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Abstract 85 

Late onset Alzheimer’s disease (AD) is the most common form of dementia with more than 35 86 

million people affected worldwide, and no curative treatment available. AD is highly heritable 87 

and recent genome-wide meta-analyses have identified over 20 genomic loci associated with 88 

AD, yet only explaining a small proportion of the genetic variance indicating that undiscovered 89 

loci exist. Here, we performed the largest genome-wide association study of clinically diagnosed 90 

AD and AD-by-proxy (71,880 AD cases, 383,378 controls). AD-by-proxy status is based on 91 

parental AD diagnosis, and showed strong genetic correlation with AD (rg=0.81). Genetic meta-92 

analysis identified 29 risk loci, of which 9 are novel, and implicating 215 potential causative 93 

genes. Independent replication further supports these novel loci in AD. Associated genes are 94 

strongly expressed in immune-related tissues and cell types (spleen, liver and microglia). 95 

Furthermore, gene-set analyses indicate the genetic contribution of biological mechanisms 96 

involved in lipid-related processes and degradation of amyloid precursor proteins. We show 97 

strong genetic correlations with multiple health-related outcomes, and Mendelian 98 

randomisation results suggest a protective effect of cognitive ability on AD risk. These results 99 

are a step forward in identifying more of the genetic factors that contribute to AD risk and add 100 

novel insights into the neurobiology of AD to guide new drug development.  101 

 102 

Main text 103 

Alzheimer’s disease (AD) is the most frequent neurodegenerative disease with roughly 35 104 

million affected to date.1 Results from twin studies indicate that AD is highly heritable, with 105 

estimates ranging between 60 and 80%.2 Genetically, AD can be roughly divided into 2 106 
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subgroups: 1) familial early-onset cases that are relatively often explained by rare variants with 107 

a strong effect,3 and 2) late-onset cases that are influenced by multiple common variants with 108 

low effect sizes.4 Segregation analyses have linked several genes to the first subgroup, including 109 

APP5, PSEN16 and PSEN27. The identification of these genes has resulted in valuable insights 110 

into a molecular mechanism with an important role in AD pathogenesis, the amyloidogenic 111 

pathway,8 providing a prominent example of how gene discovery can add to biological 112 

understanding of disease aetiology.  113 

Besides the identification of a few rare genetic factors (e.g. TREM29 and ABCA710), 114 

genome-wide association studies (GWAS) have mostly discovered common risk variants for the 115 

more complex late-onset type of AD. APOE is the strongest genetic risk locus for late-onset AD, 116 

where heterozygous and homozygous Apoe ε4 carriers are predisposed for a 3-fold and 15-fold 117 

increase in risk, respectively.11 A total of 19 additional GWAS loci have been described using a 118 

discovery sample of 17,008 AD cases and 37,154 controls, followed by replication of the 119 

implicated loci with 8,572 AD patients and 11,312 controls.4 The currently more than 20 120 

confirmed AD risk loci explain only a fraction of the heritability of AD and increasing the sample 121 

size is likely to boost the power for detection of more common risk variants, which will aid in 122 

understanding biological mechanisms involved in the risk for AD.  123 

In the current study, we included 455,258 individuals of European ancestry, meta-124 

analysed in 3 stages (Figure 1). These consisted of 24,087 clinically diagnosed late-onset AD 125 

cases, paired with 55,058 controls (phase 1). In phase 2, we analysed an AD-by-proxy 126 

phenotype, based on individuals in the UK Biobank (UKB) for whom parental AD status was 127 

available (N proxy cases=74,793; N proxy controls=328,320; Online Methods). The value of the 128 
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usage of by-proxy phenotypes for GWAS was recently demonstrated by Liu et al12 for 12 129 

common diseases. In particular for AD, Liu et al12 report substantial gains in statistical power by 130 

using a proxy phenotype, based on simulations and confirmed using empirical data from the 1st 131 

release of the UKBiobank. We here apply the proxy phenotype strategy for AD in the UKBv2 132 

sample. In this sample, parental diagnosis for AD was available for N=376,113 individuals, of 133 

whom 393 individuals had a known diagnosis of AD themselves (identified from medical 134 

register data). The high heritability of AD implies that case status for offspring can to some 135 

extent be inferred from parental case status and that offspring of AD parents are likely enriched 136 

for a higher genetic AD risk load. We thus defined individuals with one or two parents with AD 137 

as proxy cases (N=47,793), while putting more weight on the proxy cases with 2 parents. 138 

Similarly, the proxy controls include subjects with 2 parents without AD (N=328,320), where 139 

older cognitively normal parents were given more weight as proxy controls to account for the 140 

higher likelihood that younger parents may still develop AD. As the proxy phenotype is not a 141 

pure measure of an individual’s AD status and may include individuals that never develop AD, 142 

genetic effect sizes will be somewhat underestimated. However, the proxy case-control sample 143 

is very large (N proxy cases=47,793; N proxy controls=328,320), and therefore increases power 144 

to detect genetic effects for AD substantially.12 We first analysed the clinically defined case-145 

control samples separately from the by-proxy case control sample to allow investigation of 146 

overlap in genetic signals for these two measurements of AD risk. Finally in phase 3, we meta-147 

analysed all individuals of phase 1 and phase 2 together, and tested for replication in an 148 

independent sample. 149 

 150 
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Genome-wide meta-analysis for AD status 151 

Phase 1 involved a genome-wide meta-analysis for AD case-control status using cohorts 152 

collected as part of 3 independent main consortia (PGC-ALZ, IGAP and ADSP), totalling 79,145 153 

individuals of European ancestry and 9,862,738 genetic variants passing quality control (Figure 154 

1, Supplementary Table 1). The ADSP cohort obtained whole exome sequencing data from 155 

4,343 cases and 3,163 controls, while the remaining datasets consisted of genotype single 156 

nucleotide polymorphism (SNP) array data. AD patients were diagnosed according to generally 157 

acknowledged diagnostic criteria, such as the NINCDS-ADRDA (See Methods). All cohorts for 158 

which we had access to the raw genotypic data were subjected to a standardized quality 159 

control pipeline, and GWA analyses were run per cohort and then included in a meta-analysis, 160 

alongside one dataset (IGAP) for which only summary statistics were available (see Methods). 161 

The full sample liability SNP-heritability (h2
SNP), estimated with the more conservative LD Score 162 

regression (LDSC) method, was 0.055 (SE=0.0099), implying that 5.5% of AD heritability can be 163 

explained by the tested SNPs. This is in line with previous estimates for IGAP (6.8%) also 164 

estimated by LDSC regression method, which is based on summary statistics.13,14 We do note 165 

that previously reported estimates using a method based on raw genotypes (Genome-wide 166 

Complex Trait Analysis, GCTA), estimated that up to 53% of total phenotypic variance in AD 167 

could be explained by common SNPs, of which up to 6% could be explained by APOE alone, up 168 

to 13% by the then known variants, and up to 25% by undiscovered loci.15,16 The conservative 169 

LDSC estimate of h2
SNP is presumably a consequence of the underlying LDSC algorithm which is 170 

based on common HapMap SNPs and excludes all variants with extreme associations. 171 
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The λGC=1.10 indicated the presence of inflated genetic signal compared to the null 172 

hypothesis of no association. The linkage disequilibrium (LD) score intercept14 was 1.044 173 

(SE=0.0084) indicating that most inflation could be explained by polygenic signal 174 

(Supplementary Figure 1). In the meta-analysis of AD case-control status, 1,067 variants 175 

indexed by 51 lead SNPs in approximate linkage equilibrium (r2<0.1) reached genome-wide 176 

significance (GWS; P<5×10-8) (Supplementary Figure 1; Supplementary Table 2). These were 177 

located in 18 distinct genomic loci (Table 1). 15 of these loci confirmed previous findings 178 

(Lambert et al4) in a sample partially overlapping with that of the current study. The 3 179 

remaining loci (lead SNPs* rs7657553, rs11257242 and rs2632516) have been linked more 180 

recently to AD in a genetic study17 of AD-related cholesterol levels while conditioning on lipid 181 

levels and in a transethnic genome-wide association study of AD.18  182 

We next (phase 2) performed a GWAS for AD-by-proxy using 376,113 individuals of 183 

European ancestry from the UKB version 2 release using parental AD status weighted by age 184 

and corrected for population frequency to construct an AD-by-proxy status (Figure 1; see 185 

Methods). The LD score intercept was 1.022 (SE=0.0099) indicating that most of the inflation in 186 

genetic signal (λGC=1.071) could be explained by polygenic signal (Supplementary Figure 1B). 187 

For AD-by-proxy, 719 GWS variants were indexed by 61 lead SNPs in approximate linkage 188 

equilibrium (r2<0.1) reached genome-wide significance (P<5×10-8), located in 13 loci 189 

(Supplementary Figure 1A). Of these, 8 loci overlapped with the significantly associated loci 190 

identified for clinical AD case control status (Table 1).  191 
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We observed a strong genetic correlation of 0.81 (SE= 0.185, using LDSC) between AD 192 

status and AD-by-proxy, indicating substantial overlap between genetic effects beyond shared 193 

GWS SNPs. Sign concordance tests indicated that 50.4% of all LD-independent (r2<0.1) genome-194 

wide SNPs (significant and non-significant) had consistent direction of effects between the two 195 

phenotypes (N=344,581 overlapping SNPs), slightly greater than the chance expectation of 50% 196 

(exact binomial test P=2.45×10-7). Of the 51 lead SNPs identified by the case-control meta-197 

analysis, all were available in UKB and 96.1% were sign-concordant (P=2.98x10-12), while of the 198 

61 GWS lead SNPs identified in UKB, 48 were available in the case- control meta-analysis and 199 

99.7% of these were sign-concordant (P=5.98×10-14). Such substantial overlap suggests that the 200 

AD-by-proxy phenotype captures a large part of the associated genetic effects on AD.  201 

Given the high genetic overlap, in phase 3, we conducted a meta-analysis on the clinical 202 

AD case-control GWAS and the AD-by-proxy GWAS (Figure 1), comprising a total sample size of 203 

455,258 (71,880 (proxy) cases and 383,378 (proxy) controls). The LD score intercept was 1.0018 204 

(SE=0.0109) indicating again that most of the inflation in genetic signal (λGC=1.0833) could be 205 

explained by polygenic signal (Supplementary Figure 1b). There were 2,357 GWS variants, 206 

which were represented by 94 lead SNPs, located in 29 loci (Table 1, Figure 2). These included 207 

15 of the 18 loci detected in our case-control analyses, all of the 13 detected in the AD-by-proxy 208 

analyses, as well as 9 loci that were sub-threshold in both individual analyses but reached 209 

significance in the meta-analysis. All 2,160 GWS SNPs that were available in both the case-210 

control and AD-by-proxy sub-samples were sign concordant (exact binomial test P<1×10-300), 211 

including all of the 82 available independent lead SNPs (P=1.68x10-23). Association was found 212 

with both AD and AD-by-proxy for 22 (out of 27 overlapping) loci for which SNP(s) in each locus 213 
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had a robust P-value (P < 0.05/94 independent signals). Of the 29 associated loci, 16 were 214 

previously identified by the GWAS of Lambert et al.,4 and 13 were not. Three of these (with lead 215 

SNPs rs184384746, rs187370608 and rs114360492) were only available in the UKB cohort 216 

(Table 1). Verifying our results against other9,19 and more recent12,17,20 genetic studies on AD, 4 217 

loci (rs187370608, rs11257238, rs113260531 and rs28394864) were previously discovered, 218 

leaving 9 novel loci (rs4575098, rs184384746, rs6448453, rs114360492, rs442495, 219 

rs117618017, rs59735493, rs76726049 and rs76320948). Considering all loci of Lambert et al,4 220 

we were unable to replicate 4 loci (MEF2C, NME8, CELF1 and FERMT2*) at a GWS level 221 

(observed P-values were 1.6x10-5 to 0.0011), which was mostly caused by a lower association 222 

signal in the UKB dataset (Supplementary Table 3). By contrast, Lambert et al4 were unable to 223 

replicate the DSG2 and CD33 loci in the second stage of their study. In our study, DSG2 is also 224 

not supported (meta-analysis P=0.030; UKB analysis P=0.766; Table 1), implying invalidation of 225 

this locus, while the CD33 locus (rs3865444 in Table 1) is significantly associated with AD (meta-226 

analysis P=6.34 x 10-9; UKB analysis P=4.97 x 10-5), implying a genuine genetic association to AD 227 

risk. 228 

Next, we aimed to find further support for the novel findings of the phase 3 meta-229 

analysis, by using an independent Icelandic cohort (deCODE21,22), including 6,593 AD cases and 230 

174,289 controls (Figure 1; see Methods; Supplementary Table 4). We were unable to test two 231 

loci as the lead SNPs (and SNPs in high LD), either were not present in the 28,075 genomes of 232 

the Icelandic reference panel or were not imputed with sufficient quality. For 6 of the 7 novel 233 

loci tested for replication, we observed the same direction of effect in the deCODE cohort. 234 

Furthermore, 4 loci (rs6448453, rs442495, rs117618017, rs76320948) showed nominally   235 
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significant association results (P<0.05) for the same SNP or a SNP in high LD (r2 > 0.9) within the 236 

same locus (two-tailed binomial test P=1.9x10-4). The locus on chromosome 1 (rs45759098) was 237 

very close to significance (P=0.053). Apart from the novel loci, we also observed sign 238 

concordance for 95.6% of the lead SNPs in all loci from the meta-analysis (P=1.60x10-20) that 239 

were available in deCODE (out of 94). As an additional method of testing for replication using 240 

genome-wide polygenic score prediction,23 the current results explain 7.1% of the variance in 241 

clinical AD at a low best fitting P-threshold of 1.69x10-5 (P=1.80x10-10) in an independent sample 242 

of 761 individuals (see Methods). When excluding the APOE-locus (chr19: 45020859-243 

45844508), the results explain 3.9% of the variance with a best fitting P-threshold of 3.5x10-5 244 

(P=1.90x10-6). 245 

 246 

Functional interpretation of genetic variants contributing to AD and AD-by-proxy 247 

Next, we conducted a number of in silico follow-up analyses to interpret our findings in a 248 

biological context. Functional annotation of all GWS SNPs (n=2,178) in the associated loci 249 

showed that SNPs were mostly located in intronic/intergenic areas, yet in regions that were 250 

enriched for chromatin states 4 and 5, implying effects on active transcription (Figure 3A, 3B 251 

and 3C; Supplementary Table 5). 24 GWS SNPs were exonic non-synonymous (ExNS) (Figure 252 

3A; Supplementary Table 6) with likely deleterious implications on gene function. Converging 253 

evidence of strong association (Z> |7|) and a high observed probability of a deleterious variant 254 

effect (CADD24 score≥30) was found for rs75932628 (TREM2), rs142412517 (TOMM40) and 255 

rs7412 (APOE). The first two missense mutations are rare (MAF=0.002 and 0.001, respectively) 256 

and the alternative alleles were associated with higher risk for AD. The latter APOE missense 257 
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mutation is the well-established protective allele Apoε2. The effect sizes for ExNS ranged from 258 

moderate to high. Supplementary Tables 5 and 6 present a detailed annotation catalogue of 259 

variants in the associated genomic loci. Partitioned analysis,25 excluding SNPs with extremely 260 

large effect sizes (i.e. APOE variants) showed enrichment for h2
SNP for variants located in 261 

H3K27ac marks (Enrichment=3.18, P=9.63×10-5), which are associated with activation of 262 

transcription, and in Super Enhancers (Enrichment=3.62, P=2.28×10-4), which are genomic 263 

regions where multiple epigenetic marks of active transcription are clustered (Figure 3D; 264 

Supplementary Table 7). Heritability was also enriched in variants on chromosome 17 265 

(Enrichment=3.61, P=1.63x10-4) and we observed a trend of enrichment for variants with high 266 

minor allele frequencies (Enrichment=3.31, P=2.85x10-3), (Supplementary Figure 3; 267 

Supplementary Tables 8 and 9). Although a large proportion (23.9%) of the heritability can be 268 

explained by SNPs on chromosome 19, this enrichment is not significant, due to the large 269 

standard errors around this estimate (Supplementary Table 8). Overall these results suggest 270 

that, despite some nonsynonymous variants likely contributing to AD risk, most of the GWS 271 

SNPs are located in non-coding regions, and are enriched for regions that have an activating 272 

effect on transcription. 273 

 274 

Implicated genes 275 

To link the associated variants to genes, we applied three gene-mapping strategies 276 

implemented in FUMA26 (Online Methods). We used all SNPs with a P-value < 5x10-8 and r2 of 277 

0.6 with one of the independently associated SNPs, for gene-mapping. Positional gene-mapping 278 

aligned SNPs to 100 genes by their location within or immediately up/downstream (+/-10kb) of 279 
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known gene boundaries, eQTL (expression quantitative trait loci) gene-mapping matched cis-280 

eQTL SNPs to 170 genes whose expression levels they influence in one or more tissues, and 281 

chromatin interaction mapping linked SNPs to 21 genes based on three-dimensional DNA-DNA 282 

interactions between each SNP’s genomic region and nearby or distant genes, which we limited 283 

to include only interactions between annotated enhancer and promotor regions (Figure 3B and 284 

3C; Supplementary Figure 4; Supplementary Tables 10 and 11). This resulted in 192 uniquely 285 

mapped genes, 80 of which were implicated by at least two mapping strategies and 17 by all 3 286 

(Figure 4E). Eight genes (HLA-DRB5, HLA-DRB1, HLA-DQA, HLA-DQB1, KAT8, PRSS36, ZNF232 287 

and CEACAM19) are particularly notable as they are implicated via eQTL association in the 288 

hippocampus, a brain region highly affected early in AD pathogenesis (Supplementary Table 289 

10). Of special interest is the locus on chromosome 8 (rs4236673). In the GWAS by Lambert et 290 

al.4, this locus was defined as 2 distinct loci (CLU and PTK2B), while our meta-analysis specified 291 

this locus as a single locus based on LD-patterns. This is also supported by a chromatin 292 

interaction between the two regions (Figure 3E), which is observed in two immune-related 293 

tissues – the spleen and liver (Supplementary Table 11). Chromosome 16 contains a locus 294 

implicated by long-range eQTL association (Figure 3F) clearly illustrating more distant genes can 295 

be affected by a genetic factor (Figure 3F) and emphasising the relevance of considering 296 

putative causal genes or regulatory elements not solely on the physical location but also on 297 

epigenetic influences. Supplementary Figure 4 displays chromatin interactions for all 298 

chromosomes containing significant GWAS loci. 299 

Although these gene-mapping strategies imply multiple putative causal genes per GWAS 300 

locus, several of these genes in the novel loci (and significantly replicated by the deCODE 301 
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cohort) are of particular interest, as the genes have functional or previous genetic association 302 

to AD. For locus 1 in Supplementary Table 10, ADAMTS4 encodes a protein of the ADAMTS 303 

family which has a function in neuroplasticity and has been extensively studied for their role in 304 

AD pathogenesis.27 For locus 19, the obvious most likely causal gene is ADAM10, as this gene 305 

has been associated with AD by research focusing on rare coding variants in ADAM10.28 306 

However this is the first time that this gene is implicated as a common risk factor for AD. The 307 

lead SNP for locus 20 is a nonsynonymous variant in exon 1 of APH1B, which encodes for a 308 

protein subunit of the γ-secretase complex cleaving APP.29 Although previously reported 309 

functional information on genes can be of great value, it is preferable to consider all implicated 310 

genes as putative causal factors to guide potential functional follow-up experiments. 311 

We next performed genome-wide gene-based association analysis (GWGAS) using 312 

MAGMA.30 This method annotates SNPs to known protein-coding genes to estimate aggregate 313 

associations based on all SNPs in a gene. It differs from the gene-mapping strategies in FUMA as 314 

it provides a statistical gene-based test, whereas FUMA maps individually significant SNPs to 315 

genes. With GWGAS, we identified 97 genes that were significantly associated to AD  316 

(Supplementary Figure 5; Supplementary Table 12), of which 74 were also mapped by FUMA 317 

(Figure 4E). In total, 16 genes were implicated by all four strategies (Supplementary Table 13), 318 

of which 7 genes (HLA-DRA, HLA-DRB1, PTK2B, CLU, MS4A3, SCIMP and RABEP1) are not 319 

located in the APOE-locus, and therefore of high interest for further investigation.  320 

 321 

Gene-sets implicated in AD and AD-by-proxy 322 
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Using the gene-based P-values, we performed gene-set analysis for 6,994 biological-pathway-323 

based gene-sets, 53 tissue expression-based gene-sets and 39 brain single-cell expression based 324 

gene-sets (24 derived from mouse data and 15 derived from human data). We found four Gene 325 

Ontology19 gene-sets that were significantly associated with AD risk: Protein lipid complex 326 

(P=3.93×10-10), Regulation of amyloid precursor protein catabolic process (P=8.16×10-09), High 327 

density lipoprotein particle (P=7.81x10-8), and Protein lipid complex assembly (P=7.96×10-7) 328 

(Figure 4A; Supplementary Tables 14 and 15). Conditional analysis on the APOE locus showed 329 

associations with AD for these four gene-sets independent of the effect of APOE, as they 330 

remained significantly associated (P<0.0125), yet less strongly, suggesting that APOE is 331 

contributing a substantial part to the association signal, but does not completely drive the 332 

signal. There was overlap between genes included in the four gene-sets, and conditioning on 333 

each significant gene-set association showed that three gene-sets were associated with AD 334 

independently of each other (Supplementary Tables 14 and 15). All 25 genes of the High 335 

density lipoprotein particle pathway are also part of the Protein lipid complex (conditional 336 

analysis P=0.18), and these pathways are therefore not interpretable as independent 337 

associations.  338 

Linking gene-based P-values to tissue- and cell-type-specific gene-sets, no association 339 

survived the stringent Bonferroni correction, which corrected for all tested gene-sets (i.e. 6,994 340 

GO categories, 54 tissues and 39 cell types). However, we did observe associations when 341 

correcting only for the number of tests within all tissue types or cell-types. This was the case for 342 

gene expression across immune-related tissues (Figure 4C; Supplementary Table 16), 343 

particularly whole blood (P=5.61×10-6), spleen (P=1.50x10-5) and lung (P=4.67x10-4). In brain 344 
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single-cell expression gene-set analyses, we found associations for microglia, both in the 345 

mouse-based expression dataset (P=1.96x10-3) (Figure 4B; Supplementary Table 17) and the 346 

human-based expression dataset (P=2.56x10-3) (Supplementary Figure 6; Supplementary Table 347 

18).  348 

 349 

Cross-trait genetic influences 350 

For a more comprehensive understanding of the genetic background of AD, we next tested 351 

whether AD is likely to share genetic factors with other phenotypes. This might reveal some 352 

functional insights about the genetic aetiology of AD. We conducted bivariate LD score14 353 

regression to test for genetic correlations between AD and 41 other traits for which large GWAS 354 

summary statistics were available. We observed significant negative genetic correlations with 355 

adult cognitive ability (rg=-0.22, P=7.28x10-5), age of first birth (rg=−0.33, P=1.22×10-4), 356 

educational attainment (rg=−0.25, P=5.01×10-4), and confirmed a very strong positive 357 

correlation with previous GWAS of Alzheimer’s disease (rg=0.90, P=3.29x10-16) (Figure 4D; 358 

Supplementary Table 19).  359 

We then used Generalised Summary-statistic-based Mendelian Randomisation31 (GSMR; 360 

see Methods) to test for potential credible causal associations of genetically correlated 361 

outcomes which may directly influence the risk for AD. Due to the nature of AD being a late-362 

onset disorder and summary statistics for most other traits being obtained from younger 363 

samples, we do not report tests for the opposite direction of potential causality (i.e. we did not 364 

test for a causal effect of a late-onset disease on an early onset disease). In this set of analyses, 365 

SNPs from the summary statistic of genetically correlated phenotypes were used as 366 
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instrumental variables to estimate the putative causal effect of these “exposure” phenotypes 367 

on AD risk by comparing the ratio of SNPs’ associations with each exposure to their associations 368 

with AD outcome (see Methods). Association statistics were standardized, such that the 369 

reported effects reflect the expected difference in odds ratio (OR) for AD as a function of every 370 

SD increase in the exposure phenotype. We observed a protective effect of cognitive ability 371 

(OR=0.89, 95% confidence interval[CI]: 0.85-0.92, P=5.07x10-9), educational attainment 372 

(OR=0.88, 95%CI: 0.81-0.94, P=3.94×10-4), and height (OR=0.96, 95%CI: 0.94-0.97, P=1.84x10-8) 373 

on risk for AD (Supplementary Table 20; Supplementary Figure 7). No substantial evidence of 374 

pleiotropy was observed between AD and these phenotypes, with <1% of overlapping SNPs 375 

being filtered as outliers (Supplementary Figure 7). 376 

 377 

Discussion 378 

By using a non-conventional approach of including a by-proxy phenotype for AD to increase 379 

sample size, we have identified 9 novel loci and gained novel biological knowledge on AD 380 

aetiology. Both the high genetic correlation between the standard case-control status and the 381 

UKB by proxy phenotype (rg=0.81) and the high rate of novel loci replication in the independent 382 

deCODE cohort, suggest that this strategy is robust. Through extensive in silico functional 383 

follow-up analysis, and in line with previous research,20,32 we emphasise the crucial causal role 384 

of the immune system - rather than immune response as a consequence of disease pathology - 385 

by establishing variant enrichments for immune-related body tissues (whole blood, spleen, 386 

liver) and for the main immune cells of the brain (microglia). Furthermore, we observe 387 

informative eQTL associations and chromatin interactions within immune-related tissues for 388 
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the identified genomic risk loci. Together with the AD-associated genetic effects on lipid 389 

metabolism in our study, these biological implications strengthen the hypothesis that AD 390 

pathogenesis involves an interplay between inflammation and lipids, as lipid changes might 391 

harm immune responses of microglia and astrocytes, and vascular health of the brain.33 392 

 In accordance with previous clinical research, our study suggests an important role for 393 

protective effects of several human traits on AD. As an example, cognitive reserve has been 394 

proposed as a protective mechanism in which the brain aims to control brain damage with prior 395 

existing cognitive processing strategies.34 Our findings imply that some component of the 396 

genetic factors for AD might affect cognitive reserve, rather than being involved in AD-397 

pathology-related damaging processes, influencing AD pathogenesis in an indirect way through 398 

cognitive reserve. Similarly, in a largescale community-based study it was observed that AD 399 

incidence rates declined over decades, which was specific for individuals with at minimum a 400 

high school diploma.35 Combined with our Mendelian randomization results for educational 401 

attainment, this suggests that the protective effect of educational attainment on AD is 402 

influenced by genetics. 403 

The results of this study could furthermore serve as a valuable resource (e.g. 404 

Supplementary Tables 10 and 13) for selection of promising genes for functional follow-up 405 

experiments and identify targets for drug development. We anticipate that functional 406 

interpretation strategies and follow-up experiments will result in a comprehensive 407 

understanding of late-onset AD aetiology, which will serve as a solid foundation for future AD 408 

drug development and stratification approaches. 409 

 410 
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Figure 1. Overview of analyses steps. The main genetic analysis encompasses the procedures to detect 639 
GWAS risk loci for AD. The functional analysis part includes the in silico functional follow-up procedures 640 
with the aim to put the genetic findings in biological context. N = total of individuals within specified 641 
dataset. 642 
 643 
 644 
 645 

 646 
 647 
 648 
 649 
 650 
 651 
 652 
 653 
 654 
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Figure 2. GWAS results for AD risk (N=455,258). Manhattan plot displays all associations per variant 655 
ordered according to their genomic position on the x-axis and showing the strength of the association 656 
with the –log10 transformed P-values on the y-axis. The y-axis is limited at 50 to enable visualization of 657 
non-APOE loci. The original –log10 for the APOE locus is 276. 658 
 659 

 660 
 661 
 662 
 663 
 664 
Figure 3. Functional annotation of association results. a) Heritability enrichment of 28 functional 665 
variant annotations calculated with stratified LD score regression. UTR=untranslated region; 666 
CTCF=CCCTC-binding factor; DHS=DNaseI hypersensitive site; TFBS=transcription factor binding site; 667 
DGF=DNAaseI digital genomic footprint; b) Functional effects of genome-wide significant variants in 668 
genomic risk loci of the meta-analysis – the second bar shows the distribution for exonic variants only; c) 669 
Distribution of RegulomeDB score for variants in genomic risk loci, with a low score indicating a higher 670 
probability of having a regulatory function; d) Distribution of minimum chromatin state across 127 tissue 671 
and cell types for genome-wide significant variants in genomic risk loci, with lower states indicating 672 
higher accessibility and states 1-7 referring to open chromatin states. e) Zoomed-in circos plot of 673 
chromosome 8; f) Zoomed-in circos plot of chromosome 16. Circos plots show implicated genes by 674 
significant loci, where blue areas indicate genomic risk loci, green indicates eQTL associations and 675 
orange indicates chromatin interactions. Genes mapped by both eQTL and chromatin interactions are 676 
red. The outer layer shows a Manhattan plot containing the negative log10-transformed P-value of each 677 
SNP in the GWAS meta-analysis of AD. Full circos plots of all autosomal chromosomes are provided in 678 
Supplementary Figure 4. 679 
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Figure 4. Functional implications based on gene-set analysis, genetic correlations and functional 681 
annotations. The gene-set results are displayed per category of biological mechanisms (A), brain cell-682 
types (B) and tissue types (C). The red horizontal lines indicates the significance threshold corrected for 683 
all gene-set tests of all categories, while the blue horizontal lines display the significance threshold 684 
corrected only for the number of tests within the three categories (i.e. gene-ontology, tissue expression, 685 
single cell expression). (D) Genetic correlations between AD and other heritable traits. (E) Venn diagram 686 
showing the number of genes mapped by four distinct strategies.  687 
 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 
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 699 
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 701 

 702 
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 704 

 705 
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Online methods 706 

 707 

1.1 Study Cohorts 708 

1.1.1 PGC-ALZ cohorts 709 

Three non-public datasets (the Norwegian DemGene network, The Swedish Twin Studies of 710 

Aging and TwinGene) were meta-analyzed as part of the Alzheimer workgroup initiative of the 711 

Psychiatric Genomic Consortium (PGC-ALZ). 712 

We collected genotype data from the Norwegian DemGene Network consisting of 2,224 713 

cases and 1,855 healthy controls. The DemGene Study is a Norwegian network of clinical sites 714 

collecting cases from Memory Clinics based on standardised examination of cognitive, 715 

functional and behavioural measures and data on progression of most patients. We diagnosed 716 

2,224 cases of AD from 7 studies: the Norwegian Register of persons with Cognitive Symptoms 717 

(NorCog), the Progression of Alzheimer’s Disease and Resource use (PADR), the Dementia Study 718 

of Western Norway (DemVest), the AHUS study, the Dementia Study in Rural Northern Norway 719 

(NordNorge), the HUNT Dementia Stud, the Nursing Home study, and the TrønderBrain study. 720 

These cases were diagnosed according to the recommendations from the National Institute on 721 

Aging–Alzheimer’s Association (NIA/AA) (AHUS), the NINCDS-ADRDA criteria (DemVest and 722 

TrønderBrain) or the ICD-10 research criteria (NorCog, PADR, NordNorge and HUNT). The 723 

controls from Norway were obtained through the AHUS, NordNorge, HUNT and TrønderBrain 724 

studies. The controls were screened with standardized interview and cognitive tests. Genotypes 725 

of the 4079 individuals from the DemGene Study were obtained with Human Omni Express-24 726 

v.1.1 (Illumina Inc., San Diego, CA, USA) at deCODE Genetics (Reykjavik, Iceland). To increase 727 
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the statistical power of our association analysis, the controls were combined with additional 728 

5786 population controls from Norwegian blood donor samples (Oslo University Hospital, 729 

Ullevål Hospital, Oslo) and controls from Thematically Organized Psychosis (TOP) Research 730 

Study (between 25-65 years). Control subjects of the TOP Research Study were of Caucasian 731 

origin without history of moderate/severe head injury, neurological disorder, mental 732 

retardation and were excluded if they or any of their close relatives had a lifetime history of a 733 

severe psychiatric disorder, a history of medical problems thought to interfere with brain 734 

function or significant illicit drug use.            735 

 The Swedish Twin Studies of Aging (STSA) (n cases = 398, n controls = 1079) includes 736 

three sub-studies of aging within the Swedish Twin Registry36: The Swedish Adoption/Twin 737 

Study of Aging (SATSA)37, Aging in Women and MEN (GENDER)38, and The Study of Dementia in 738 

Swedish Twins (HARMONY)39. Informed consent was obtained from all participants and the 739 

studies were approved by the Regional Ethics Board in Stockholm and the Institutional Review 740 

Board at the University of Southern California. DNA was extracted from blood samples and 741 

genotyped using Illumina Infinium PsychArray. Alzheimer’s disease patients were diagnosed as 742 

part of the studies according to the NINCDS/ADRDA criteria40. In addition, information on 743 

disease after last study participation was retrieved from three population-based health care 744 

registers: The National Patient Register, the Causes of Death Register, and the Prescribed Drug 745 

Register. 746 

 TwinGene36 is a population-based study of older twins drawn from the Swedish Twin 747 

Registry. Written informed consent was obtained from all participants and the study was 748 

approved by the Regional Ethics Board in Stockholm. DNA was extracted from blood samples 749 
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and genotyped using Illumina Human OmniExpress for 1791 individuals. Information about 750 

Alzheimer’s disease (n cases = 343, n controls = 9070) was extracted from the National Patient 751 

Register, the Causes of Death Register, and the Prescribed Drug Register, all of which are 752 

population-based health care registers with nationwide coverage. 753 

 754 

1.1.2 IGAP 755 

Publically available (http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php) 756 

genome-wide association analysis results of the International Genomics of Alzheimer's Project 757 

(IGAP)4 were included as one of the four cohorts that were meta-analysed in our effort. IGAP is 758 

a large two-stage study based upon genome-wide association studies (GWAS) on individuals of 759 

European ancestry. We focused on the results of stage 1, for which IGAP used genotyped and 760 

imputed data of 7,055,881 single nucleotide polymorphisms (SNPs) to meta-analyse four 761 

previously-published GWAS datasets consisting of 17,008 Alzheimer's disease cases and 37,154 762 

controls (The European Alzheimer's disease Initiative – EADI, the Alzheimer Disease Genetics 763 

Consortium – ADGC, the Cohorts for Heart and Aging Research in Genomic Epidemiology 764 

consortium – CHARGE, the Genetic and Environmental Risk in AD consortium – GERAD). As the 765 

purpose of stage 2 (11,632 SNPs were genotyped and tested for association in an independent 766 

set of 8,572 Alzheimer's disease cases and 11,312 controls) was replication of the significantly 767 

associated loci of stage 1, we limited the inclusion of the summary statistics for our own 768 

analyses to stage 1. Written informed consent was obtained from study participants or, for 769 

those with substantial cognitive impairment, from a caregiver, legal guardian or other proxy, 770 
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and the study protocols for all populations were reviewed and approved by the appropriate 771 

institutional review boards. 772 

 773 

1.1.3 ADSP 774 

The Alzheimer’s Disease Sequencing Project (ADSP) collaboration has the aim to identify novel 775 

genetic factors that contribute to AD risk by studying genetic sequencing data. ADSP has made 776 

their sequencing data available through the Genotypes and Phenotyps database (dbGaP) under 777 

the study accession: phs000572.v7.p (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-778 

bin/study.cgi?study_id=phs000572.v1 .p1). We have obtained access to 10,907 individuals 779 

(5,771 cases, 5,136 controls) with whole-exome sequencing data to include as the second 780 

cohort within our meta-analysis. A substantial proportion of the ADSP individuals were 781 

previously also included in IGAP. We applied two strategies to prevent inflated meta-analysis 782 

results due to sample overlap: (1) exclusion of ADSP individuals that were duplicates based on 783 

genotype data comparison of individual level genetic data between IGAP and ADSP, (2) perform 784 

meta-analysis while correcting for cross-study LD score regression intercept (see section 1.4.). 785 

To accomplish the first approach we obtained access for all IGAP datasets for which individual 786 

level genotype data was available through dbGaP (phs000160.v1.p1 - https:// 787 

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id= phs000160.v1.p1; 788 

phs000219.v1.p1 - https://www.ncbi.nlm.nih.gov/projects/gap/cgi-789 

bin/study.cgi?study_id=phs000219.v1.p1; phs000372.v1.p1 - 790 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000372.v1 .p1; 791 

phs000168.v2.p2 - https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id= 792 
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phs000168.v2.p2; phs000234.v1.p1 - https://www.ncbi.nlm.nih.gov/projects/gap/cgi-793 

bin/study.cgi? study_id=phs000234.v1.p1) or NIAGADS (NG00026 - 794 

https://www.niagads.org/datasets/ng00026; NG00028 - 795 

https://www.niagads.org/datasets/ng00028; NG00029 - https://www.niagads.org/ 796 

datasets/ng00029; NG00031 - https://www.niagads.org/datasets/ng00030 ; NG00031 - 797 

https://www.niagads.org/datasets/ng00031; NG00034 - 798 

https://www.niagads.org/datasets/ng00034). By calculating identity-by-descent using PLINK41, 799 

we identified duplicates, which were excluded from the ADSP WES dataset for subsequent 800 

analyses.  801 

 802 

1.1.1 UK Biobank study 803 

The current study used data from the UK Biobank42 (UKB; www.ukbiobank.ac.uk), a large 804 

population-based cohort that includes over 500,000 participants and aims to improve insight 805 

into a wide variety of health-related determinants and outcomes across the UK. Between 2006 806 

and 2010, approximately 9.2 million invitations to participate in the study were sent to 807 

individuals aged 40-69 years who were registered with the National Health Service (NHS) and 808 

were living within 25 miles from one of the 22 study research centers. In total, 503,325 809 

participants were recruited in the study, from which we used a subsample of individuals of 810 

European ancestry with available phenotypic and genotypic data (M age = 56.5, 54.0% female), 811 

described in more detail below. Besides phenotypic information obtained from the NHS 812 

registries and associated medical records, participants completed an in-person visit at one of 813 

the study research centers where extensive self-report data were collected by questionnaire in 814 
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addition to anthropometric assessments, DNA collection from blood samples, and magnetic 815 

resonance imaging of body and brain. All participants provided written informed consent; the 816 

UKB received ethical approval from the National Research Ethics Service Committee North 817 

West-Haydock (reference 11/NW/0382), and all study procedures were in accordance with the 818 

World Medical Association for medical research. Access to the UK Biobank data was obtained 819 

under application number 16406. 820 

 821 

1.2 UKB by proxy phenotype 822 

A proxy phenotype for Alzheimer’s disease case-control status in UKB was assessed as part of 823 

the self-report questionnaire administered during the in-person assessment. Participants were 824 

asked to report whether their biological mother or father ever suffered from Alzheimer’s 825 

disease/dementia, and to report each parent’s current age (or age at death, if applicable). Of 826 

376,113 individuals in our analytic subsample who completed these questions, a diagnosis was 827 

reported for 32,327 mothers (8.6%) and 17,014 fathers (4.5%), resulting in 47,793 participants 828 

(12.7%) with one or both parents affected. We created a proxy phenotype from these questions 829 

to index genetic risk for Alzheimer’s based on parents’ diagnoses. The phenotype was 830 

constructed as a linear count of the number of affected biological parents (0, 1, or 2). The 831 

contribution for each unaffected parent to this count was weighted by the parent’s age/age at 832 

death to account for the fact that they may not yet have passed through the period of risk for 833 

this late-onset disease. Specifically, each affected parent contributed one full unit of “risk” to 834 

the count, while each unaffected parent contributed a proportion of one unit of “risk” inversely 835 

related to their age. This was calculated as the ratio of parent’s age to age 100 (approximately 836 
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the 95th percentile for life expectancy in developed countries, such that weight=(100-age)/100. 837 

The weight for unaffected parents was capped at 0.32, corresponding to a risk equivalent to 838 

that of the maximum population prevalence of AD.43 The phenotype thus ranged approximately 839 

from 0 to 2, with values near zero when both parents were unaffected (lower for older parents 840 

and possible values below zero if both parents were over age 100) and values of two when both 841 

parents were affected. Participants who were uncertain or chose not to answer questions 842 

about either parent’s disease status or age were excluded from the analyses, resulting in a final 843 

N=364,859. 844 

 Additional information on Alzheimer’s disease risk was obtained from national medical 845 

records linked to participant data. This information pertained to the participants themselves 846 

(not their parents), and was extracted from hospital records obtained between 1996 and the 847 

present or from national death registries in the case of participants who passed away after 848 

initial enrolment in the study, as described in more detail in the UKB resources 849 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=146641; 850 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=115559). Briefly, primary and secondary 851 

diagnoses from inpatient hospital stays and primary and secondary causes of death from death 852 

records were recorded using ICD-10 codes. Participants with a diagnosis of “Alzheimer’s 853 

disease” (diseases of the nervous system chapter; code G30) or “Dementia in Alzheimer’s 854 

disease” (mental and behavioral disorders chapter; code F00) from any record of a hospital stay 855 

or as a cause of death were treated as Alzheimer’s cases as given the maximum possible “risk” 856 

score of 2, regardless of the affectation status of their parents. The reported rate of Alzheimer’s 857 

in parents of cases (27.4%) was more than double that of non-cases (12.7%; 𝞆2(1)=71.7, 858 
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P=2.45E-17). There were 393 individuals in the analytic subsample classified as affected by 859 

these records; due to the small number of cases and the limited representativeness of these 860 

types of health records, we used this information to supplement the proxy parent phenotype 861 

rather than as a primary outcome. This information reduces the possibility of misclassification 862 

in the proxy phenotype method, and also allows us to evaluate the performance of the proxy 863 

phenotype method. 864 

 865 

1.3 Genome-wide association analysis 866 

Except for IGAP (obtained summary statistics), we performed genome-wide association 867 

analyses for the ADSP, PGC-ALZ and UKB cohorts. For the UKB dataset, quality control and 868 

imputation procedures were slightly different, and therefore described separately in the 869 

sections below. 870 

 871 

1.3.1a Quality control and imputation procedures for ADSP and PGC-ALZ datasets 872 

Prior to individual quality control steps, all datasets were filtered on a max missingness of 5%. 873 

Individuals were excluded when identified as a low quality sample (individual call rate < 0.98), 874 

heterozygosity outlier (F +/-.20), gender mismatch (females: F >0.2, males: F < 0.2) when 875 

comparing phenotypic and genotypic data, population outlier (defined by principal component 876 

boundaries of 1000 Genomes European samples) or being related to another sample (PI_HAT > 877 

0.2). Inclusion criteria for variants encompassed a call rate > 0.98, a case-control missingness 878 

difference < 0.02, a Hardy-Weinberg equilibrium p-value < 10x10-6 for controls (<10x10-10 for 879 

cases) and a valid association p-value (excluding the variants with low allele frequencies). 880 
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 Pre-imputation, the ADSP and PGC-ALZ datasets were checked for palindromic variants 881 

with allele frequency close to 0.5, incorrect reference allele definitions, false strand designation 882 

and extreme deviations from expected allele frequencies. Subsequently the ADSP and PGC-ALZ 883 

datasets were imputed with the 1000 Genomes Phase 344 reference panel. The reported SNPs 884 

all have a considerable imputation quality (INFO score>0.591) and variants with a low allele 885 

frequency (MAF<0.01) were excluded, resulting in a total of 7508 individuals (4343 cases and 886 

3165 controls) and 260,934 variants for the ADSP cohort and 17477 individuals (2,736 cases and 887 

14,471 controls) and 9,629,492 variants for the PGC-ALZ cohort.  888 

 889 

1.3.1b Quality control and imputation for UKB dataset 890 

We used second-release genotype data that were made available by UKB in July 2017. 891 

Genotype data collection and processing are described by the UKB in a previous overview 892 

paper45. DNA was extracted from blood samples and genotyping was completed for 488,366 893 

individuals on one of two Affymetrix genotyping arrays with custom content, the UK BiLEVE 894 

Axiom array (N=49,949) or UK Biobank Axiom array (N=438,417), covering 812,428 genetic 895 

markers common to both arrays. Of these, 488,377 individuals and 805,426 markers passed the 896 

genotype quality control checks conducted by UKB (see 897 

http://www.biorxiv.org/content/early/2017/07/20/166298 for details). Samples were excluded 898 

for low DNA concentration, call rate < 95%, excess heterozygosity, sex chromosome 899 

abnormality, or sample duplication. Variants were excluded if they exhibited poor clustering of 900 

allele calls, batch, plate, array, or sex effects, departures from HWE, or discordance between 901 

technical replicate samples.  902 
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 After quality control, the samples were imputed to approximately 92 million SNPs using 903 

both the reference panel of the Haplotype Reference Consortium (HRC)46 as well as a combined 904 

reference panel of the 1000 Genomes Project44 and UK10K. As recommended by UKB, we 905 

removed variants that were not imputed on the HRC reference panel due to technical errors in 906 

the imputation process of the combined panel. We converted imputed variants to hard calls 907 

(certainty > 0.9), filtered by imputation quality (INFO score >0.9), and excluded multi-allelic 908 

SNPs, indels, SNPs without unique rsID, and SNPs with minor allele frequency (MAF) <0.0001, 909 

resulting in 10,847,151 SNPs available for analysis. 910 

For the present study, we selected unrelated individuals of European ancestry. To 911 

empirically determine ancestry, we projected genetic principal components from known 912 

ancestral populations in the 1000 Genomes Project onto the UKB genotypes and assigned 913 

individuals to the continental ancestral superpopulation with the closest Mahalanobis 914 

distance.47 Within-ancestry principal components were created using FlashPCA248 to correct for 915 

any residual population stratification within the European ancestry subset. Unrelated 916 

individuals (less than 3rd degree relatives, as indicated by genomic relatedness coefficients 917 

calculated by UKB) were selected by sequentially removing participants with the greatest 918 

number of relatives until no related pairs remained. After applying these filtering criteria and 919 

removing any participants with missing phenotypic or covariate data and participants who 920 

withdrew consent, 364,859 individuals remained for analysis in the UKB sample. 921 

 922 

1.3.2 Single-marker association analysis 923 
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Genome-wide association analysis (GWAS) for the ADSP, PGC-ALZ and UKB datasets was 924 

performed in PLINK41, using logistic regression for dichotomous phenotypes (cases versus 925 

controls for ADSP and PGC-ALZ cohorts), and linear regression for phenotypes analysed as 926 

continuous outcomes (by proxy parental AD phenotype for UKB cohort). For the ADSP and PGC-927 

ALZ cohorts, association tests were adjusted for gender, batch (if applicable), and the first 4 928 

principal components. Twenty principal components were calculated, and depending on the 929 

dataset being tested, additional principal components (on top of the standard inclusion of 4 930 

PCAs) were added if significantly associated to the phenotype. Furthermore, for the PGC-ALZ 931 

cohorts age was included as a covariate. For 4,537 controls of the DemGene cohort, no detailed 932 

age information was available, besides the age range the subjects were in (20-45 years). We 933 

therefore set the age of these individuals conservatively to 20 years. For the ADSP dataset, age 934 

was not included as a covariate due to the enrichment for older controls (mean age cases = 935 

73.1 years (SE=7.8); mean age controls = 86.1 years (SE=4.5)) in their collection procedures. 936 

Correcting for age in ADSP would remove a substantial part of genuine association signals (e.g. 937 

well-established APOE locus rs11556505 is strongly associated to AD (P=1.08x10-99), which is 938 

lost when correcting for age (P=0.0054). For the UKB dataset, 12 components were included as 939 

covariates, as well as age, sex, genotyping array, and assessment centre. We used the genome-940 

wide threshold for significance of P<5×10-8). 941 

 942 

1.3.3 Multivariate genome-wide meta-analysis 943 

Two meta-analyses were performed, including: 1) cohorts with case-control phenotypes (IGAP, 944 

ADSP and PGC-ALZ datasets), 2) all cohorts, also including the by proxy phenotype of UKB. 945 
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The per SNP test statistics is defined by 946 

 947 

 948 

 949 

where wi and Zi are the squared root of the sample size and the test statistics of SNP k in cohort 950 

i, respectively. CTI is the cross trait LD score intercept estimated by LDSC using genome-wide 951 

summary statistics as 952 

 953 

 954 

where Nsij and rij are the number of overlapping samples and the phenotypic correlation 955 

between cohort i and j, respectively.14 The test statistics per SNP per GWAS were converted 956 

from the P-value by using the sign of either beta or odds ratio. When direction is aligned the 957 

conversion is two-sided. To avoid infinite values, we replaced P-value 1 with 0.999999 and P-958 

value < 1e-323 to 1e-323 (the minimum >0 value in Python). 959 

The effective sample size (Neff) is computed for each SNP k from the matrix M, 960 

containing the sample size Ni of each cohort i on the diagonal and the estimated number of 961 

shared data points Nsijxij= CTIijx√𝑁𝑖𝑁𝑗 for each pair of cohorts i and j as the off-diagonal 962 

values. Neff is computed recursively as follows. Starting with the first cohort in M, Neff is first 963 

increased by M1,1, corresponding to the sample size of that cohort. The proportion of samples 964 

shared between cohort 1 and each other cohort j is then computed as p1,j = M1,j/Mj,j, and M is 965 

then adjusted to remove this overlap, multiplying all values in each column j by 1-p1,j. This 966 

amounts to reducing the sample size of each other cohort j by the number of samples it shares 967 
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with cohort 1, and reducing the shared samples between cohort j and subsequent cohorts by 968 

the same proportion. After this, the first row and column of M are discarded, and the same 969 

process is applied to the new M matrix. This is repeated until M is empty. The script for the 970 

multivariate GWAS is available from https://github.com/Kyoko-wtnb/mvGWAMA. 971 

 972 

1.5 Replication of meta-analysis result in an Icelandic sample 973 

The study group included 6,593 Alzheimer's disease cases (4,923 of whom were chip-typed) and 974 

174,289 controls (88,581 of whom were chip-typed). In 16% of patients, the diagnosis of 975 

Alzheimer's disease was established at the Memory Clinic of the University Hospital according 976 

to the criteria for definite, probable, or possible Alzheimer's disease of the National Institute of 977 

Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related 978 

Disorders Association (NINCDS-ADRDA). In 77% of patients, the diagnosis has been registered 979 

according to the criteria for code 331.0 in ICD-9, or for F00 and G30 in ICD-10 in health records. 980 

Seven percent of the patients were identified in the Directorate of Health medication database 981 

as having been prescribed Donepezil (Aricept). The controls were drawn from various research 982 

projects at deCODE Genetics. 983 

The study was approved by the National Bioethics Committee and the Icelandic Data Protection 984 

Authority. Written informed consent was obtained from all participants or their guardians 985 

before blood samples were drawn. All sample identifiers were encrypted in accordance with 986 

the regulations of the Icelandic Data Protection Authority. 987 

Chip-typing and long-range phasing of 155,250 individuals was carried out as described 988 

previously.21 Imputation of the variants found in 28,075 whole-genome sequenced individuals 989 
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into the chip-typed individuals and 285,664 close relatives was performed as detailed earlier.21 990 

Association analysis was carried out using logistic regression with Alzheimer’s disease status as 991 

the response and genotype counts and a set of nuisance variables including sex, county of birth, 992 

and current age as predictors.22 Correction for inflation of test statistics due to relatedness and 993 

population stratification was performed using the intercept estimate from LD score regression14 994 

(1.29). 995 

 996 

1.6 Genomic risk loci definition 997 

We used FUMA26, an online platform for functional mapping and annotation of genetic variants, 998 

to define genomic risk loci and obtain functional information of relevant SNPs in these loci. We 999 

first identified independent significant SNPs that have a genome-wide significant P-value 1000 

(<5×10-8) and are independent from each other at r2<0.6. These SNPs were further represented 1001 

by lead SNPs, which are a subset of the independent significant SNPs that are in approximate 1002 

linkage equilibrium with each other at r2>0.6. We then defined associated genomic risk loci by 1003 

merging any physically overlapping lead SNPs (LD blocks <250kb apart). Borders of the genomic 1004 

risk loci were defined by identifying all SNPs in LD (r2
>0.6) with one of the independent 1005 

significant SNPs in the locus, and the region containing all these candidate SNPs was considered 1006 

to be a single independent genomic risk locus. LD information was calculated using the UK 1007 

Biobank genotype data as a reference.  1008 

 1009 

1.7 Cohort Heritability and Genetic Correlation 1010 
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LD score regression14 was used to estimate genomic inflation and heritability of the AD in each 1011 

of the 7 cohorts (PGC-ALZ, ADSP, IGAP, UKB, DemGene, STSA, TwinGene) using their post-1012 

quality control summary statistics, and to estimate the cross-cohort genetic correlations.49 Pre-1013 

calculated LD scores from the 1000 Genomes European reference population were obtained 1014 

from https://data.broadinstitute.org/alkesgroup/LDSCORE/. Genetic correlations were 1015 

calculated on HapMap3 SNPs only. LD score regression was also used on the case-control and 1016 

by-proxy phenotype result to estimate heritability and genetic correlations for the two 1017 

phenotype definitions. 1018 

 1019 

1.8 Polygenic risk scoring 1020 

We calculated polygenic scores (PGS) based on the SNP effect sizes estimated in the meta-1021 

analyses. PGS were calculated using an independent genotype dataset of 761 individuals (379 1022 

cases and 382 controls) from the ADDNeuroMed study.50 The same QC and imputation 1023 

approach was applied as for the other datasets with genotype-level data (see Method section 1024 

1.3.1a). PRSice PGS were calculated on hard-called imputed genotypes using P-value thresholds 1025 

from 0.0 to 0.5 in steps ranging from 5x10-8 to 0.001. The explained variance (ΔR2) was derived 1026 

from a linear model in which the AD phenotype was regressed on each PGS while controlling for 1027 

the same covariates as in each cohort-specific GWAS, compared to a linear model with GWAS 1028 

covariates only. 1029 

 1030 

1.9 Stratified Heritability 1031 
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To test whether specific categories of SNP annotations were enriched for heritability, we 1032 

partitioned the SNP heritability for binary annotations using stratified LD score regression 1033 

(https://github.com/bulik/ldsc)14. Heritability enrichment was calculated as the proportion of 1034 

heritability explained by a SNP category divided by the proportion of SNPs that are in that 1035 

category. Partitioned heritability was computed by 28 functional annotation categories, by 1036 

minor allele frequency (MAF) in six percentile bins and by 22 chromosomes. Annotations for 1037 

binary categories of functional genomic characteristics (e.g. coding or regulatory regions) were 1038 

obtained from the LD score website (https://github.com/bulik/ldsc). The Bonferroni-corrected 1039 

significance threshold for 56 annotations was set at: P<0.05/56=8.93×10−4. 1040 

 1041 

1.10 Functional Annotation of SNPs 1042 

Functional annotation of SNPs implicated in the meta-analysis was performed using FUMA26 1043 

(http://fuma.ctglab.nl/). We selected all candidate SNPs in the associated genomic loci having 1044 

an r2≧0.6 with one of the independent significant SNPs (see above), a P-value (P<1x10-8) and a 1045 

MAF>0.0001 for annotations. Functional consequences for these SNPs were obtained by 1046 

matching SNPs’ chromosome, base-pair position, and reference and alternative alleles to 1047 

databases containing known functional annotations, including ANNOVAR51 categories, 1048 

Combined Annotation Dependent Depletion (CADD) scores24, RegulomeDB52 (RDB) scores, and 1049 

chromatin states53,54. ANNOVAR annotates the functional consequence of SNPs on genes (e.g. 1050 

intron, exon, intergenic). CADD scores predict how deleterious the effect of a SNP with higher 1051 

scores referring to higher deleteriousness. A CADD score above 12.37 is the threshold to be 1052 

potentially pathogenic55. The RegulomeDB score is a categorical score based on information 1053 
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from expression quantitative trait loci (eQTLs) and chromatin marks, ranging from 1a to 7 with 1054 

lower scores indicating an increased likelihood of having a regulatory function. Scores are as 1055 

follows: 1a=eQTL + Transciption Factor (TF) binding + matched TF motif + matched DNase 1056 

Footprint + DNase peak; 1b=eQTL + TF binding + any motif + DNase Footprint + DNase peak; 1057 

1c=eQTL + TF binding + matched TF motif + DNase peak; 1d=eQTL + TF binding + any motif + 1058 

DNase peak; 1e=eQTL + TF binding + matched TF motif; 1f=eQTL + TF binding / DNase peak; 1059 

2a=TF binding + matched TF motif + matched DNase Footprint + DNase peak; 2b=TF binding + 1060 

any motif + DNase Footprint + DNase peak; 2c=TF binding + matched TF motif + DNase peak; 1061 

3a=TF binding + any motif + DNase peak; 3b=TF binding + matched TF motif; 4=TF binding + 1062 

DNase peak; 5=TF binding or DNase peak; 6=other;7=None. The chromatin state represents the 1063 

accessibility of genomic regions (every 200bp) with 15 categorical states predicted by a hidden 1064 

Markov model based on 5 chromatin marks for 127 epigenomes in the Roadmap Epigenomics 1065 

Project39. A lower state indicates higher accessibility, with states 1-7 referring to open 1066 

chromatin states. We annotated the minimum chromatin state across tissues to SNPs. The 15-1067 

core chromatin states as suggested by Roadmap are as follows: 1=Active Transcription Start Site 1068 

(TSS); 2=Flanking Active TSS; 3=Transcription at gene 5’ and 3’; 4=Strong transcription; 5= Weak 1069 

Transcription; 6=Genic enhancers; 7=Enhancers; 8=Zinc finger genes & repeats; 1070 

9=Heterochromatic; 10=Bivalent/Poised TSS; 11=Flanking Bivalent/Poised TSS/Enh; 12=Bivalent 1071 

Enhancer; 13=Repressed PolyComb; 14=Weak Repressed PolyComb; 15=Quiescent/Low.  1072 

 1073 
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1.11 Gene-mapping 1074 

Genome-wide significant loci obtained by GWAS were mapped to genes in FUMA26 using three 1075 

strategies: 1076 

1. Positional mapping maps SNPs to genes based on physical distance (within a 10kb 1077 

window) from known protein coding genes in the human reference assembly 1078 

(GRCh37/hg19).  1079 

2. eQTL mapping maps SNPs to genes with which they show a significant eQTL association 1080 

(i.e. allelic variation at the SNP is associated with the expression level of that gene). 1081 

eQTL mapping uses information from 45 tissue types in 3 data repositories (GTEx56, 1082 

Blood eQTL browser57, BIOS QTL browser58), and is based on cis-eQTLs which can map 1083 

SNPs to genes up to 1Mb apart. We used a false discovery rate (FDR) of 0.05 to define 1084 

significant eQTL associations. 1085 

3. Chromatin interaction mapping was performed to map SNPs to genes when there is a 1086 

three-dimensional DNA-DNA interaction between the SNP region and another gene 1087 

region. Chromatin interaction mapping can involve long-range interactions as it does not 1088 

have a distance boundary. FUMA currently contains Hi-C data of 14 tissue types from 1089 

the study of Schmitt et al59. Since chromatin interactions are often defined in a certain 1090 

resolution, such as 40kb, an interacting region can span multiple genes. If a SNPs is 1091 

located in a region that interacts with a region containing multiple genes, it will be 1092 

mapped to each of those genes. To further prioritize candidate genes, we selected only 1093 

genes mapped by chromatin interaction in which one region involved in the interaction 1094 

overlaps with a predicted enhancer region in any of the 111 tissue/cell types from the 1095 
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Roadmap Epigenomics Project54 and the other region is located in a gene promoter 1096 

region (250bp up and 500bp downstream of the transcription start site and also 1097 

predicted by Roadmap to be a promoter region). This method reduces the number of 1098 

genes mapped but increases the likelihood that those identified will have a plausible 1099 

biological function. We used a FDR of 1×10-5 to define significant interactions, based on 1100 

previous recommendations44 modified to account for the differences in cell lines used 1101 

here. 1102 

 1103 

1.12 Gene-based analysis 1104 

To account for the distinct types of genetic data in this study, genotype array (PGC-ALZ, IGAP, 1105 

UKB) and whole-exome sequencing data (ADSP), we first performed two gene-based genome-1106 

wide association analysis (GWGAS) using MAGMA30, followed by a meta-analysis. SNP-based P-1107 

values from the meta-analysis of the 3 genotype-array-based datasets were used as input for 1108 

the first GWGAS, while the unimputed individual-level sequence data of ADSP was used as 1109 

input for the second GWGAS. 18,233 protein-coding genes (each containing at least one SNP in 1110 

the GWAS) from the NCBI 37.3 gene definitions were used as basis for GWGAS in MAGMA. 1111 

Bonferroni correction was applied to correct for multiple testing (P<2.74x10-6). 1112 

 1113 

1.13 Gene-set analysis 1114 

Results from the GWGAS analyses were used to test for association in 7,087 predefined gene-1115 

sets of four types: 1116 
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1. 6,994 curated gene-sets representing known biological and metabolic pathways derived 1117 

from Gene Ontology (5917 gene-sets), Biocarta (217 gene-sets), KEGG (186 gene-sets), 1118 

Reactome (674 gene-sets) catalogued by and obtained from the MsigDB version 6.160 1119 

(http://software.broadinstitute.org/gsea/msigdb/collections.jsp) 1120 

2. Gene expression values from 54 (53 + 1 calculated 1st PC of three tissue subtypes) 1121 

tissues obtained from GTEx56, log2 transformed with pseudocount 1 after winsorization 1122 

at 50 and averaged per tissue. 1123 

3. Cell-type specific expression in 173 types of brain cells (24 broad categories of cell types, 1124 

‘level 1’ and 129 specific categories of cell types ‘level 2’), which were calculated 1125 

following the method described in 32. Briefly, brain cell-type expression data was drawn 1126 

from single-cell RNA sequencing data from mouse brains. For each gene, the value for 1127 

each cell-type was calculated by dividing the mean Unique Molecular Identifier (UMI) 1128 

counts for the given cell type by the summed mean UMI counts across all cell types. 1129 

Single-cell gene-sets were derived by grouping genes into 40 equal bins based on 1130 

specificity of expression. 1131 

4. Nucleus specific gene expression of 15 distinct human brain cell-types from the study 1132 

described in61. The value for each cell-type was calculated with the same method as 1133 

explained in point 3 above. 1134 

These gene-sets were tested using MAGMA. We computed competitive P-values, which 1135 

represent the test of association for a specific gene-set compared with genes not in the gene-1136 

set to correct for baseline level of genetic association in the data. The Bonferroni-corrected 1137 

significance threshold was 0.05/7,087 gene-sets=7.06×10-6. The suggestive significance 1138 
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threshold was defined by the number of tests within the category. Conditional analyses were 1139 

performed as a follow-up using MAGMA to test whether each significant association observed 1140 

was independent of all others and of APOE (a gene-set including all genes within genomic 1141 

region chr19:45,020,859-45,844,508). Furthermore, the association between each of the 1142 

significant gene-sets was tested conditional on each of the other significantly associated gene-1143 

sets. Gene-sets that retained their association after correcting for other sets were considered to 1144 

represent independent signals. We note that this is not a test of association per se, but rather a 1145 

strategy to identify, among gene-sets with known significant associations and overlap in genes, 1146 

which set (s) are responsible for driving the observed association. 1147 

 1148 

1.14 Cross-Trait Genetic Correlation 1149 

Genetic correlations (rg) between AD and 41 phenotypes were computed using LD score 1150 

regression14, as described above, based on GWAS summary statistics obtained from publicly 1151 

available databases (http://www.med.unc.edu/pgc/results-and-downloads; http:// 1152 

ldsc.broadinstitute.org/; Supplementary Table 19). The Bonferroni-corrected significance 1153 

threshold was 0.05/41 traits=1.22×10-3. 1154 

 1155 

1.15 Mendelian Randomisation 1156 

To infer credible causal associations between AD and traits that are genetically correlated with 1157 

AD, we performed Generalised Summary-data based Mendelian Randomisation31 (GSMR; 1158 

http://cnsgenomics.com/software/gsmr/). This method utilizes summary-level data to test for 1159 

putative causal associations between a risk factor (exposure) and an outcome by using 1160 
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independent genome-wide significant SNPs as instrumental variables as an index of the 1161 

exposure. HEIDI-outlier detection was used to filter genetic instruments that showed clear 1162 

pleiotropic effects on the exposure phenotype and the outcome phenotype. We used a 1163 

threshold p-value of 0.01 for the outlier detection analysis in HEIDI, which removes 1% of SNPs 1164 

by chance if there is no pleiotropic effect. To test for a potential causal effect of various 1165 

outcomes on risk for AD, we selected phenotypes in non-overlapping samples that showed 1166 

(suggestive) significant (P<0.05) genetic correlations (rg) with AD. With this method it is typical 1167 

to test for bi-directional causation by repeating the analyses while switching the role of the 1168 

exposure and the outcome; however, because AD is a late-onset disease, it makes little sense to 1169 

estimate its causal effect on outcomes that develop earlier in life, particularly when the 1170 

summary statistics for these outcomes were derived mostly from younger samples than those 1171 

of AD cases. Therefore, we conducted these analyses only in one direction. For genetically 1172 

correlated phenotypes, we selected independent (r2=<0.1), GWS lead SNPs as instrumental 1173 

variables in the analyses. The method estimates a putative causal effect of the exposure on the 1174 

outcome (bxy) as a function of the relationship between the SNPs’ effects on the exposure (bzx) 1175 

and the SNPs’ effects on the outcome (bzy), given the assumption that the effect of non-1176 

pleiotropic SNPs on an exposure (x) should be related to their effect on the outcome (y) in an 1177 

independent sample only via mediation through the phenotypic causal pathway (bxy). The 1178 

estimated causal effect coefficients (bxy) are approximately equal to the natural log odds ratio 1179 

(OR)31 for a case-control trait. An OR of 2 can be interpreted as a doubled risk compared to the 1180 

population prevalence of a binary trait for every SD increase in the exposure trait. For 1181 

quantitative traits the bzx and bzy can be interpreted as a one standard deviation increase 1182 
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explained in the outcome trait for every SD increase in the exposure trait. This method can help 1183 

differentiate the causal direction of association between two traits, but cannot make any 1184 

statement about the intermediate mechanisms involved in any potential causal process. 1185 

 1186 

Data availability 1187 

Summary statistics will be made available for download upon publication (https://ctg.cncr.nl).  1188 

 1189 
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Supplementary Figure 1. Manhattan and QQ plots of single variant association results per main 
cohort. For each cohort, Manhattan and QQ plots are shown. A) The Manhattan plot displays all 
associations per variant ordered according to their genomic position on the x-axis and showing the 
strength of the association with the –log10 transformed P-values on the y-axis. The y-axis is limited 
to enable visualization of non-APOE loci. B) The QQ plot displays the expected –log10 transformed p-
values on the x-axis and the observed –log10 transformed p-values on the y-axis. 
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Supplementary Figure 2. Regional plot for the 29 significant loci of the meta-analysis. Every point 

represents a SNP, which are colour-coded based on the highest r2 to one of the most significant 

SNPs, if greater or equal to r2 of 0.6. Other SNPs are coloured in grey.  
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Supplementary Figure 3. Partitioned heritability results for the meta-analysis. Variants were binned 
by chromosome or minor allele frequency and tested for a significant over- or underrepresentation 
as to what is expected by chance. A) Enrichment results for heritability calculations where variants 
have been partitioned per chromosome. B) Enrichment results for heritability calculations where 
variants have been partitioned into multiple categories based on minor allele frequency. 
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Supplementary Figure 4. Full circos plots of chromatin interactions and eQTLs for all chromosomes 
with significantly associated loci. The distinct layers and colors correspond to various features. The 
outer layer contains zoomed in Manhattan plots containing only SNPs with P < 0.05. SNPs in genomic 
risk loci are color-coded as a function of their maximum r2 to the one of the independent significant 
SNPs in the locus, as follows: red (r2 > 0.8), orange (r2 > 0.6), green (r2 > 0.4) and blue (r2 > 0.2). 
SNPs that are not in LD with any of the independent significant SNPs (with r2 ≤ 0.2) are grey. The 
second layer displays the position of the genomic risk loci in blue. The third layer contains the 
mapped genes that are implicated by chromatin interactions and/or eQTL analysis (orange = 
chromatin interaction; green = eQTL; red = chromatin interaction and eQTL). 
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Supplementary Figure 5. Gene-based association results with MAGMA. A) The Manhattan plot 
displays all associations per gene ordered according to their genomic position (start of gene) on the 
x-axis and showing the strength of the association with the –log10 transformed P-values on the y-
axis. B) The QQ plot displays the expected –log10 transformed p-values on the x-axis and the 
observed –log10 transformed p-values on the y-axis. 
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Supplementary Figure 6. Single-cell expression gene-set results of human brain tissue. The black 
vertical line indicates the significance threshold correcting for number of tests within category. MG = 
microglia; ExCA1 = Hippocampal CA 1 pyramidal neurons; END = Endothelial cells; ExPFC2 = 
Prefrontal glutamergic neurons 2; ExPFC1 = Prefrontal glutamergic neurons 1; ODC1 = 
Oligodendrocytes; ASC2 = Astrocytes 2; OPC = Oligodendrocyte precursor cells 1; GABA1 = 
GABAergic interneurons 1; NSC = Neuronal stem cells; GABA2 = GABAergic interneurons 2; OPC2 = 
Oligodendrocyte precursor cells 2; ExCA3 = Hippocampal CA 3 pyramidal neurons; ASC1 = Astrocytes 
1; ExDG = Dentate gyrus granule neurons. 
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Supplementary Figure 7. Mendelian Randomization tests for the effect of correlated phenotypes on 
risk for Alzheimer’s disease. For independent significant SNPs from each correlated phenotype, effect 
sizes of the SNPs for Alzheimer’s disease (bzy) are shown on the x-axis and effect sizes for correlated 
phenotypes are on the y-axis (bzx). The dotted line represents a line with slope of (bxy) and an 
intercept of 0.Red dots represent outliers that were excluded for the Mendelian Randomization 
analysis. 
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