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Abstract 

Single-cell RNA-Seq makes it possible to characterize the transcriptomes of cell types and 

identify their transcriptional signatures via differential analysis. We present a method for 

discriminating cell types that takes advantage of the large numbers of cells that are assayed. 

When applied to transcript compatibility counts obtained via pseudoalignment, our 

approach provides a quantification-free analysis of 3’ single-cell RNA-Seq that can identify 

previously undetectable marker genes. 

 

 

Single-cell RNA-Seq (scRNA-Seq) technology provides transcriptomic measurements at single-

cell resolution, making possible the identification and characterization of cell types in 

heterogeneous tissue.  The problem of identifying genes that are differential between cell groups 

is analogous to the differential expression problem in bulk RNA-Seq. Bulk RNA-Seq differential 

expression methods can be applied directly to test genes for differences between groups of cells1, 

and methods that account for technical artifacts in scRNA-Seq experiments such as by modeling 

dropout seem to offer some advantages.2,3 However, one aspect of scRNA-Seq that current 

methods do not take advantage of is the large number of cells sampled in single-cell experiments.  

 

In this paper, we show how prediction methods that take advantage of large numbers of cells can 

greatly improve gene-level differential expression results by identifying optimal linear 

combinations of constituent isoforms for differential analysis. We focus on logistic regression, 

which was considered when microarray gene expression assays were developed4,5, but 

abandoned due to limited sample sizes. Instead of the traditional approach of using the cell labels 
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as covariates for gene expression, logistic regression incorporates transcript quantifications as 

covariates for cell labels. The resulting optimal linear combinations of transcript quantifications 

that distinguish cell groups provide information about which transcript combinations form good 

markers for each gene (Figure 1a—h). In a simulation based on experimental effect sizes (see 

Methods), logistic regression outperforms other existing scRNA-Seq gene differential expression 

methods, even with different normalizations (Supplementary Figure 1). The advantage comes 

from the ability of logistic regression to identify the optimal linear combination of isoforms for 

differential analysis. In the case that isoforms move in concert, naïve gene quantification by 

summing of isoform counts performs similarly to logistic regression (Figure 1b,c and 

Supplementary Figure 2a,b), but in the event of isoform switching logistic regression has a 

substantial advantage (Figure 1f,g and Supplementary Figure 2c,d). When applied to a data set of 

differentiating myoblasts from Trapnell et al.,6 the method reveals the nature of transcript 

dynamics across multiple genes known to be important for myogenesis (Figure 1i,j).  

 

While transcript quantifications are biologically meaningful, in some cases they may be 

infeasible to obtain.7, 8   We therefore examined the possibility of performing logistic regression 

directly on the transcript compatibility counts (TCCs) obtained via pseudoalignment.9 TCCs, 

which were introduced in Ntranos et al.10 as model-free transcriptomic signatures for single cell 

clustering, constitute the sufficient statistics needed for quantification. By virtue of being 

unprocessed, they represent the “raw data” better than quantified gene expression profiles.11 On 

simulated data, the performance of logistic regression with TCCs is similar to that with transcript 

quantifications (Supplementary Figure 1c). Another advantage of TCCs is that they are readily 

computable from 3’ capture and sequencing single-cell data. To investigate whether logistic 
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regression with TCCs confers an advantage over gene-count based differential analysis from 

such data, we examined 10X Chromium scRNA-seq from three T-cell populations that were 

purified using antibodies specific to different isoforms of CD45 (PTPRC).7 

 

Using TCCs, we performed pairwise differential analyses of purified CD45RO+ memory helper 

T-cells, CD45RA+ naïve helper T-cells, and CD45RA+ naïve cytotoxic T-cells, providing two 

positive controls (CD45RA+ vs CD45RO+) and a negative control (CD45RA+ vs CD45RA+) 

for the method. Logistic regression was able to detect differential expression of CD45 in the 

purified CD45RO+ memory and CD45RA+ naïve T-cell populations (Figure 2a,c). This result 

was deemed impossible in Peterson et al., 12 where it was noted that 3’ mRNA sequencing alone 

could not resolve these markers. We confirmed that gene counts alone cannot identify CD45 as 

differential (Figure 2a-c), and furthermore found that independent testing of TCCs reduced 

statistical power (Figure 2d—f). The two CD45RA+ naïve T-cell populations had similar TCCs 

as expected, and CD45 was not identified as differential between them (Fig 2b). Further 

examination of the transcripts corresponding to the equivalence classes identified by logistic 

regression pointed at which transcripts were differentially regulated (Supplementary Figure 3).  

Visual inspection of the differential equivalence classes identified by logistic regression for 

CD45 revealed that the corresponding isoforms were being distinguished by virtue of alternative 

unannotated 3’ untranslated regions (UTRs) (Supplementary Figure 3). To quantify the extent of 

isoform accessibility by 3’-end sequencing, we estimated the distribution of read 

pseudoalignments with respect to the annotated 3’UTRs (Supplementary Figure 4).  We found a 

substantial number of reads distal to annotated 3’-ends, pointing to a large number of 

unannotated 3’ UTRs. The results on CD45 are concordant with previous work on lymphocytic 
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surface receptor isoform diversity13. Equivalence classes provide access to isoforms in genes 

other than CD45; we found multiple other genes that also exhibited isoform switching between 

memory and naïve T cells (Supplementary Figure 5). 

 

To examine whether TCCs are informative in a de novo scRNA-Seq experiment, we analyzed 

the PBMC dataset,7 which consists of 68579 cells sequenced at an average of 20491 reads per 

cell. After clustering and using known cell type markers to annotate the clusters (Supplementary 

Figure 6), we were able to recapitulate our previous CD45 differential analysis: CD45 was 

identified as differential between memory and naïve T-cells respectively (Supplementary Figure 

7), showing that TCC-based logistic regression can be applied to cell groups generated by 

unsupervised clustering as in standard, de novo scRNA-Seq workflows. 

 

While logistic regression is a simple method, it is especially powerful for scRNA-Seq since it 

leverages the large number of cells available in scRNA-Seq experiments and incorporates 

isoform-information for gene-level testing. Logistic regression reveals the contribution of 

individual isoforms to the gene-level differential analysis, aiding in interpretability of results. 

While we have demonstrated the power of logistic regression for performing gene-level 

differential expression between two cell types, any two cell groupings can be used. Furthermore, 

logistic regression can be performed on all genes instead of constituent isoforms of a single gene 

to discover gene markers characterizing cell types. Finally, our method scales effectively with 

both the number of reads and cells, which is critical for processing increasingly large scRNA-

Seq datasets. 
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Methods 

Trapnell et al. 2014 analysis 

We downloaded the preprocessed Trapnell et al. 2014 data from the conquer database,1 which 

included the quantified transcript-per-million (TPM) values and cell labels for 222 serum-

induced primary myoblasts over a time course of 0, 24 and 48 hours. We selected the 85 

myogenic precursors and the 97 differentiating myoblasts for differential expression analysis. 

We used Ensembl Homo_sapiens.GRCh38.rel84.cdna.all.fa to group 176241 transcripts into 

38694 genes and tested each gene for differential expression between myogenic precursors and 

differentiating myoblasts using logistic regression over the constituent isoforms. After 

Benjamini-Hochberg correction, we obtained 1308 significant differential genes (< 0.01 FDR). 

We visualized these genes in a circular plot by performing logistic regression on the primary and 

secondary isoforms, which are defined as the isoforms with the largest and second largest 

average expression over all cells, and plotted the “direction of change” identified by logistic 

regression. 

 

Zheng et al. 2017 analysis 

We obtained the raw reads for the three human PBMC purified cell sub-type datasets, 

CD4+/CD45RA+/CD25- naïve T-cells, CD4+/CD45RO+ memory T-cells and CD8+/CD45RA+ 

naïve cytotoxic T-cells, from Zheng et al., 2017. The reads were preprocessed (barcode detection, 

error-correction and pseudoalignment) with the scRNA-Seq-TCC-prep kallisto wrapper (SC3Pv1 

chemistry) to obtain the single cell transcript compatibility counts (TCC) matrix 

(https://github.com/pachterlab/scRNA-Seq-TCC-prep). After filtering out cells with total UMI 

counts outside the interval [1K-30K], we obtained 31831 cells (9923 CD4+/CD45RA+/CD25- 
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naïve T-cells, 9994 CD4+/CD45RO+ memory T-cells and 11914 CD8+/CD45RA+ Naïve 

cytotoxic T-cells respectively). We selected all the equivalence classes that contained at least one 

isoform associated with the CD45 gene (a.k.a. PTPRC, ENSG00000081237, ENSG00000262418) 

and filtered out the ones with total UMI counts less than 0.25% of the total number of cells, i.e. 

equivalence classes with fewer than ~79 UMI counts across all cells. This resulted in 7 

equivalence classes uniquely associated with subsets of the annotated isoforms of the CD45 gene. 

The gene counts for each cell were obtained by summing the corresponding TCCs. We 

performed all three pairwise tests for differential expression between the purified cell sub-types 

using a logistic regression model on the 7 TCCs, on the aggregated gene counts, and 

independently on each equivalence class. For each pairwise test, we randomly subsampled 3000 

cells per group across 200 Monte-Carlo iterations to generate error bars and p-value distributions. 

 

The raw reads for the 68k PBMC dataset were preprocessed with the scRNA-Seq-TCC-prep 

kallisto wrapper to obtain the TCC matrix. Equivalence classes that mapped to multiple Ensembl 

gene names and cells with total UMI counts outside the interval [2K-20K] were filtered out. The 

resulting 65444 cell x 95426 equivalence class matrix was subsequently used for post-processing 

and clustering with scanpy.14 We used the same steps outlined in “Zheng et al. recipe” that was 

included in scanpy, except we selected the 5000 most variable equivalence classes in lieu of 

selecting the 1000 most variable genes. To verify the clustering structure, we plotted the cells on 

t-SNE space according to their expression of specific marker genes (obtained by summing all the 

corresponding TCCs). Supplementary Figure 7 focuses on the clusters that most likely 

correspond to populations of naïve cytotoxic T-cells (Cluster A, CD8A+/CD4-/CCR7+, n=5226 

cells), naïve T-cells (Cluster B, CD4+/CCR7+, n=12424 cells) and memory cytotoxic T-cells 
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(Cluster C, S100A4+/CCR10+, n=4173). Clusters A and C corresponded to clusters 3 and 6 in 

Supplementary Figure 6, whereas cluster B was obtained by manually merging clusters 1 and 2.  

Following the same steps as in the purified 10x datasets, we performed all three pairwise tests for 

DE in the CD45 gene. The bar plots with standard errors were generated by randomly 

subsampling 2000 cells per cluster across 200 Monte-Carlo iterations. The average p-values were 

reported.  

 

Estimation of the read location distribution 

In order to estimate the distribution of distances to the 3’ end we pseudoaligned the reads from 

the three purified T-cell populations to the transcriptome using the pseudobam option of kallisto 

0.44. In case of multiple alignments, the weight of one read was split evenly across all reported 

transcripts. The distance to the 3’ end was inferred from the transcriptome coordinates reported 

in the BAM file. 

 

Simulation for Figure 1i 

Two isoforms in each group (n=200) for each gene were sampled from N(µ1,I) and N(µ2,I) with 

µ1 =[5,5], µ2 = [5+cos(θ), 5+sin(θ)] respectively and θ was chosen for each gene to be π/4 

(increase in gene direction), π/2 (increase in primary isoform direction) or π (decrease in 

secondary isoform direction), with corresponding probabilities [.6, .25, .15]. The circle plot in 

Figure 1i overlays the directions of change that were detected from individually fitting a logistic 

regression model for each gene.   
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Simulation framework 

scRNA-Seq simulated data was generated by learning features from the scRNA-Seq data in 

Trapnell et al. 2014. In each simulation, cells were simulated from two different cell types: a null 

type and a perturbed type, each with 105 cells. The null type was modeled after the cluster of 

proliferating myoblasts from the Trapnell et al. 2014 dataset. Specifically, after quantification of 

the dataset using kallisto and clustering on TCCs, the cluster containing cells with MYOG 

expression was identified and the resulting TPMs from this cluster were used to estimate the 

parameters of a lognormal distribution for each transcript.  To simulate the null cell type, TPMs 

for each transcript were drawn from a truncated lognormal distribution.  This approach to 

modeling cell-by-cell variability was motivated by the Tobit model on TPMs used in Monocle.2 

 

Three different types of simulated data were prepared to reflect distinct perturbation scenarios 

and effect sizes. Transcripts expressed in fewer than 5 of the 105 cells were deemed too lowly 

expressed and filtered out from the perturbation. In the independent effects simulation, 30% of 

the transcripts that passed the filter (20456 out of 68179 expressed transcripts) were chosen at 

random to be perturbed. For each transcript, a minimum effect size of 1.5-fold was drawn from a 

truncated lognormal distribution. The direction of each perturbation was chosen uniformly at 

random (50% upregulated, 50% downregulated). In the correlated effect simulations, genes with 

all transcripts passing the filter also passed the filter.  30% of remaining genes (~5220 of 17390 

genes) were chosen at random to be perturbed and expressed transcripts (defined as expressed 

in >= 5 cells) of that gene were perturbed with the same effect size drawn from a truncated log 

normal distribution at a minimum of 1.5. In the experiment-based simulations, the effect sizes 

were learned from Trapnell et al., 2014 from the set of transcripts that either DESeq215 or 
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sleuth16 found to be differentially expressed. Random genes were chosen to be perturbed for the 

simulation. Each perturbed gene in the simulation was matched to an experimentally differential 

gene, and their effect sizes were matched according to the relative abundance of each transcript.  

 

The effect sizes were applied to the mean expression, and abundances per cell were generated by 

sampling from lognormal distribution truncated at zero.  Given these cell-by-cell abundances, 

RSEM17 was used to generated uniformly sequenced paired-reads, using an RSEM model 

learned from a proliferating myoblast cell from the Trapnell et al., 2014 data set and a 

background noise read percentage (parameter theta) of 20%. The number of reads per cell is 

learned from the myoblast cluster by fitting a lognormal distribution of reads per cell (u = 14.42, 

ro = 0.336), corresponding to a mean of 193,000 paired-end reads per cell, 210 cells per 

simulation, and 40,530,000 paired-end reads per simulation. 

 

Simulation analyses 

Logistic regression, Monocle’s Tobit model,6 DESeq2 1.16.11,15  MAST 1.2.1,3 and SCDE  

1.99.42 were used to benchmark the simulations. Monocle’s Tobit model method, DESEq2, and 

MAST were invoked using Seurat’s wrapper functionality through the function 

Seurat::FindMarkers.18 The method ‘glm’ which is loaded by default via the R native stats 

library was used to perform logistic regression, by using the parameter family = ‘binomial’.  

 

The .fastq files output from the RSEM simulations were quantified using kallisto v0.43.  

tximport19 was used to aggregate transcript-level counts and abundances into gene-level counts 

and abundances prior to inputting into the various methods.  For logistic regression, SCDE, and 
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DESeq2, the gene counts were used as input.  For Monocle and MAST, the TPM abundances 

were used as input. In order to afford each method its optimal input, normalization and filtering 

methods native to each method were used. We did not perform any additional normalization or 

filtering. 

 

For each gene, logistic regression was performed using cluster labels as response variable and 

transcript counts as predictors.  Any transcript that was not expressed in >90% cells was filtered 

from the logistic regression.  A likelihood ratio test using a null model of a logistic regression on 

the cluster labels with no predictors was used to determine p-values. 

 

To perform logistic regression using TCCs, we regressed on the TCCs that mapped 

unambiguously to each gene. For genes with more 70 unambiguously corresponding TCCs 

(dimensionality of TCCs >30% of total cells), the Kolmogorov-Smirnoff test was performed on 

each equivalence class independently to test whether the TCCs of the two clusters were derived 

from the same underlying distribution. The TCC-level p-values were then aggregated with 

Lancaster’s method, weighted by the mean count per TCC, to obtain gene-level p-values.11 

 

We benchmarked the effects of three types of normalization on the logistic regression method: 1) 

DESeq2’s method of normalization using size factors, 2) TPM normalization and 3) no 

normalization, to ensure that the better performance by logistic regression is not due to 

differences in normalization.  To apply DESeq2’s method, size factors were calculated based on 

the transcript counts using DESeq2::calculateSizeFactors, and the normalized counts per cell 
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were obtained by dividing by the cell’s size factor.  TPM normalization was obtained by using 

kallisto’s quantification outputs. 

 

The code required to reproduce the analysis and figures in this data are available at 

https://github.com/pachterlab/NYMP_2018. 
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Figure 1 - Logistic regression applied to scRNA-Seq 

Logistic regression can be used to detect gene differential expression at isoform level resolution. 

Panel (a) shows a hypothetical scenario with two cell groups (‘Class1’ and ‘Class 2’, colored 
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blue and pink respectively) where both isoforms change with the same effect size reflecting gene 

overexpression. In this case the “direction of change” discovered by logistic regression (dashed 

line) projects the points along the [1,1] vector. This operation (c) is equivalent to the 

conventional approach of summing the corresponding isoform counts and directly testing for 

gene differential expression (‘the gene direction’) (b). Panels (b) and (c) show histograms 

comparing abundances projected to the gene direction and the direction learned by logistic 

regression respectively. Panel (d) shows gene HMGB1 from the Trapnell et al. data set that 

demonstrates similar behavior during myoblast differentiation. Panel (e) considers the case 

where the two isoforms have opposite effect sizes (isoform switching) that cancel each other out 

when projected along the gene direction. Even though gene counts cannot distinguish between 

the two populations (f), logistic regression is able to learn that a difference in isoform 

abundances is best for distinguishing the classes, thus effectively detecting the isoform switching 

event (g). Panel (h) shows gene CFL1 from the Trapnell et al. data set demonstrating similar 

behavior during myoblast differentiation. Panel (i) shows a simulation where the “directions of 

change” in 1000 genes with two isoforms were randomly chosen to be either in the gene 

direction or along each isoform individually (see Methods). The circle plot overlays the 

directions detected by logistic regression for each gene.  Panel (j) shows the directions of change 

of 1308 genes from the Trapnell et al. data set that were identified by logistic regression as 

differentially expressed between myogenic precursors and differentiating myoblasts (see 

Methods). The direction of the arrow indicates the change in expression of a gene from myogenic 

precursors to differentiating myoblasts. For example, in CDK1, where the expression of both 

isoforms decreases from myogenic precursors to differentiating myoblasts, the corresponding 

arrow points to the southwest.  
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Figure 2 - Logistic regression discovers CD45 in purified T-cell types 

Logistic regression was used to perform pairwise differential expression analysis of purified 

memory T-cells, naïve T-cells, and naïve cytotoxic T-cells that were sequenced with 10X. In (a, 

c), logistic regression on TCCs recovered the separation between CD45RA+ and CD45RO+ T-

cells, while summing counts to produce gene abundances masks the differential expression. 

Furthermore, independently testing the TCCs and then performing Bonferroni correction reduces 

power (d, f).  In contrast, when testing CD45RA+ naïve helper T-cells and CD45RA+ naïve 

cytotoxic T-cells (b, e), CD45 was not significant using logistic regression or gene counts (b), 

and there was little difference in p-value distribution between independently testing the TCCs 

and performing logistic regression (e). 
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