons.org/licenses/by-nc-nd/4.0/


support rapid and optimal state estimation without the need to learn new policies for
novel behavioral contexts [21,22]. However, in most experiments, Bayes-optimal
behavior can also be achieved by simpler algorithms that do not depend on direct access
to likelihoods, priors and cost functions [21–23]. For example, optimal cue combination
in the presence of Gaussian noise may be implemented by a weighted sum of
measurements [6]. Similarly, integration of noisy evidence with prior beliefs may be
implemented by a suitable functional mapping between measurements and
estimates [24, 25]. Finally, online estimation of a variable from sequential measurements
that are subject to Gaussian noise can be achieved by a Kalman filter that only keeps
track of the mean and variance [26] without representing and updating the full posterior
distribution.

In contrast to simple laboratory tasks, optimal inference in natural settings is often
intractable and involves approximations that may deviate from optimality [27].
Therefore, it is critical to go beyond statements of optimality and suboptimality, and
assess the inference algorithms humans use during sensorimotor and cognitive
tasks [28,29]. Further, as articulated by Marr [30], characterization of the underlying
algorithms could establish a bridge between behaviorally relevant computations and
neurobiological mechanisms.

We devised an experiment in which the computational demands for optimal
Bayesian estimation were incompatible with simple algorithmic solutions. Subjects had
to reproduce an interval by integrating their prior belief with one or two measurements
of the interval. In the domain of time, the noise is signal-dependent, which causes
behavioral variability to scale with duration [31]. Theoretical considerations suggest
that an important consequence of scalar variability is that simple algorithms that only
update certain parameters of the posterior (e.g., mean and/or variance) cannot emulate
Bayes-optimal behavior. Therefore, optimal behavior in this paradigm would provide
strong evidence that the underlying inference algorithm involves updating probability
distributions. Conversely, suboptimal behavior would suggest that subjects rely on a
simpler algorithm. We found that when subjects made two measurements their
performance was suboptimal. Furthermore, comparison of behavior with various models
indicated that subjects relied on an inference algorithm that used measurements to
update point estimates using point nonlinearities.

Results

Subjects integrate interval measurements with prior knowledge

Subjects performed an interval reproduction task consisting of two randomly interleaved
trial types (Fig 1A,B). In “1-2-Go” trials, two flashes (S1 followed by S2) demarcated a
sample interval (ts). Subjects had to reproduce ts immediately after S2. The time
between the onset of S2 and when the keyboard was pressed was designated as the
production interval (tp). In “1-2-3-Go” trials, ts was presented twice, demarcated once
by S1 and S2 and once by S2 and S3, providing the opportunity to make two
measurements (Fig 1B). Similar to 1-2-Go, subjects had to match tp (the interval
between S3 and keyboard press) to ts. Across trials, ts was drawn from a discrete
uniform distribution ranging between 600 and 1000 ms (Fig 1C). Subjects received two
forms of trial-by-trial feedback based on the magnitude and sign of the error. First, a
feedback stimulus was presented whose location relative to the warning stimulus
reflected the magnitude and sign of the error (Fig 1A,B; see Materials and methods).
Second, if the error exceeded a threshold window (Fig 1D), stimuli remained white and a
tone denoting incorrect response was presented. Otherwise, the stimuli turned green and
a tone denoting correct was presented. The threshold window for correct performance
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was proportionally larger for the longer ts to accommodate the scalar variability of
timing due to signal-dependent noise [40–45]. The threshold was adjusted adaptively
and on a trial-by-trial basis according to performance (see Materials and methods).
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Fig 1. The 1-2-Go and 1-2-3-Go interval reproduction task. (A,B) Task design. Each trial began with the
appearance of a fixation spot (Fix on). The color of the fixation spot informed the subject of the trial type: blue for 1-2-Go,
and red for 1-2-3-Go. After a random delay, a warning stimulus (large white circle) appeared. Additionally, two or three small
white rectangles were presented above the fixation spot. The number of rectangles was associated with the number of
upcoming flashes. After another random delay, two (S1 and S2 for 1-2-Go) or three (S1, S2 and S3 for 1-2-3-Go) white
annulae were flashed for 100 ms in a sequence around the fixation spot. Consecutive flashes were separated by the duration of
the sample interval (ts). With the disappearance of each flash, one of the small rectangles also disappeared (rightmost first
and leftmost last). The white rectangles were provided to help subjects keep track of events during the trial. Subjects had
press a button after the last flash to produce an interval (tp) that matched ts. Immediately after button press, subjects
received analog feedback. The analog feedback was a small circle that was presented to the left or right of the warning
stimulus depending on whether tp was larger or smaller than ts, respectively. The distance of the feedback circle to the center
of the warning stimulus was proportional to the magnitude of the error (tp − ts). (C) Experimental distribution of sample
intervals. (D) Feedback. Subjects were given positive feedback if their production times fell within the green region. The
width of the positive feedback window was scaled with ts.

Subjects’ timing behavior exhibited three characteristic features (Fig 2). First, tp
increased monotonically with ts. Second, tp was systematically biased toward the mean
of the prior, as evident from the tendency of responses to deviate from ts (diagonal) and
gravitate toward the mean ts. As proposed previously [24,34–36], this so-called
regression to the mean indicated that subjects relied on their knowledge of the prior
distribution of ts. Third, performance was better in 1-2-3-Go condition in which
subjects made two measurements, as evidenced by a lower root-mean-square error
(RMSE) in 1-2-3-Go compared to 1-2-Go condition (Fig 2C; permutation test; p-value <
0.01 for all subjects). This observation indicates that subjects combined the two
measurements to improve their estimates, corroborating reports from other behavioral
paradigms [46–54]. Combined with the systematic bias toward the mean of ts, these
results indicated that subjects integrated prior information with one or two
measurements to improve their performance.

A Bayesian model of behavior

Building on previous work [11,18, 22, 55], we asked whether subjects’ behavior could be
accounted for by a Bayesian observer model based on the Bayes-Least Squares (BLS)
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Fig 2. Performance in the interval reproduction task. (A) Production interval (tp) as a function of sample interval
(ts) for a low sensitivity subject. Filled circles and error bars show the mean and standard deviation of tp for each ts in the
1-2-Go (blue) and 1-2-3-Go (red) conditions. The dotted unity line represents perfect performance and the colored lines show
the expected tp from a Bayes Least-Squares (BLS) model fit to the data. Inset: root-mean-square error (RMSE) in the 1-2-Go
(blue) and 1-2-3-Go (red) conditions differed significantly (asterisk, p-value < 0.01; permutation test). (B) Same as (A) for a
high sensitivity subject (LB). (C) The histogram of changes in RMSE across conditions for all subjects.

estimator. For the 1-2-Go trials, the observer model (1) makes a noisy measurement of
ts, which we denote by tm1 , (2) combines the likelihood function associated with tm1 ,
p(tm1

|ts), with the prior distribution of ts, p(ts), to compute the posterior, p(ts|tm1
),

and (3) uses the mean of the posterior as the optimal estimate, te1 . We modeled
p(tm1

|ts) as a Gaussian distribution centered at ts with standard deviation, σm,
proportional to ts with constant of proportionality, wm; i.e., σm = wmts (Fig 3A, left
box). We assumed that the production process was also perturbed by noise and
modeled tp as a sample from a Gaussian distribution centered at te1 with standard
deviation, σp, proportional to te1 with constant of proportionality, wp; i.e., σp = wpte1
(Fig 3A, right box). Note that the entire operation of the BLS estimator can be
described in terms of a deterministic mapping of tm1

to te1 using a nonlinear function,
which we denote as fBLS1(tm1) (Fig 3B) [24].

For the 1-2-3-Go trials, the subject makes two measurements, tm1 and tm2 , and uses
the mean of the posterior based on both measurements, p(ts|tm1 , tm1), to derive an
optimal estimate, te2 (Fig 3C; see Materials and methods). In these trials, the mapping
from tm1

and tm2
to te2 can be described in terms of a two-dimensional nonlinear

function, denoted by fBLS2
(tm1

, tm2
) (Fig. 3D). Note that the iso-estimate contours of

fBLS2
(tm1

, tm2
) are both nonlinear and convex (Fig. 3D, red). The nonlinearity

indicates that the effect of tm1 and tm2 on te2 is non-separable, and the convexity
indicates that te2 is more strongly influenced by the larger of the two measurements.
These features are direct consequences of scalar noise and are not present when
measurements are perturbed by Gaussian noise (see S1 Appendix).

We fit the model to each subject’s data assuming that responses in both 1-2-Go and
1-2-3-Go conditions were associated with the same wm and wp (Materials and methods).
The model was augmented in two ways to ensure that estimates of wm and wp were
accurate. First, we included an offset parameter to absorb interval-independent biases
(e.g., consistently pressing the button too early or too late). Second, trials in which tp
grossly deviated from ts were designated as “lapse” trials (see Materials and methods).
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Fig 3. BLS model of interval integration. (A) BLS model for 1-2-Go trials. The left panel illustrates the measurement
process. The measured interval, tm1 , is perturbed by zero-mean Gaussian noise whose standard deviation is proportional to
the sample interval, ts, with constant of proportionality wm (σm = wmts). The middle panel illustrates the estimation
process. The model multiplies the likelihood function associated with tm1

(middle panel, green) with the prior (bottom), and
uses the mean of the posterior (top) to derive an interval estimate (te1 , black vertical line on the posterior). The right panel
illustrates the production process. The produced interval, tp, is perturbed by zero-mean Gaussian noise with standard
deviation proportional to te1 , with constant of proportionality wp (σp = wpte1). (B) The effective mapping function (fBLS1

,
black curve) from the first measurement, tm1 , to the optimal estimate, te1 . The dashed line indicates unity. (C) BLS model
for 1-2-3-Go trials. The model uses the posterior after the first measurement, p(ts|tm1), as the prior and combines it with the
likelihood of the second measurement (tm2

, orange) to compute an updated posterior, p(ts|tm1
, tm2

). The mean of the
updated posterior is taken as the interval estimate (te2). (D) The effective mapping function (fBLS2

, grayscale) from each
combination of measurements, tm1

and tm2
, to the optimal the estimate, te2 . Red lines indicate combinations of

measurements that lead to identical estimates (shown for te2 = 700, 750, 800, 850, and 900 ms).

Model fits captured subjects’ behavior for both conditions as shown by a few
representative subjects (Fig 4A, 2A and 2B; see Supporting information for fits to all
the subjects). Following previous work [24], we evaluated model fits using two statistics,
an overall bias, BIAS, and an overall variability,

√
VAR (see Materials and methods).

As shown in Fig 4B, the model broadly captured the bias and variance for all subjects
in both 1-2-Go and 1-2-3-Go conditions. However, the observed BIAS was significantly
larger than predicted by the model fits in the 1-2-3-Go condition (Fig 4B, inset; two
tailed t-test, t(8) = 4.6982, p-value = 0.0015), but not in the 1-2-Go condition (two
tailed t-test, t(8) = -0.3236, p-value = 0.7546).

We quantified this observation across subjects by normalizing each subject’s RMSE
in the 1-2-Go and 1-2-3-Go conditions to the RMSE expected from the BLS model in
the 1-2-3-Go condition (Fig 4C). We found that the observed RMSE in the 1-2-3-Go
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Fig 4. BLS model fits to data. (A) Behavior of two subjects and the corresponding BLS model fits with the same
format as in Fig 2A and 2B. (B) BIAS (circles) and

√
VAR (squares) of each subject (abscissa) and the corresponding values

computed from simulations of the fitted BLS model (ordinate). Red and blue points correspond to 1-2-Go and 1-2-3-Go,
respectively. The dotted line plots unity. Data points corresponding to subjects SM and CV are marked by light green and
light blue, respectively. Inset: difference between the BIAS observed from data and that expected by the BLS model fit for
1-2-Go (blue) and 1-2-3-Go (red) conditions. (C) Comparison of behavioral performance to model predictions. Each line
connects the RMSE for 1-2-Go (left) and 1-2-3-Go (right) conditions for one subject. To facilitate comparison across subjects,
RMSE values for each subject were normalized by the RMSE of the BLS model in the 1-2-3-Go condition. The black circles
and error bars correspond to the mean and standard error of the normalized RMSE across subjects. See also Supporting
information.

condition was significantly larger than expected (two tailed t-test, t(8) = 3.5484,
p-value = 0.007). Further, the drop in observed RMSE in the 1-2-3-Go was significantly
less than expected by the BLS model (one tailed t-test, t(8) = -4.4600, p-value =
0.0011). These analyses indicate that subjects were able to integrate the two
measurements but failed to optimally update the posterior by the likelihood information
associated with the second measurement.

An algorithmic view of Bayesian integration

The success of the BLS model in capturing behavior in the 1-2-Go condition [24,34, 36]
and its failure in the 1-2-3-Go condition suggests that subjects were unable to update
the posterior by the second measurement. We examined a number of simple inference
algorithms that could account for this limitation. One of the simplest algorithms
proposed for integrating sequential measurements is the Kalman filter. The Kalman
filter only updates the mean and variance of the posterior [26]. This strategy is optimal
when measurement noise is Gaussian because a Gaussian distribution is fully
determined by its mean and variance. More generally, when integrating the likelihood
function leaves the parametric form of the posterior distribution unchanged, a simple
inference algorithm that updates those parameters can implement optimal integration.

First, we asked whether there exists a similarly simple and optimal updating
algorithm when the noise is signal-dependent (i.e., scalar noise). For the posterior to
have the same parametric form after one and two measurements, it is necessary that the
product of two likelihood functions have the same parametric form as a single likelihood
function. We tested this property analytically and verified that the parametric form of
the likelihood function associated with scalar noise was not invariant under
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multiplication (see S1 Appendix). Therefore, any inference algorithm that only updates
certain statistics of the posterior (e.g., mean and variance) is expected to behave
suboptimally when multiple time intervals have to be integrated. Therefore, we
hypothesized that subjects might have used a simple updating algorithm analogous to
the Kalman filter to integrate multiple measurements.

A linear-nonlinear estimator (LNE) model for approximate
Bayesian inference

The first algorithm we tested was one in which the observer combines the last estimate
t̄n−1, with the current measurement, tmn

, using a linear updating strategy. If we denote
the corresponding weights by 1− kn and kn and set kn = 1/n, this algorithm tracks the
running average of the measurements, t̄n (k1 and k2 are 1 and 0.5, respectively).
However, such linear updating scheme would certainly fail to account for the observed
nonlinearities in subjects’ behavior (S2 Fig). Therefore, we constructed a
linear-nonlinear estimator (LNE) that augmented the linear updating by a point
nonlinearity that could account for the observed prior dependent biases in tp (Fig 5A).
The nonlinear function, fBLS1

(t̄n), was chosen to match the BLS estimator for a single
measurement (n = 1), which is determined by wm.

Simulation of LNE verified that it could indeed integrate multiple measurements and
exhibit prior-dependent biases (not shown). However, the behavior of LNE was
qualitatively different from BLS. The contrast between the two models was evident from
a comparison of the relationship between measurements and estimates. Unlike BLS
(Fig 3D), estimates derived from LNE are linear with respect to tm1

and tm2
, a feature

that can be visualized by the linear iso-estimate contours of the LNE model (Fig 5B).
We fitted LNE to each subject independently and asked how well it accounted for

the observed statistics. The LNE model broadly captured the observed regression to the
mean (Fig 5C,D; see S4 Fig for fits to all subjects), but had a qualitative failure: fits
exhibited significantly more BIAS in 1-2-Go condition (Fig 5D, inset; two tailed t-test,
t(8) = 4.9304, p-value = 0.001) and significantly less BIAS in 1-2-3-Go condition
(Fig 5D, inset; two tailed t-test, t(8) = -2.3782, p-value = 0.045) than the biases present
in the data. This failure can be readily explained in terms of how LNE functions. Since
the static nonlinearity in LNE is the same for one and two measurements, the bias LNE
generates is the same for the 1-2-Go and 1-2-3-Go conditions. Therefore, when we fitted
LNE to data from both conditions, the model consistently overestimated BIAS for the
1-2-Go condition, and underestimated BIAS for the 1-2-3-Go condition (Fig 5C, red and
blue lines nearly overlap).

We further evaluated LNE by asking how it accounted for the observed performance
improvement in the 1-2-3-Go condition compared to the 1-2-Go condition. We
normalized each subject’s RMSE from the 1-2-Go and 1-2-3-Go conditions to the RMSE
expected from the behavior of the fitted LNE model in the 1-2-3-Go condition (Fig 5E).
Most subjects surpassed the predictions of the LNE model (horizontal line) for the
1-2-3-Go condition, and average RMSE reached values that were significantly lower than
expected (0.990; two tailed t-test, t(8) = -2.463, p-value = 0.039). Based on these
results, we concluded that LNE fails to capture subjects’ behavior both qualitatively
and quantitatively.

An extended Kalman filter (EKF) model for approximate
Bayesian inference

We considered a moderately more sophisticated algorithm inspired by the extended
Kalman filter (EKF) [56]. This algorithm is shown in Fig 6A. Upon each new
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Fig 5. A linear-nonlinear estimator (LNE) model and its fits to the data. (A) LNE algorithm. LNE derives an
estimate by applying a nonlinear function, fBLS1

, to the average of the measurements. In the 1-2-Go trials (top), the average,
t̄1, is the same as the first measurement, tm1 , and the estimate, te1 , is fBLS1(t̄1). In 1-2-3-Go trials (bottom), the average, t̄2,
is updated by the second measurement, tm2 (t̄2 = 0.5(t̄1 + tm2)), and the estimate, te2 , is fBLS1(t̄2). In both conditions, the
produced interval, tp, is perturbed by zero-mean Gaussian noise with standard deviation proportional to the final estimate
(te1 for 1-2-Go and te2 for 1-2-3-Go) with the constant of proportionality wp, as in the BLS model. (B) The mapping from
measurements to estimates (grayscale) for the LNE estimator in the 1-2-3-Go trials. Red lines indicate combinations of
measurements that lead to identical estimates (shown for te2 = 700, 750, 800, 850, and 900 ms). (C) Mean and standard
deviation of tp as a function of ts for two example subjects (circles and error bars) along with the corresponding fits of the

LNE model (lines). (D) BIAS (circles) and
√

VAR (squares) of each subject (abscissa) and the corresponding values
computed from simulations of the fitted LNE model (ordinate). Conventions match Fig 4B. (E) The RMSE in the 1-2-Go and
1-2-3-Go conditions relative to the corresponding predictions from the LNE model (conventions as in Fig 4C). See also S4 Fig.

measurement, EKF uses the error between the previous estimate and the current
measurement to generate a new estimate. The difference between EKF and the Kalman
filter is that the error is subjected to a nonlinear function before being used to update
the previous estimate. This nonlinearity is necessary for the algorithm to be able to
account for the nonlinear prior-dependent biases observed in behavior.

In our experiment, immediately after the first flash, the only information about the
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sample interval, ts, comes from the prior distribution. Accordingly, we set the initial
estimate, te0 , to the mean of the prior distribution. After the first measurement, EKF
computes an “innovation” term by applying a static nonlinearity, f?(x) to the error, x1
between tm1

and te0 . This innovation is multiplied by a gain, k1 and added to te0 to
compute the new estimate, te1 . In the 1-2-Go condition in which only one measurement
is available, te1 serves as the final estimate that the model aims to reproduce.

For the 1-2-3-Go condition, EKF repeats the updating procedure after the second
measurement tm2

. It computes the difference between tm2
and te1 to derive a prediction

error, x2, which is subjected to the same nonlinear function, f?(x), to yield a second
innovation. This innovation is then scaled by an appropriate gain, k2, and added to te1
to generate an updated estimate, te2 , which the model aims to reproduce.

The two important elements that determine the overall behavior of EKF are the
nonlinear function f?(x) and the gain factor(s) applied to the innovation(s) (k1 and k2)
to update the estimate(s). We set the form of the nonlinear function f?(x) such that
biases in te1 after one measurement are the same between EKF and BLS models. This
ensures that EKF and BLS behave identically in the 1-2-Go condition. Note that our
implementation of EKF assumes that the same nonlinear function is applied after every
measurement. If one allows this nonlinear function to be optimized separately for each
measurement, EKF would be able to replicate the behavior of BLS exactly (S3 Fig).

For the gain factors, we reasoned that the most rational choice is to set the weight of
each innovation based on the expected reliability of the corresponding estimate, ten−1

,
relative to the new measurement, tmn

, as in the Kalman filter (see Materials and
methods). This causes the gain factor to decrease with the number of measurements,
and ensures that the influence of each new measurement is appropriately titrated. With
these assumptions, EKF remains suboptimal for the 1-2-3-Go condition. However, it
captures certain aspects of the nonlinearities associated with the optimal BLS estimator
as shown by Fig 6B (compare to Fig 3D).

The algorithm implemented by EKF is appealing as it uses a simple updating
strategy that can be straightforwardly extended to multiple sequential measurements.
Furthermore, EKF captures important features of human behavior. First, integration of
each new measurement causes a reduction in RMSE, as seen in 1-2-3-Go compared to
1-2-Go condition. Second, the nonlinear function applied to innovations allows EKF to
incorporate prior information and capture prior-dependent biases. Third, since the
nonlinearity is applied to each innovation (as opposed to the final estimate), EKF,
unlike LNE, is able to capture the reduction in BIAS in 1-2-3-Go compared to 1-2-Go
condition.

We fitted EKF to each subject independently and asked how well it accounted for
the observed statistics. Similar to BLS and LNE, EKF broadly captured the observed
regression to the mean in the 1-2-Go trials (Fig 6C,D, blue). This is not surprising since
the EKF algorithm is identical to BLS when the prior is integrated with a single
measurement. EKF was also able to capture the mean tp as a function of ts in the
1-2-3-Go trials (Fig 6C,D red). Importantly, unlike BLS, there was no significant
difference between the BIAS observed in subject behavior and the EKF model (Fig 6D,
inset; two tailed t-test, t(8) = 4.6055, p-value = 0.02639).

We also asked if EKF could account for the observed RMSEs. To do so, we
performed the same analysis we used to evaluate the BLS and LNE models. We
normalized each subject’s RMSE from the 1-2-Go and 1-2-3-Go conditions to the RMSE
expected from the EKF model for 1-2-3-Go (Fig 6E). We found no significant difference
between observed and predicted RMSEs for the 1-2-3-Go condition (two-tailed t-test,
t(8) = 1.5506, p-value = 0.160), and no significant difference between the observed and
predicted change in RMSE from the 1-2-Go to the 1-2-3-Go condition (one tailed t-test,
t(8) = -1.1090, p-value = 0.150). These results indicate that subjects’ suboptimal
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Fig 6. An extended Kalman filter (EKF) model and its fits to the data. (A) EKF algorithm. EKF is a real-time
inference algorithm that uses each measurement to update the estimate. After the first flash, EKF uses the mean of the prior
as its initial estimate, te0 . The second flash furnishes the first measurement, tm1 . EKF computes a new estimate, te1 , using
the following procedure: (1) it measures the difference between tm1 and te0 to compute an error, x1, (2) it applies a nonlinear
function, f?(x), to x1, (3) it scales f?(x1) by a gain factor, k1, whose magnitude depends on the relative reliability of tm1

and
te0 , and (4) it adds k1f

?(x1) to te0 to compute te1 . In the 1-2-Go condition (top), te1 is the final estimate used for the
production of tp. In the 1-2-3-Go condition (bottom), the updating procedure is repeated to compute a new estimate te2 by
adding te1 to k2f

?(x2) where x2 is the difference between the second measurement, tm2
, and te1 , and k2 is the scale factor

determined by the relative reliability of te1 and tm2 . te2 is then used as the final estimate for the production of tp. We
assumed that the produced interval, tp, is perturbed by zero-mean Gaussian noise with standard deviation proportional to the
final estimate (te1 for 1-2-Go and te2 for 1-2-3-Go) with the constant of proportionality wp, as in the BLS model. (B) The
mapping from measurements to estimates (grayscale) for the EKF estimator in the 1-2-3-Go condition. Red lines indicate
combinations of measurements that lead to identical estimates (shown for te2 = 700, 750, 800, 850, and 900 ms). (C) Mean
and standard deviation of tp as a function of ts for two example subjects (circles and error bars) along with the corresponding

fits of the EKF model (lines). (D) BIAS (circles) and
√

VAR (squares) of each subject (abscissa) and the corresponding values
computed from simulations of the fitted EKF model (ordinate). Conventions match Fig 4B. (E) The RMSE in the 1-2-Go and
1-2-3-Go conditions relative to the corresponding predictions from the EKF model (conventions as in Fig 4C). See also S5 Fig.

behavior is consistent with the approximate Bayesian integration implemented by the
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EKF algorithm.
To further validate the superiority of the EKF model, we directly compared various

models to BLS using log likelihood ratio. Specifically, we computed the ratio of the log
likelihood of each model given ts and tp (logL(Mi|ts, tp) see Materials and methods) to
the log likelihood of the BLS model, logL(MBLS |ts, tp), for each subject. We found
that EKF provided the best fit for 8 out of 9 subjects (Table 1). For one of the subjects,
the fits were poor for all models but LNE provided the best fit.

Table 1. Predictive log likelihood ratio for each model and subject.

Subject
Model CV GB LB PG SM SE TA VR VD

LNE
1.1678

(0.5012)
-1.8267
(0.2976)

-0.3094
(0.2020)

0.1516
(0.3407)

0.4896
(0.3427)

-1.7151
(0.3493)

-0.0365
(0.2806)

0.3456
(0.3593)

0.3793
(0.2175)

EKF
1.1900
(0.1998)

0.0380
(0.1326)

0.7168
(0.2234)

0.3828
(0.1428)

-1.4262
(0.2755)

1.0909
(0.1543)

0.2358
(0.1250)

0.3623
(0.1581)

0.6537
(0.1002)

BLSmem
0.4621

(0.1832)
-0.0821
(0.0267)

-0.2445
(0.0743)

0.0086
(0.0518)

-0.0637
(0.2714)

0.0440
(0.0876)

-0.0191
(0.0195)

-0.0359
(0.0249)

-0.0421
(0.0268)

The predictive log likelihood of each model was calculated as the likelihood of the model given 100 trials of validation data.
The model was fit to the remaining data not used for validation. This was iterated until all the data was used for validation
(e.g. leave 100 out cross validation). Each entry is the mean of the predictive log likelihood ratio (standard error) between a
given model and the BLS model (i.e. log[L(Mi|ts, tp)/L(MBLS |ts, tp)],. For each subject, the model with the highest log
likelihood is shown in bold. See also S6 Fig.

Discussion

The neural systems implementing sensorimotor transformations must rapidly compute
state estimates to effectively implement online control of behavior. Behavioral studies
indicate that, at a computational level, state estimation may be described in terms of
Bayesian integration [6–15]. However, describing behavior with a Bayesian model does
not necessarily indicate that the brain implements these computations by representing
probability distributions [21,22,57]. Here, we focused on integration of multiple time
intervals and found evidence that the brain relies on simpler algorithms that
approximate optimal Bayesian inference.

We demonstrated that humans integrate prior knowledge with one or two
measurements to improve their performance. A key observation was that the integration
was nearly optimal for one measurement but not for two measurements. In particular,
when two measurements were provided, subjects systematically exhibited more BIAS
toward the mean of the prior than expected from an optimal Bayesian model. This
observation motivated us to investigate various algorithms that could lead to similar
patterns of behavior.

Analytical and numerical analyses suggested that simple inference algorithms that
update certain parameters of the posterior instead of the full distribution can not
integrate multiple measurements optimally when the noise is signal-dependent. We then
systematically explored simple inference algorithms that could perform sequential
updating and account for the behavioral observations. One of the simplest updating
algorithms is the Kalman filter [58]. However, this algorithm updates estimates linearly
and thus cannot account for the nonlinearities in subjects’ behavior, even for a single
measurement (S2 Fig). The LNE model augmented the Kalman filter such that the
final estimate was subjected to a point-nonlinearity. This allowed LNE to generate
nonlinear biases but since the nonlinearity was applied to the final estimate, LNE failed
to capture the decrease in bias observed in the 1-2-3-Go compared to 1-2-Go condition.
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Finally, we developed EKF, which is a more sophisticated variant of the Kalman
filter that applies a static nonlinearity to the errors in estimation at every stage of
updating. This algorithm accounted for optimal behavior in the 1-2-Go condition and
exhibited the same patterns of suboptimality observed in humans in the 1-2-3-Go
condition. Therefore, EKF provides a good characterization of the algorithm brain uses
when there is need to integrate multiple pieces of information presented sequentially.
This finding implies that subjects may only rely on the first few moments of a
distribution and use nonlinear updating strategy to track those instead of updating the
entire posterior. This strategy is simple and in many scenarios could lead to optimal
behavior with little computational cost. Moreover, the recursive nature of EKF’s
updating strategy allows it to readily generalize to scenarios when it is necessary to
update estimates in real time, even when the number of available samples is not known
a priori, which extensions of our experiment could test.

Maintaining and updating probability distributions is computationally expensive.
Moreover, it is not currently known how neural networks might implement such
operations [22]. In contrast, EKF is relatively simple to implement. The only
requirement is to use the current estimate to predict the next sample, and use a
nonlinear function of the error in prediction to update estimates sequentially. Predictive
mechanisms that EKF relies on are thought to be an integral part of how brain circuits
support perception and sensorimotor function [1, 5, 8, 59–62]. As such, the relative
success of EKF may be in part due to its compatibility with predictive coding
mechanisms that the brain uses to perform sequential updating. This observation makes
the following intriguing prediction: when performing 1-2-3-Go task, subjects do not
make two measurements; instead, they use the prior to predict the time of the second
flash, use the prediction error to update their estimate, and the new estimate to predict
the third flash. In other words, according to the EKF model, the underlying neural
signals encode intervals prospectively, which is consistent with electrophysiological
experiments in nonhuman primates [63,64] and rodents [?,?,?].

While EKF provides a better account of the observed data in our experiments, it
may be that our specific formulation of the Bayesian model did not capture the
underlying process. Our BLS model was based on three assumptions: (1) that likelihood
function is characterized by signal dependent noise, (2) that the subjective prior matches
the experimentally imposed uniform prior distribution, and (3) that the final estimates
are derived from the mean of the posterior, which implicitly assumes that subject rely
on a quadratic cost function, as was previously demonstrated [24]. Our formulation of
the likelihood function is particularly important, as it is the key factor that prohibits
simple algorithms such as EKF to optimally integrate multiple measurements. The
inherent signal-dependent noise in timing causes the likelihood function to be skewed
toward longer intervals (see S1 Appendix). This characteristic feature was particularly
important for explaining human behavior in a task requiring interval estimation
following several measurements [52]. Moreover, it has been shown that subjects exhibit
larger biases for longer intervals within the domain of the prior indicating that the brain
has an internal model of this signal-dependent noise [24,36,65,66]. These results
support our formulation of the likelihood function. However, one aspect of our
formulation that deserves further scrutiny is the assumption that noise perturbing the
two measurements was independent. This seems unlikely given the long-range positive
autocorrelations in behavioral variability [37,67,68], and because S2 is shared between
the two measurements, which may lead to correlations between tm1

and tm2
.

Our formulation of the prior and cost function should also be further evaluated. For
example, humans may not be able to correctly encode a uniform prior probability
distribution for interval estimation [34,36]. Similarly, the cost function may not be
quadratic [69]. However, since priors and the cost functions impact both 1-2-Go and
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1-2-3-Go conditions, moderate inaccuracies in modeling these components may not be
able to explain optimal behavior in 1-2-Go and suboptimal behavior in the 1-2-3-Go
condition simultaneously. Finally, recent results suggest the performance may be limited
by imperfect integration [70,71] and imperfect memory [48,72], which future models of
sequential updating should incorporate.

Materials and methods

Subjects and apparatus

All experiments were performed with the approval of the Committee on the Use of
Humans as Experimental Subjects at MIT after receiving informed consent. Eleven
human subjects (6 male and 5 female) between 18 and 33 years of age participated in
the interval reproduction experiment. Of the 11 subjects, 10 were naive to the purpose
of the study.

Subjects sat in a dark, quiet room at a distance of approximately 50 cm from a
display monitor. The display monitor had a refresh rate of 60 Hz, a resolution of 1920
by 1200, and was controlled by a custom software (MWorks;
http://mworks-project.org/) on an Apple Macintosh platform.

Interval reproduction task

Experiment consisted of several 1 hour sessions in which subjects performed an interval
reproduction task (Fig 1). The task consisted of two randomly interleaved trial types −
“1-2-Go” and “1-2-3-Go”. On 1-2-Go trials, two flashes (S1 followed by S2) demarcated a
sample interval (ts) that subjects had to measure [24]. On 1-2-3-Go trials, ts was
presented twice, once demarcated by S1 and S2 flashes, and once by S2 and S3 flashes.
For both trial types, subjects had to reproduce ts immediately after the last flash (S2 for
1-2-Go and S3 for 1-2-3-Go) by pressing a button on a standard Apple keyboard. On all
trials, subjects had to initiate their response proactively and without any additional cue
(no explicit Go cue was presented). Subjects received graded feedback on their accuracy.

Each trial began with the presentation of a 0.5 deg circular fixation point at the
center of a monitor display. The color of the fixation was blue or red for the 1-2-Go and
1-2-3-Go trials, respectively. Subjects were asked to shift their gaze to the fixation point
and maintain fixation throughout the trial. Eye movements were not monitored. After a
random delay with a uniform hazard (100 ms minimum plus and interval drawn from an
exponential distribution with a mean of 300 ms), a warning stimulus and a trial cue
were presented. The warning stimulus was a white circle that subtended 1.5 deg and
was presented 10 deg to the left of the fixation point. The trial cue consisted of 2 or 3
small rectangles 0.6 deg above the fixation point (subtending 0.2 x 0.4 deg, 0.5 deg
apart) for the 1-2-Go and 1-2-3-Go trials, respectively. After a random delay with a
uniform hazard (250 ms minimum plus an interval drawn from an exponential
distribution with mean of 500 ms), flashes demarcating ts were presented. Each flash
(S1 and S2 for 1-2-Go, and S1, S2 and S3 for 1-2-3-Go) lasted for 6 frames (100 ms) and
was presented as an annulus around the fixation point with an inside and outside
diameter of 2.5 and 3 deg, respectively (Fig 1A,B). The time between consecutive
flashes, which determined ts, was sampled from a discrete uniform distribution ranging
between 600 and 1000 ms with a 5 samples (Fig 1C). To help subjects track the
progression of events throughout the trial, after each flash, one rectangle from the trial
cue would disappear (starting from the rightmost).

Produced interval (tp) was measured as the interval between the time of the last flash
and the time when the subject pressed a designated key on the keyboard (Fig 1A,B).
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Subjects received trial-by-trial visual feedback based on the magnitude and sign of the
relative error, (tp − ts)/ts. A 0.5 deg circle (“analog feedback”) was presented to the
right (for error < 0) or left (error > 0) of the the warning stimulus at a distance that
scaled with the magnitude of the error. Additionally, when the error was smaller than a
threshold, both the warning stimulus and the analog feedback turned green and a tone
denoting “correct” was presented. If the production error was larger than the threshold,
the warning stimulus and analog feedback remained white and a tone denoting
“incorrect” was presented. The error threshold was scaled with the sample interval to
accommodate the scalar variability of timing that leads to more variable production
intervals for longer sample intervals (Fig 1D). The scaling factor was initialized at 0.15
at the start of every session and adjusted adaptively using a one-up, one-down scheme
that added or subtracted 0.001 to the scaling factor for incorrect or correct responses,
respectively. These manipulations ensured that the performance across conditions,
subjects, and trials remained approximately at a steady state of 50% correct trials.

To ensure subjects understood the task design, the first session included a number of
training blocks. Training blocks were conducted with the supervision of an
experimenter. Training trials were arranged in 25 trial blocks. In the first block, the
subjects performed the 1-2-Go condition with the sample interval fixed at 600 ms. In
the second block, we fixed the interval to be 1000 ms. In the third block, the subject
performed the 1-2-3-Go task with the interval fixed at 1000 ms. In the fourth block, the
subject continued to perform the 1-2-3-Go task, but with the intervals chosen at
random from the experimental distribution. In the final training block, the task
condition and sample intervals were fully randomized, as in the main experiment. The
subject then performed 400 trials of the main experiment. Subjects completed 10
sessions total, performing 800 trials in each of the remaining 9 experimental sessions. To
ensure subjects were adapted to the statistics of the prior [24], we discarded the first 99
trials of each session. We also discarded any trial when the subject responded before S2
(for 1-2-Go) or S3 (for 1-2-3-Go) or 1000 ms after the veridical ts. S1 Table summarizes
the number of completed trials for each subject. Data from two subjects were not
included in the analyses because they were not sensitive to the range of sample intervals
we tested and their production interval distributions were not significantly different for
the longest and shortest sample intervals.

Models

We considered several models for the interval estimation: (1) an optimal Bayes
Least-Squares model (BLS), (2) an optimal Bayes Least-Squares model that allowed
different noise levels for the two measurements in 1-2-3-Go trials, (3) an extended
Kalman filter model (EKF), and (4) a linear-nonlinear estimation model (LNE). All
models were designed to be identical for the 1-2-Go task where only one measurement
was available but differed in their prediction for the 1-2-3-Go trials.

BLS model

We used the Bayesian integration model that was previously shown to capture behavior
in the 1-2-Go task [24]. This model assumes that subjects combine the measurements
and the prior distribution probabilistically according to the Bayes’ rule:

p(ts|tm) =
λ(tm|ts)p(ts)

p(tm)
, (1)

λ(tm|ts) =
1√

2πw2
mt

2
s

e
− (tm−ts)2

2w2
mt2s , (2)
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where p(ts) represents the prior distribution of the sample intervals and p(tm) the
probability distribution of the measurements. The likelihood function, λ(tm|ts), was
formulated based on the assumption that measurement noise was Gaussian and had
zero mean. To incorporate scalar variability into our model, we further assumed that
the the standard deviation of noise scales with ts with constant of proportionality wm

representing the Weber fraction for measurement.
Following previous work [24], we further assumed that subjects’ behavior can be

described by a BLS estimator that minimizes the expected squared error, and uses the
expected value of the posterior distribution as the optimal estimate:

te1 = fBLS1
(tm1

) = E[ts|tm1
], (3)

where fBLS1
denotes the BLS function that maps the measurement (tm1

) to the
Bayesian estimate after one measurement (te1). The subscript 1 is added to clarify that
this equation corresponds to the condition with a single measurement (i.e., 1-2-Go).
The notation E[•] denotes expected value. Given a uniform prior distribution with a
range from tmin

s to tmax
s , the BLS estimator can be written as:

fBLS1(tm1) =

tmax
s∫

tmin
s

tsλ(tm1
|ts)dts

tmax
s∫

tmin
s

λ(tm1
|ts)dts

, (4)

We assume that tmin
s and tmax

s match the minimum and maximum of the
experimentally imposed sample interval distribution. We extended this model for the
1-2-3-Go task to two measurements. To do so, we incorporated two likelihood functions
in the derivation of the posterior. Assuming that the two measurements are
conditionally independent, the posterior can be written as:

p(ts|tm1
, tm2

) =
λ(tm1

|ts)λ(tm2
|ts)p(ts)∫

λ(tm1 |ts)λ(tm2 |ts)p(ts)dts
, (5)

where tm1
and tm2

denote the first and second measurements, respectively, and the
likelihood function, λ, is from Eq (2). Because measurements are taken in a sequence,
we can rewrite Eq (5) in a recursive form

p(ts|tm1 , tm2) =
1

Z
λ(tm2 |ts)p(ts|tm1), (6)

Where p(ts|tm1) the posterior as specified in Eq (1) and Z is a normalization factor
equal to the denominator of Eq (5). Although the posterior for Eqs (5) and (6) are
identical, specifying the posterior in this way allows for the algorithm to be updated
following each measurement.

The corresponding BLS estimator can again be written as the expected value of the
posterior:

te2 = fBLS2
(tm1

, tm2
) = E[ts|tm1

, tm2
], (7)
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fBLS2(tm1 , tm2) =

tmax
s∫

tmin
s

tsλ(tm1
|ts)λ(tm2

|ts)dts

tmax
s∫

tmin
s

λ(tm1 |ts)λ(tm2 |ts)dts
, (8)

where fBLS2 denotes the BLS function that uses two measurements (tm1 and tm2 to
compute te2 . The subscript 2 represents the optimal mapping function for two
measurements (i.e., 1-2-3-Go). We performed the integrations for the BLS model
numerically using Simpson’s quadrature.

BLSmem model

We also considered the possibility that the brain may not be able to hold
representations of the first measurement or the associated posterior perfectly over time
until the time for integration. To model this we assumed two Weber fractions − wm as
formulated in the BLS model and wmem which adjusts the Weber fraction of the first
measurement in 1-2-3-Go trials to account for noisy memory or inference processes. In
1-2-Go trials, the posterior was set according to Eq (1) with wm controlling the signal
dependent noise. In 1-2-3-Go trials, the posterior was set according to

p(ts|tm1
, tm2

) =
λmem(tm1

|ts)λ(tm2
|ts)p(ts)∫

λmem(tm1 |ts)λ(tm2 |ts)p(ts)dts
, (9)

With the likelihood function associated with the first measurement defined as

λmem(tm|ts) =
1√

2πw2
memt

2
s

e
− (tm−ts)2

2w2
memt2s , (10)

This formulation allows the measurement noise to be different for the two
measurements. The optimal estimator was then calculated as

fBLS2(tm1 , tm2) =

tmax
s∫

tmin
s

tsλmem(tm1
|ts)λ(tm2

|ts)dts

tmax
s∫

tmin
s

λmem(tm1
|ts)λ(tm2

|ts)dts
, (11)

EKF model

EKF implements an updating algorithm in which after each flash, the observer updates
the estimate, ten , based on the previous estimate, ten−1

, and the current measurement,
tmn

. The updating rule changes ten−1
by a nonlinear function of the error between ten−1

and tmn
, which we denote by xn.

ten = ten−1 + knf
?(xn), (12)

xn = tmn
− ten−1

, (13)
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f? is a nonlinear function based on the BLS estimator, fBLS1
:

f?(xn) = fBLS1
(xn + te0)− te0 , (14)

kn is a gain factor the controls the magnitude of the update and is set by the
relative reliability of ten−1

and tmn
, which were formulated in terms of two Weber

fractions, wn−1 and wm, respectively:

kn =
w2

n−1

w2
n−1 + w2

m

, (15)

To track the reliability of ten we used a formulation based on optimal cue
combination under Gaussian noise. For Gaussian likelihoods, the reliability of the
estimate is related to the inverse of the variance of the posterior. Similarly, the reliability
of the interval estimate is related to the inverse of the Weber fraction. Therefore, we
used the following algorithm to track the Weber fraction of the estimate, wn:

wn =
wn−1wm√
w2

n−1 + w2
m

, (16)

As in the case of Gaussians, this algorithm ensures that wn decreases with each
additional measurement, reflecting the increased reliability of the estimate relative to
the measurement. This ensures that the weight of the innovation respects information
already integrated into the estimate by previous iterations of the EKF algorithm.

At S1, no measurements are available. Therefore, we set the initial estimate, te0 to
the mean of the prior, and its reliability, w0, to ∞. After S2 (one measurement), the
EKF estimate is identical to the BLS model. For two measurements, the process is
repeated to compute te2 , but the estimate is suboptimal. This formulation can be
readily extended to more than two measurements.

LNE model

LNE uses a linear updating strategy similar to a Kalman filter to update estimates by
measurements as follows:

t̄n = (1− kn)t̄n−1 + kntmn , (17)

The algorithm is initialized such that t̄1 = tm1
and we chose the weighting to be

kn = 1/n. This choice minimizes the squared errors in 1-2-3-Go trials. Note that any
other choice for kn would deteriorate LNE’s performance. Following this sequential and
linear updating scheme, LNE passes the final estimate through a nonlinear transfer
function specified by the BLS model for one measurement (fBLS1

):

fLNEn
(tm1

, ..., tmn
) = fBLS1

(t̄n), (18)

where fLNEn denotes the linear-nonlinear estimator after n measurements. This
formulation ensures that LNE is identical to the BLS in 1-2-Go trials.
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Interval production model

In all models, the final estimate is used for the production phase. Following previous
work [24], we assumed that the production of an interval is perturbed by Gaussian noise
whose standard deviation scales with the estimated interval. The model was
additionally augmented by an offset term to account for stimulus-independent biases
observed in responses:

p(tp|te) =
1√

2πw2
pt

2
e

e
− (tp−te−b)2

2w2
pt2e , (19)

where wp is the Weber fraction for production, b is the offset term, and te can refer
to the estimate for either 1-2-Go and 1-2-3-Go trials.

All models accommodated “lapse trials” in which the produced interval was outside
the mass of the production interval distribution. The lapse trials were modeled as trials
in which the production interval was sampled from a fixed uniform distribution,
p(tp|lapse), independent of ts. With this modification, the production interval
distribution can be written as:

p(tp|te, γ) = (1− γ)p(tp|te) + γp(tp|lapse), (20)

where γ represents the lapse rate. With this formulation, we could identify lapse
trials as those for which the likelihood of lapse exceeded the likelihood of a nonlapse. To
limit cases of falsely identified lapse trials, we set the width of this uniform distribution
conservatively to the range of possible production intervals (between 0 and 2000 ms).

Using simulations, we verified that our model was able to detect lapses for the range
of wm, wp, and γ values inferred from the behavior of our subject pool. Most subjects
had a small probability of a lapse trial that was consistent with previous reports [24].
Two subjects had relatively unreliable performance with a larger number of lapse trials.
However, our conclusions do not depend on the inclusion of these two subjects.

Analysis and model fitting

All analyses were performed using MATLAB R2014b or MATLAB R2017a, The
MathWorks, Inc., Natick, Massachusetts, United States. We used a predictive maximum
likelihood procedure to fit each model to the data. Assuming that production intervals
are conditionally independent across trials, the log likelihood of model parameters can
be formulated as:

log p(t1p, t
2
p, ..., t

N
p |ts, wm, wp, b, γ) =

N∑
i=1

log p(tip|ts, wm, wp, b, γ), (21)

where the superscripts denote trial number. Maximum likelihood fits were derived
from N-100 trials and cross validated on the remaining 100 trials. This process was
performed iteratively until all the data was fit. The final model parameters were taken
as the average of parameter values across all the fits to the data. Fits were robust to
changes in the amount of left out data. See S1, S4, and S5 Fig for a summary of
maximum likelihood parameters and predictions of each model fit to our subjects.

We evaluated model fits by generating simulated data from that model and
comparing various summary statistics (BIAS,

√
VAR, and RMSE) observed for each

subject to those generated by model simulations. For the observed data, summary

18/34

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2018. ; https://doi.org/10.1101/258434doi: bioRxiv preprint 

https://doi.org/10.1101/258434
http://creativecommons.org/licenses/by-nc-nd/4.0/


statistics were computed for non-lapse trials and after removing the offset (b). Model
simulations were performed without the lapse term and after setting the offset to zero.
The summary statistics were computed as follows:

BIAS2 =
1

N

N∑
i=1

(t̄pi
− tsi)2, (22)

VAR =
1

N

N∑
i=1

σ2
i , (23)

RMSE =
√

BIAS2 + VAR, (24)

BIAS2 and VAR represent the average squared bias and average variance over the N
distinct ts’s of the prior distribution. The terms t̄pi , σ

2
i represent the mean and variance

of production intervals for the i-th sample interval (tsi). The overall RMSE was
computed as the square root of the sum of BIAS2 and VAR. To find the BIAS2 and
VAR of each model we took the mean value of each after 1000 simulations of the model
with the trial number matched to each subject. This ensured an accurate estimate of
these quantities that includes the systematic deviations from the true model behavior
due to a finite number of trials.

To perform model comparison, we measured the likelihood of each model, given the
maximum likelihood model parameters and the data, L(Mi|ts, tp). We then computed
the ratio L(Mi|ts, tp) and L(MBLS |ts, tp), the likelihood of the BLS model, and
computed the logarithm of that value to measure the log likelihood ratio. To generate
confidence intervals, we evaluated the likelihoods using 100 trials of test data that were
left out of model fitting. We iterated this process until all the data was used as training
data, allowing us to measure the variability of the log likelihood ratio for each subject.
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Supporting information
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S1 Fig. Fit of the BLS model to each subject. Mean and standard deviation (circles and error bars) of the produced
interval, tp, as a function of the sample interval, ts, for each subject in 1-2-Go (blue) and 1-2-3-Go (red) trials. The dashed
line indicates unity and the solid lines depict the BLS model for each subject. Insets: maximum likelihood estimate of model
parameters for each subject.
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S2 Fig. Nonlinear processing of intervals. Mean residuals of the best fitting linear regression model (t̂p = βts + γ)
relating production interval (tp) to sample interval (ts) for all subjects (different colors). Each data point represents the mean

residual (e.g. 1
M

M∑
i=1

(tpi
− t̂p), with i indexing trials). The error bars represent the standard error of the residuals. Residuals

should be near zero (dashed line) if tp was linearly related to ts. The solid green line depicts the expected residuals from the
BLS model fits to data from one subject (SM). The predictions for other subjects are qualitatively similar, but the exact
shape depends on the measurement noise for each subject. The deviation of the data from the linear model indicates that
subjects utilized a nonlinear transfer function to estimate ts. See also Section 2.4.
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S3 Fig. The update function which achieves the BLS after two measurements. The BLS estimator for the
1-2-3-Go task uses the mean of the posterior, te2 after updating the posterior with the likelihood function associated with the
second measurement, tm2

. We characterized the function of the BLS estimator in terms of a linear updating term ∆te. This
term quantified the magnitude by which te1 has to be updated after the second measurement. A plot of ∆te as a function of
the error between the first estimate and the second measurement (x2 = tm2

− te1) reveals two notables features. First the
updating is a nonlinear function of x2, and second, the form of the nonlinearity depends on tm1 (different grayscales). In
other words, BLS can be implemented with a linear updating scheme based on errors only if the update is derived from a
nonlinear function whose form of nonlinearity varies with tm1

. The red curve corresponds to the nonlinear updating scheme
implemented by the EKF model, k2f

?(x2). In this case, the updating relies on a nonlinear function of error but the form of
the nonlinearity does not vary with tm1

. See also Sections 2.3 and 2.5.
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S4 Fig. Fit of the LNE model to each subject. Conventions are the same as Supporting information but for the LNE
model.
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S5 Fig. Fit of the EKF model to each subject. Conventions are the same as Supporting information but for the EKF
model.
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S6 Fig. BLS with different levels of noise for the two measurements (BLSmem). (A) Left: For the 1-2-Go
condition, BLSmem is identical to BLS. Right: For the 1-2-3-Go condition, BLSmem assumes that the Weber fraction for the
measurement immediately before production, wm is the same as the 1-2-Go condition, but the Weber fraction of the first
measurement, denoted by wmem, could be different from wm. Therefore, the BLSmem model has one more parameter than the
BLS model. The bottom grayscale shows the estimate, te2 , as a function of tm1 and tm2 for wmem = 0.225 and wm = 0.15.
Comparison of the iso-estimate contours (red lines) to the BLS mapping function (Fig 3D), indicates an increased reliance on
tm2

. (B) Predictions of the BLSmem model (lines) and mean tp +/- the standard deviation of example subjects (circles and
error bars) as a function of ts. Conventions are the same as panels shown in Supporting information. (C) Maximum
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likelihood wmem plot against wm fit to each subject. Dashed line plots unity. In only one subject wm exceeded wmem. (D)
Subject BIAS and

√
VAR plotted against the predictions of the BLSmem model fit to each subject. Inset: difference between

the expected BIAS based on the BLSmem model and that observed. (E) Each subject’s RMSE in the 1-2-Go and 1-2-3-Go
conditions to normalized by RMSE expected from the BLSmem model in the 1-2-3-Go condition. See also Table 1.
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Subject
Trial type CV GB LB PG SM SE TA VD VR

1-2-Go
(lapse)

3096
(68)

3156
(36)

3138
(5)

3130
(117)

3120
(10)

3143
(11)

2565
(587)

3099
(18)

2103
(371)

Total
trials

1-2-3-Go
(lapse)

3132
(38)

3120
(32)

3169
(1)

3084
(72)

3067
(5)

3159
(3)

2775
(415)

3182
(16)

2108
(316)

S1 Table. Trials completed by condition and subject in the interval reproduction task. Summary of the
number of trials for the interval reproduction task in each condition and the number of trials identified as lapses in
parentheses.
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S1 Appendix

We modeled the likelihood of a sample, s, after making a measurement, mi, perturbed
by scalar noise as follows:

p(mi|s) =
1√

2πw2
ms

2
e
− (mi−s)2

2w2
ms2 , (1)

where the parameter wm scales the standard deviation of the noise with the
magnitude of the signal. For N conditionally independent measurements with the same
wm, the likelihood can be written as follows:

p(m1,m2, ...,mN |s) =

(
1√

2πw2
ms

2

)N

e
−

N∑
i=1

(mi−s)2

2w2
ms2 , (2)

In Eq (2), because the term in the parentheses, which depends on s, is exponentiated
to the power of N , we can conclude that the form of the likelihood function is not
invariant with respect to the number of measurements. Therefore, in the presence of
scalar noise, to perform exact estimation, it is necessary to update the full distribution
after each measurement.

The maximum likelihood estimator (MLE) associated with Eq (2) can be derived
analytically by setting the derivative of the logarithm of the likelihood function to zero,
which leads to the following solution:

fMLE(m1,m2, ...,mN ) = m

[
−1 +

√
1 + 4w2

m
m2

m2

2w2
m

]
, (3)

where

m =
1

N

N∑
i=1

mi, (4)

and

m2 =
1

N

N∑
i=1

m2
i , (5)

fMLE is a nonlinear function that depends on the measurements and their squares
(e.g. the right side of the equation). Fig 1 demonstrates fMLE for N = 2. Evidently,
MLE for different combinations of measurements is convex. This indicates a larger
values of mi contribute more to fMLE . This is somewhat counterintuitive because larger
mi is typically associated with larger s whose measurement is less reliable. Nonetheless,
in the presence of scalar noise, larger measurements contribute more to fMLE .
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A1 Fig. Impact of scalar variability on magnitude estimation. (A) Origin of the skew in the likelihood function
for a scalar Gaussian noise process. Top: the distribution of measurements (m) for a sample of 600, 800, or 1000 with the
Weber fraction for measurement, wm, set to 0.15. Scalar variability results in a Gaussian of increasing variance for increasing
sample intervals. Vertical line plots a hypothetical measurement of 800 which could, with differing likelihoods, come from any
of the three distributions. Notice that the large value of s is more likely than the small value of s. Bottom: The likelihood of
each sample interval for a measurement of 800 (blue). Black, dark gray, and light gray circles plot the relative likelihood that
the sample interval was 600, 800, or 1000, respectively. Extrapolation from these examples provides intuition for the long tail
(skew) in the likelihood of a scalar Gaussian. (B-C) Consequences of skew in the likelihood function for measurement
integration. Top row: likelihood functions for two measurements, m1 = 700 and m2 = 900 (blue and red, respectively) for (B)
Gaussian and (C) scalar Gaussian likelihood functions. Bottom row: mapping functions for maximum likelihood estimators
(MLE) corresponding to each likelihood function. Grayscale indicates the magnitude estimate where whiter points indicate
greater magnitudes; contours plot loci of equal estimates for different combinations of measurements for estimates from 600 to
1000, spaced by 100. Measurements are given equal weight under the Gaussian noise model which has no skew. This linearity
appears in the mapping function as straight contours in the (m1, m2) plane (panel B). Skew in the likelihood function leads
to a discounting of the smaller measurement in the MLE, as revealed by the curvature of the contours of the associated
mapping function (panel C).
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