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Abstract

Motivation: Genome-wide transcriptome sequencing applied to single cells (scRNA-seq) is
rapidly becoming an assay of choice across many fields of biological and biomedical research.
Scientific objectives often revolve around discovery or characterization of types or sub-types
of cells, and therefore obtaining accurate cell–cell similarities from scRNA-seq data is critical
step in many studies. While rapid advances are being made in the development of tools for
scRNA-seq data analysis, few approaches exist that explicitly address this task. Furthermore,
abundance and type of noise present in scRNA-seq datasets suggest that application of generic
methods, or of methods developed for bulk RNA-seq data, is likely suboptimal.
Results: Here we present RAFSIL, a random forest based approach to learn cell–cell similarities
from scRNA-seq data. RAFSIL implements a two-step procedure, where feature construction
geared towards scRNA-seq data is followed by similarity learning. It is designed to be adaptable
and expandable, and RAFSIL similarities can be used for typical exploratory data analysis tasks
like dimension reduction, visualization, and clustering. We show that our approach compares
favorably with current methods across a diverse collection of datasets, and that it can be used
to detect and highlight unwanted technical variation in scRNA-seq datasets in situations where
other methods fail. Overall, RAFSIL implements a flexible approach yielding a useful tool that
improves the analysis of scRNA-seq data.
Availability and Implementation: The RAFSIL R package is available online at www.kost
kalab.net/software.html

1 Introduction

Sequencing transcriptomes of single cells (scRNA-seq) is becoming increasingly common, as
technology evolves and costs decline. Studying gene expression genome-wide at single cell res-
olution overcomes intrinsic limitations of bulk RNA sequencing, where expression levels are
averaged over thousands or millions of cells. scRNA-seq enables researchers to more rigorously
address questions about the cellular composition of tissues, the transcriptional heterogeneity
and structure of ”cell types”, and how this may change, for instance during development or in
disease (Kumar et al., 2017; Patel et al., 2014). Identifying group structure is therefore a cru-
cially important step in most scRNA-seq data analyses, and it has yielded exciting discoveries
of novel cell types and revealed previously un-appreciated sub-populations and heterogeneity of
known types of cells (Kumar et al., 2017).
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Identifying group structure in scRNA-seq data is, however, not without challenges. Even for
bulk RNA sequencing no gold standard has emerged in the field (Conesa et al., 2016), and for
single cell RNA sequencing several factors further complicate the task. These include additional
biological heterogeneity induced by the inherent stochasticity of gene expression in single cells,
and technical noise rooted in cell processing, cell lysis, and library preparation from extremely
low amounts of ”input” messenger RNA (Adam et al., 2017). The latter, for example, leads
to dropout events, where no RNA is measured for a gene actually expressed in a cell. It is
estimated that 50–95% of a cell’s mRNA are not measured by current technologies(Adam et al.,
2017; Svensson et al., 2017). While the relative magnitude of such factors will depend on the
specific technology used, it is fair to assume they play a role in most, if not all, scRNA-seq
studies. Therefore, there is a need for computational approaches that take the specific nature of
scRNA-seq data into account and enable researchers to accurately and reliably identify, visualize,
and explore group (or population) structure of single cells. To address that need we developed
RAFSIL, a random forest based method for learning similarities between cells from single cell
RNA sequencing experiments.

Related work includes clustering methods, which implicitly or explicitly rely on a similarity
concept and are commonly used to group objects. Examples of approaches developed specifi-
cally for scRNA-seq data include the combination of Pearson correlation with robust k-means
clustering (Grün et al., 2015), and the use of consensus clustering (Strehl and Ghosh, 2002)
to obtains stable cell groupings by Kiselev et al. (2017b). Žurauskienė and Yau (2016) com-
bine agglomerative clustering with principal component analysis, while Lin et al. (2017) explore
the use of neural networks (Hagan et al., 1996) for clustering and dimension reduction. More
closely related to our work is SIMLR (Wang et al., 2017b), an approach based on multiple kernel
learning (Lanckriet et al., 2004) that directly learns similarities between single cells. However,
SIMLR is built around a clustering paradigm, and the user is asked to provide the algorithm
with a specific cluster number to guide similarity learning.

In contrast, RAFSIL similarities are based on random forests (Breiman, 2001), and our ap-
proach requires no prior information about group structure. We show RAFSIL learns similarities
that faithfully represent group structure in scRNA-seq data; when used for dimension reduction
and clustering they provide an accurate visualization of datasets and enable exploratory anal-
yses for cell type identification and discovery. Importantly, RAFSIL compares favorably with
the current state-of-the-art showing high accuracy and robustness, and we demonstrate how it
enables the identification of technical variation that remains hidden with other approaches.

2 Methods

We assume normalized gene expression data on log-scale of n cells for p genes is available,
organized into a p×n expression matrix X = (x1,x2, ...,xn), where xi indicates the expression
of p genes in cell i xi = (xi1, xi2, ..., xip)

′.

2.1 Gene filtering

We consider three types of gene filters for the scRNA-seq data matrix X:

All genes (ALL). All genes in X are considered that have non-zero expression in at least one
cell in the dataset. This is the most inclusive set of genes.

Frequency filtering (FRQ). Here we consider only genes that are expressed in a certain fraction
of cells. Specifically, we choose 6%, as reported by (Kiselev et al., 2017b) for our analyses.

Highly expressed genes (HiE). The subset of frequency-filtered genes is further narrowed down
to consider genes with ”high” expression across cells. In each cell, expressed genes are
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sorted in decreasing order of expression and the top 10% are marked as highly expressed.
To focus on genes that are frequently highly expressed across cells, we discard half of the
genes that are highly expressed in the fewest cells This approach yields a set of genes that
are highly expressed across cells, but still allows for variability in gene expression.

In the following, we describe our approach for random forest based similarity learning (RAFSIL)
from scRNA-seq data. We developed two methods, RAFSIL1 and RAFSIL2, which are both
two-step procedures. They share a feature-construction step and then apply different types of
random forest (RF) based similarity learning.

2.2 RAFSIL: Feature construction

RAFSIL gene filtering and clustering. For the RAFSIL methods, we apply the frequency
filter described above, and then derive gene clusters as follows: First, principal component
analysis is applied to the gene-filtered expression matrix X (treating genes as observations
and cells as features), and we keep the most informative principal components as selected by
the ”elbow method” Thorndike (1953). Next, we apply k-means clustering (kmeans++, Arthur
and Vassilvitskii (2007); Mouselimis (2017)) to this reduced representation of genes and derive
gene clusters, where we determine the number of clusters by finding the elbow point of the
sum of squared errors as a function of increasing cluster numbers. This yields a partition of
frequency-selected genes into k disjoint clusters.
RAFSIL Spearman feature space construction. Gene clustering decomposes the column
space of X into orthogonal sub-spaces, and we characterize all cell based on its similarities
with all other cells in each sub-space. Specifically, and we calculate n × n cell-cell similarity
matrices {C1, . . . , Ck} using Spearman rank correlation and genes restricted to the respective
clusters derived beforehand. For each similarity matrix Ci we perform PCA, and again keep
mi informative principal components identified by the elbow method. This yields k matrices
{F i ∈ Rn×mi}ki=1 based on genes in cluster i, where each cell is embedded by its principal
components derived from local similarities (i.e., similarities calculated using only genes in a gene
cluster). We then construct a final feature matrix F by juxtaposing matrices from individual
gene clusters:

F =
(
F 1 , F 2 , . . . , F k

)
(1)

The number of columns in F (i.e., the number of features p̃ =
∑

imi) is data-dependent, and
each cell i is now described by a feature vector f i ∈ Rp̃ (the i-th row of F ). In the following we
use these features for random forest based similarity learning.

2.3 RAFSIL: RAndom Forest based SImilarity Learning

Random Forests (RFs) are an established classification method based on ensembles of decision
trees (Breiman, 2001). However, they can also be used in an unsupervised setting to infer
similarities between objects (Breiman and Cutler, 2003; Shi and Horvath, 2006). Here, we
present two variations of this general strategy.

2.3.1 RAFSIL1

Here we describe an approach for RF based similarity learning (Breiman and Cutler, 2003;
Shi and Horvath, 2006) that has been applied to various types of biomedical data (Seligson
et al., 2005; Ramirez et al., 2017) and is implemented in the randomForest package for the R

programming language (Liaw and Wiener, 2017). In (Pouyan and Nourani, 2017) the RAFSIL1
approach (without the feature construction step) was applied to Cytometry by Time of Flight
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(CyTOF) data, where protein expression of several marker genes (typically less than 50) is
assessed.

Next, we briefly summarize RF based similarity learning: To cast the unsupervised similarity
learning problem into a problem suitable for RFs, a ”synthetic” dataset is generated, for instance
by randomly shuffling the values of each feature independently; then, an RF classifier is trained
to distinguish the shuffled data from the un-shuffled data (F in our notation). Let fi denote
the i-th row of F . If we assume the RF classifier contains N trees and define nt(fi,fj) as
the number of trees that classify cells fi and fj via the same leaf, then the RF based n × n
similarity matrix S is defined via Sij = nt(fi,fj)/N . A corresponding dissimilarity matrix
D can then be obtained via Dij = 1 − Sij . In the following we use the term similarity and
dissimilarity interchangeably, referring to S and D, respectively. Repeating this procedure B
times allows us to aggregate individual similarity matrices Si into a final matrix S =

∑B
i Si/B

and corresponding D. We used B = 50 for our experiments.

2.3.2 RAFSIL2

We now describe how we use the RF classifier to construct (dis)similarity matrices without the
need for synthetically generated datasets. The general idea, as in the above method, is to exploit
feature dependence. However, we proceed as follows: After selecting a single feature j (the j–th
column of the feature matrix F ) we quantize its values to derive class labels {ci}ni=1 for all
cells. We use partitioning around medoids as implemented by the pamk function provided by
the R package fpc (Hennig, 2018), which also estimates the optimal number of clusters. Then,
remove the j-th column from F and use the RF classifier to learn the obtained class labels
with this reduced dataset. The resulting random forest than yields a similarity between cells as
described above. Repeating this procedure for all features yields p̃ random forest classifiers with
corresponding similarity measures Si, and averaging as described for RAFSIL1 above results in
a final pair of similarity and dissimilarity matrices S and D, respectively. As before, we use the
randomForest package for R (Liaw and Wiener, 2017) with its default forest size of 500 trees.

2.4 Performance evaluation

To evaluate our approach, we apply RAFSIL1/2 to ten scRNA-seq datasets that have pre-
annotated cell populations, and we compare results with current state of the art approaches.
We distinguish three different scenarios, namely similarity learning, dimension reduction and
clustering. All of these play critical roles in exploring, visualizing and interpreting scRNA-seq
data, but they have different objectives and we evaluate them accordingly.

2.4.1 Similarity learning

For similarity learning, we compare our method with SIMLR (Wang et al., 2017b), the only
scRNA-seq method that advertises similarity learning. In addition, we explored common sim-
ilarity/dissimilarity measures: Euclidean distance, Pearson and Spearman correlation, applied
to the full (ALL), frequency-filtered (FRQ) and highly-expressed (HiE) sets of genes (see Sec-
tion 2.1 for details on the gene sets). Following Wang et al. (2017b) the metric we choose to
evaluate similarity learning is the nearest neighbor error (NNE) Van Der Maaten et al. (2009).
The NNE is calculated by using a nearest neighbor classifier based on the target similarity
to be evaluated: For a given set of labeled cells, an unlabeled cell is classified with the same
label as its most similar labeled neighbor. Predictions for each cell are obtained via 10-fold
cross-validation (CV), and the NNE then reports the fraction of mis-classified cells. Because
in the 10-fold CV procedure data are randomly split into 10 folds (9 for training, 1 for valida-
tion) we report averages over 20 runs. The NNE is a direct reflection of how well the learned
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dissimilarity measure captures the pre-annotated class labels. For SIMLR we used the SIMLR
R package (Wang et al., 2017a), provided it with all genes (ALL) and evaluated the similarity
matrix returned by the SIMLR function with default options. For SIMLR we needed to provide
the option normalize=TRUE for the Treutlein dataset, otherwise the program would abort. We
have indicated this by putting the respective values in parentheses in the relevant result tables.

2.4.2 Dimension reduction

To evaluate the results of dimension reduction, we use the same NNE metric as for evaluating
similarity (see above), but in this case applied to the reduced dimensional projection. That is,
we first perform similarity learning. Then we use the resulting similarity matrix as input for a
dimension reduction algorithm, which sees each cell as a vector of its’ similarities. Finally we
calculate the NNE based on Euclidean distance in the reduced-dimensional space.

For all methods we choose two as the number of dimensions to project down to, and we
compared the following approaches for dimensionality reduction: t stochastic neighbor embed-
ding (tSNE, van der Maaten and Hinton (2008)), principal component analysis (PCA), and
probabilistic PCA (pPCA, Tipping and Bishop (1999)). We also skip the similarity learning
step and directly apply dimension reduction to cells characterized by their highly expressed
genes (Data-HiE- in Table 3). For probabilistic PCA we used the implementation provided by
the pcaMethods R package (Stacklies et al., 2007; Kiselev et al., 2017a) and for t stochastic
neighbor embedding the Rtsne R package (Krijthe, 2015). We used tSNE with default values
for all datasets except Treutlein, where we set the perplexity to 20.

2.4.3 Clustering

We also evaluate the performance of RAFSIL1/2 in the context of clustering; that is, we ask
how well group structure inferred based on RAFSIL1/2 similarities agrees with pre-annotated
cell populations. This allows us to expand the methods we compare RAFSIL with, because in
addition to the approaches we compared with for similarity learning and dimension reduction,
we can now add algorithms that have no explicit similarity learning step. Specifically, we add
SC3 (Kiselev et al., 2017b,c), pcaReduce (Žurauskienė and Yau, 2016, 2015) and SINCERA
(Guo et al., 2015; Guo, 2017) to our comparisons. These methods, and SIMLR, are geared
towards scRNA-seq clustering, and we provide each method with the number of pre-annotated
populations for each dataset and the expression profiles comprising the complete set of expressed
genes (ALL).
Clustering methods. For RAFSIL1/2 and Spearman correlation we implemented two clus-
tering strategies. First, using similarities as a vector embedding for each cell, we run k-means
clustering (KM) to infer group labels. Second, we perform hierarchical clustering with aver-
age linkage (HC) using learned dissimilarities (1 − ρ for Spearman correlation). For k-means
clustering we use kmeans++ as provided by the R package pracma (Borchers, 2017), while for
hierarchical clustering we use the base functionality provided within R through the stats pack-
age (R Core Team, 2017). Like for the other methods, we set the number of clusters to the
known number of different cell labels (Kiselev et al., 2017b,c).
Evaluation metric. To evaluate clustering results we calculate two performance metrics:
the adjusted Rand index (ARI) and normalized mutual information (NMI). Both of them are
popular metrics to evaluate clustering results in the context of a known labeling in single cell
data (Wang et al. (2017b); Kiselev et al. (2017b); Hubert and Arabie (1985); Vinh et al. (2010)).
The ARI is defined as follows: Assume we cluster n cells into k clusters. Let {ui}ni=1 denote the
inferred cluster labels, and {vi}ni=1 the pre-annotated labeling. Then

ARI =

∑
ls

(
nls
2

)
−
(∑
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where l and s enumerate the k clusters, and nl =
∑n

i I(ui = l), ns =
∑n

i I(vi = s) and
nls =

∑
i,j I(ui = l)I(vj = s) with I(x = y) the indicator function that is one for x = y and

zero otherwise. The ARI is one if the inferred labels correspond perfectly to the known labels,
and it decreases with increasing disagreement.

For the normalized mutual information, let pl = nl/n and qs = ns/n ans zls = nls/n.
Then h(u) = −

∑
l pl log(pl) and h(v) = −

∑
s qs log(qs) are the respective entropies of the two

clusterings, and i(u, v) =
∑

l,s zls log(zls/pl/qs) is their mutual information. The normalized

mutual information is then defined as NMI = i(u, v)/
√
h(u)h(v). Like the ARI the NMI is

one for perfectly overlapping clusterings, and it decreases with increasing disagreement. It is
bounded by zero from below. For ARI and NMI we report median values over 20 clustering
runs in our clustering evaluation.
Clustering in reduced dimensions. We also evaluate clustering results after dimension
reduction. To do so, we build on the results from evaluating dimension reduction with the
nearest neighbor error (see Section 2.4.2). For each similarity learning approach we assess the
corresponding dimension reduction method with the smallest NNE and then perform standard
k-means and hierarchical clustering in reduced dimensions. Results are then evaluated as de-
scribed above. However, here we use Pearson correlation and not Spearman correlation as a
representative for generic similarity learning, because it performs slightly better (see Table 3).

2.5 Data used and software availability

Datasets used in the majority of our analyses are summarized in Table 1. Patel, Pollen, Goolam
and Treutlein datasets were downloaded from https://hemberg-lab.github.io/scRNA.seq.

datasets/; Usoskin, Buettner and Kolod datasets were downloaded from https://github.com/

BatzoglouLabSU/SIMLR. The Engel and Lin datasets can be found in the supporting mate-
rial of Lin et al. (2017) and were downloaded from http://128.2.210.230:8080/; the label
”Lin” in our result tables refers to the combination of three primary datasets described in the
Methods section there. Finally, the Leng dataset was obtained from https://bioinfo.uth.

edu/scrnaseqdb/.
For our analysis underlying Figure 1, the Usoskin and Kolod datasets were re-downloaded

to obtain normalized expression values without batch corrections. For Usoskin, we down-
loaded this information from the ”External resource Table 1”, available at http://linnarsson
lab.org/drg/; for Kolod, data was downloaded from https://www.ebi.ac.uk/teichmann-srv/

espresso/.
The RAFSIL R package is available at www.kostkalab.net/software.html.

3 Results

3.1 A random forest based approach for single cell similarity
learning

Here we present RAFSIL, a random forest (RF) based approach for learning similarities from
single cell RNA-sequencing data. Random forest based similarity learning (Shi and Horvath,
2006) is a way to apply random forests (Breiman, 2001) to unsupervised learning and derive sim-
ilarities between objects (Shi and Horvath, 2006; Breiman and Cutler, 2003). In particular, RF
based similarity learning is robust to outliers and has built-in feature selection, which is appeal-
ing for analyzing high-dimensional and noisy data, like single cell RNA sequencing profiles. We
also note that this approach is fundamentally different from ensemble approaches working with
multiple clusterings of a dataset, see (Yan et al., 2013, Section 3). To apply RF based similarity
learning to single cell RNA sequencing (scRNA-seq) data, we implemented an approach we call
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RAFSIL. It is a two-step procedure, where in the first step we pre-process scRNA-seq expression
data (feature construction step) and in a second step then perform RF-based similarity learning
(similarity learning step).

The feature construction step is a heuristic approach designed to deal with the noise and
sparsity typically present in scRNA-seq data (Yuan et al., 2017). Briefly, we first find an
orthogonal sub-space decomposition of the input space of cells, and then we describe each cell
by its ”local” similarities to other cells in each sub-space separately, which we then aggregate
to a final feature set. Details on the feature construction step are in Section 2.2.

For the RF-based similarity learning step we explore two different approaches: RAFSIL1 and
RAFSIL2. RAFSIL1 is a straight forward application of the methodology of Shi and Horvath
(2006) to learn similarities between single cells described by the features recovered in our feature
construction step. The general idea is to use random forest to discriminate between the real and
a synthetic dataset, where the latter is derived from the real data by applying perturbations
that destroy feature correlations. Similarity between cells is then quantified by co-classification
of pairs of cells via the same leaf across trees in the random forest. For RAFSIL2, we apply
random forests to unsupervised learning in a different way. For each feature, we quantize its
values to derive class labels for cells, and then use the other features to predict these labels using
a random forest. Similarity is then quantified in the same way as described before. Details about
RAFSIL1 and RAFSIL2 are in Sections 2.3.1 and 2.3.2.

In the following we show that RAFSIL1/2 compare favorably with current approaches across
a variety of scenarios. We also show how the method enables identification of unwanted technical
variation in scRNA-seq datasets.

3.2 Similarities learned by random forests accurately character-
ize single cell RNA sequencing data

We applied RAFSIL1 and RAFSIL2 to a diverse collection of single cell RNA sequencing datasets
(Table 1) and compared their performance with state-of-the-art approaches. In our analyses
we distinguish three scenarios: Similarity learning, dimension reduction, and clustering. For
similarity learning, we evaluate how well inferred pairwise similarities characterize pre-annotated
cell populations (i.e., class labels fore cells). For dimension reduction, we use the inferred
similarities as features and project each cell into two dimensions. We then evaluate how well the
resulting euclidean distances between projected cells characterize pre-annotated cell populations.
Finally, we also evaluate how accurately inferred similarities allow clustering algorithms to
reproduce available class labels; we apply clustering algorithms to two settings: the originally
inferred similarities, and similarities in reduced-dimensional projections inferred by dimension
reduction approaches.

3.2.1 Similarity learning

Random forest based similarities accurately capture cell population structure in
scRNA-seq data. We applied our RAFSIL algorithms to ten datasets (see Table 1), where
labels for cell populations have been pre-annotated. We assess the learned similarities in terms
of the nearest neighbor error (NNE), which is the mis-classification rate of a nearest neighbor
classifier (see Section 2.4.1 for details). We compare RAFSIL1/2 to SIMLR (Wang et al., 2017b),
which performs similarity learning specifically for scRNA-seq data, and to (dis)similarities as
assessed by Euclidean distance, Spearman and Pearson correlation. For the latter three we
assess three gene selection strategies: all expressed genes (ALL), frequently expressed genes
(FRQ), and only highly expressed genes (HiE); see Section 2.4 for a more detailed description.

Results are summarized in Table 2. We see that RAFSIL1/2 and SIMLR learn similarities
that accurately characterize annotated cell populations (i.e., they have low NNE). We also find
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that RAFSIL and SIMLR substantially outperform Euclidean distance and the two correlation-
based similarities, and that RAFSIL2 shows the best overall performance. For the Euclidean
distance and the correlation-based approaches we also observe that focusing on highly expressed
genes improves performance for all of them.

3.2.2 Dimension reduction

Dimension reduction improves similarity learning. We performed dimension reduc-
tion on the learned similarities obtained from RAFSIL1/2, and compared results with the same
methods used in the previous section: SIMLR and Euclidean distance, as well as Spearman
and Pearson correlation. We again use the NNE as a quality metric (on Euclidean distances in
the reduced-dimensional space, for all methods), and results are summarized in Table 3. As a
baseline approach we also included dimension reduction directly on the expression data (Data–
in Table 3); this is different from the other methods, where we apply dimension reduction to
cells described by their similarities with other cells (see Section 2.4.2).

We observe that dimension reductions obtained using t stochastic neighbor embedding
(tSNE) (van der Maaten and Hinton, 2008) perform better (on average) than those obtained
with principal component analysis (PCA) or probabilistic PCA. Interestingly, we find that
(dis)similarities in the reduced-dimensional space perform almost always better than in the
original (dis)similarities (see Table 3). The main exception is RAFSIL2, which performs better
using original similarities. We again see that approaches designed for scRNA-seq typically out-
perform more generic methods, and RAFSIL1 and RAFSIL2 have lower NNE compared with
SIMLR. We note that Spearman correlation on highly-expressed genes, followed by tSNE, has
good average performance comparable with RAFSIL1/2 and SIMLR.

We also visualize results from similarity learning and dimension reduction in Supplementary
Figure S1. We find clear differences in the inferred similarities between methods for some
datasets (especially for Leng and Usoskin, but also for Buettner), and this is reflected in the
respective two-dimensional projections. Overall RAFSIL and SIMLR are able to more clearly
separate cell populations compared to Euclidean distance and Spearman correlation. Also, we
note that the good performance of RAFSIL2 (in terms of NNE, see Table 3) is clearly reflected,
probably most pronounced for the Leng dataset. Overall, this shows that RAFSIL2 can improve
the visualization (and therefore discovery) of group/population structure in scRNA-seq data.
RAFSIL can discover unwanted variation in scRNA-seq data. In practice, dimen-
sion reduction is typically used for exploratory data analysis, for instance to find group structure
in the data that might correspond to novel (sub)populations of cells. However, it can also be
a valuable tool for data quality control, for instance when color coding additional information
about cells (covariates) in a two-dimensional projection of the data. Figure 1 demonstrates this
approach. The first row depicts tSNE plots for the Usoskin dataset, with RAFSIL2 projections
in the first two panels and SIMLR projections in panels three and four. Color coding each
cell with biological labels (four principal neuronal types) we see a clear separation with both
approaches (panels one and three), but with substantial structure inside each neuronal cell type.
Panels two and three reveal that this structure is likely a technical artifact. In these panels we
color code the cells according to a technical variable (different cell picking sessions). For both
approaches, RAFSIL and SIMLR, we clearly see that the perceived sub-structure in different
neuronal types can largely be explained by the picking session. For clarity, we have annotated
one cell type (tyrosine hydroxylase containing neurons) in panels one and three with the colors
of the technical annotation in the adjacent plot that correlate with prominent sub-clusters.

The second row in Figure 1 is set up in the same way, just this time using the data of
Kolodziejczyk et al. (2015). Here the biological color coding corresponds to different culturing
conditions of mouse embryonic stem cells, while the technical variable denotes different sequenc-
ing chips. In the RAFSIL representation (panels one and two) we again see sub-structure in the
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biological annotation that perfectly corresponds to technical annotation (different sequencing
chips). For this dataset SIMLR also recapitulates the biological group structure (panel three),
but does not pick up the presence of confounding technical variation (panel four).

In summary, Figure 1 shows that RAFSIL can detect unwanted technical variation in scRNA-
seq data, also in cases where other methods do not. We note that in both publications the
authors corrected for batch effects, and we have used the uncorrected data for these analyses.
In practice, this type of approach is mainly useful to assess if corrections for known technical
factors are successful, or to rule out that discovered group structure corresponds to known
covariates. Also, we note that the choice of dimension reduction technique plays a role in these
analyses; for instance, when using PCA instead of tSNE things become considerably less clear
(data not shown). However, this is not unexpected given the good performance of tSNE as a
dimension reduction method (see Table 3).

3.2.3 Clustering

Random forest based similarities accurately recapitulate annotated cell populations.
Next, we explored the performance of RAFSIL1/2 in terms of cell clustering, which is commonly
used to discover population/group structure in scRNA-seq data and constitutes an essential step
for most analyses in this field. To do so, we used the dissimilarities learned by RAFSIL1/2 in
two ways: (i) to perform hierarchical clustering of cells (HC), and (ii) as input for k-means
clustering (KM), taking each cell as a vector of its similarities with all cells in the dataset.
We use the adjusted rand index (ARI) and normalized mutual information (NMI) as quality
measures (see Section 2.4.3 for details), and results are summarized in Table 4. As before, we
compared RAFSIL1/2 to SIMLR and Spearman correlation, and added the direct application
of HC and KM to the expression data (Data– in Table 4). Because there are more methods
for clustering scRNA-seq data than for similarity learning, we added additional comparisons
with SC3, SINCERA and pcaReduce that do not implement similarity learning but perform
clustering.

We see that domain-specific methods for scRNA-seq clustering perform well, and that RAF-
SIL2 (using hierarchical clustering) has the best average performance, with SC3 and RAFSIL1-
KM performing better for some datasets (Buettner, Patel and Leng). Interestingly, k-means
clustering appears to perform better when directly applied to the data or in the context of
Spearman correlation, while hierarchical clustering works better for random forest derived dis-
tances.
Dimension reduction improves clustering. Motivated by our previous result of de-
creased NNE for reduced-dimension embeddings obtainable by tSNE, we applied clustering
after dimension reduction for the methods we studied before (clustering-only approaches do not
allow for dimension reduction). Results are summarized in Table 5, please see Section 2.4.3
for details on the Methods. Like before, we observe an overall better performance of clustering
when using data with reduced dimensionality, again with the exception of RAFSIL2, which
performs better in high dimensions. Also, comparing clustering results with similarity learning
results, we find that using the original dissimilarity matrix RAFSIL2 had the smallest NNE and
also the best clustering performance; for reduced dimensions, RAFSIL1 has the smallest NNE
and also shows the best clustering performance. We finally note that the fact that RAFSIL2
performs worse that RAFSIL1 in this scenario is driven by its poor performance on the Kolod
dataset. This relates to our previous discussion of Figure 1: batch effect removal may not have
been successful for this dataset, and RAFSIL2’s clustering performance reflects the situation
depicted in the first panel of the second row in, where cell groupings induced by cell picking
session dominate biological variation.
RAFSIL approaches yield robust clustering solutions. To assess the robustness of
clustering solutions, we randomly excluded 10% of cells from each dataset and re-run each
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clustering approach 20 times. Figure 2 summarizes the results. We see substantial variability in
the ARI for most datasets and most methods across re-sampling runs; in terms of performance
as measured by ARI averaged across datasets, RAFSIL2 (with hierarchical clustering) performs
best with SC3 coming in second. This is consistent with our previous results obtained with the
full data (see Table 4). Next, we looked at variability and calculated the inter quartile range
(IQR) across res-sampling runs for each method analyzing each dataset, and then averaged across
datasets (aIQR). SC3 exhibits the most stable clustering solutions (5% aIQR); RAFSIL2-HC
is a bit worse with 7% aIQR, but a bit better than SIMLR, which has 8% aIQR. The method
pcaReduce performs worst in terms of stability with an aIQR of 14%. Overall we find that
RAFSIL produces relatively stable clustering solutions with good ARI.
RAFSIL can estimate the number of populations in a scRNA-seq dataset. Here we
ask whether RAFSIL can estimate the number of populations present in a scRNA-seq dataset.
Briefly, we apply RAFSIL1/2 followed by hierarchical clustering (RAFSIL1/2-HC) and retrieve
the corresponding series of cell partitions with increasing cluster numbers. To those we apply
the Calinski-Harabasz criterion (Calinski and Harabasz, 1974), where each cell is described by
its corresponding row in the scaled feature matrix F (see Section 2.2). We compared RAFSIL
with SC3 and SINCERA in Table 6.

We find that RAFSIL1/2 perform well (RAFSIL2-HC is amongst the most accurate methods
for the most datasets), but overall there is little difference between the approaches.
Additional analyses. In addition to the analyses described above, we also compared our
method to the neural network (NN) based approach of Lin et al. (2017). Lin et al. provide the
data they used to assess their method, so we calculated performance metrics for RAFSIL1/2
and SC3 (without any gene filtering, to be consistent with the authors) and compared them
to Table 2 from Lin et al. (2017). Results are shown in Table 7, where everything except the
RAFSIL1/2 and SC3 lines has been taken from their publication. We see that the RAFSIL
approaches (especially RAFSIL2) are competitive with the NN based approach, even though we
do not make use of an supervised training phase.

We also studied the clustering performance of RAFSIL1/2 performing only the feature con-
struction step, and only the similarity learning step, respectively. Results are summarized in
Table 8. We see that RAFSIL1/2 outperform these ”reduced” approaches, highlighting the
value of both of these steps in our approach. Nevertheless, feature construction alone followed
by k-means clustering also performs well overall.

4 Discussion and Conclusion

We have presented RAFSIL, a two-step approach for learning similarities between single cells
based on whole transcriptome sequencing data. Accurately inferring such similarities is an
important step in single cell RNA sequencing studies, because they form the basis for identifi-
cation, visualization and interpretation of group structure. And reliable and accurate inference
of group structure is necessary for discovery of new (sub)types of cells, for improved charac-
terization and understanding of existing types of cells, for decoding the cellular composition
healthy (and abnormal) tissue types, and more. We analyzed a diverse collection of datasets
and show that RAFSIL performs well in similarity learning, on average outperforming SIMLR
(to our knowledge the only other similarity learning approach geared specifically towards the
scRNA-seq domain) as well as several generic approaches. In addition, the SIMLR algorithm
requires a known (or pre-determined) number of clusters to calculate similarities, but reasonable
estimates are not always available in practice. RAFSIL has no such requirement. We also show
that RAFSIL similarities improve dimension reduction and data visualization, and that they
can be used to discover unwanted technical variation in single cell RNA sequencing datasets.
Finally, comparing clustering solutions obtained with RAFSIL similarities with state-of-the-
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art methods, we show that RAFSIL2 followed by hierarchical clustering is highly competitive,
outperforming all other methods on average, and also individually on most datasets we studied.

Because RAFSIL implements a two-step procedure, first feature construction, and then simi-
larity learning using random forests; it is flexible and easy to modify, expand and optimize. Our
current feature construction step is a heuristic that reflects what we found to work well with
scRNA-seq data we studied, but it is meant to be adapted as technology (and methodology)
develops. For instance, including prior information about groups of genes (for example based on
functional annotation databases) may improve performance. Likewise, we presented two strate-
gies to apply random forests to unsupervised similarity learning (RAFSIL1 and RAFSIL2), but
different approaches, perhaps more principled ones, can be imagined. Currently the time or of
RAFSIL algorithms is comparable to methods like SC3 and SIMLR, and datasets with on the
order of thousand cells can be analyzed without any problems. However, a truly large scale
implementation for datasets with hundreds of thousands of cells (or more) would be desirable
and is one of our future research directions.

Some limitations of our study include that while we compared RAFSIL extensively, our
work is not exhaustive and results are restricted to the data we analyzed. However, we cover a
variety of scRNA-seq technologies and computational approaches, and exhaustive comparisons
considering all combinations of reasonable choices for gene filtering, dimension reduction, and
clustering across many datasets quickly become infeasible. Along the same lines, we report
that dimension reduction improves similarity learning and clustering, but only study projection
into two-dimensional spaces (k = 2). While exploring larger choices for k might in principle be
worthwhile for some methods, the fact that t stochastic neighbor embedding (tSNE) performed
clearly best in our analysis might argue against it. The reason is that tSNE is known to
perform well for projection into two to three dimensions, but runs into problems for higher k
(van der Maaten and Hinton, 2008). Further on, we (and others) compare methods based on
performance metrics like averages over adjusted Rand indexes (aARI) or average normalized
mutual information. However, in our re-sampling experiment assessing robustness of clustering
solutions (by repeatedly leaving out 10% of cells in a given dataset randomly) yields inter
quartile ranges of the aARI between 5% and 14% (depending on the clustering method used).
This implies that small performance differences are typically not robust to changing a small
amount of cells in a dataset. While these values might be affected by the relatively small
number of re-sampling runs (twenty), we believe it highlights the need for this type of analysis
in the context of performance comparisons for single cell RNA-seq data methodology in general.

To summarize, we presented RAFSIL, a random forest based approach for similarity learning
from single cell RNA sequencing data. We show that it performs well on a variety of datasets
and believe it will be a useful tool for bioinformatics researchers working in this domain.
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Žurauskienė, J. and Yau, C. (2015). pcaReduce: Hierarchical Clustering of Single Cell Transcriptional Profiles. R package

version 1.0.
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Figure 1: RAFSIL2 discovers unwanted variation. This figure shows tSNE plots for two datasets:
Data from Usoskin et al. (2015) in the first row, and from Kolodziejczyk et al. (2015) in the second
row. Cells are colored according to biologically meaningful annotations in panels one and three, and
according to technical covariates in panels two and four. In the first row we see that sub-structure
in biologically meaningful groupings can be explained through technical variables for both methods.
In the second row this still holds true for RAFSIL2, but SIMLR does not highlight the unwanted
technical variation present in the data. For more details see Section 3.2.2.
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Figure 2: RAFSIL2 yields accurate and robust clustering solutions. Panels are box plots of the ad-
justed rand index (ARI) for ten datastes, across 20 instances of randomly sampling 90% of available
cells. The panel labeled ’Average’ represents the mean performance across all ten datasets. We see
that RAFSIL2 followed by hierarchical clustering has the best performance, followed by SC3 and
then the other RAFSIL-type methods. In terms of robustness SC3 performs best, while pcaReduce
shows the highest variability. See Section 3.2.3 for a more detailed discussion. KM = k-means, HC
= hierarchical clustering and HiE = highly expressed genes.
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Figure 3: Figure S1. Similarity matrices and their visualization in two dimensions. Panel (A) shows
similarity matrices obtained from four different methods (rows, see Section 2.4.3 in the main text) for four
data sets (columns, see Table 1 in the main text)). Colors represent quantiles and darker colors stand for
increasing similarity. Panel (B) shows corresponding tSNE plots, where each point represents a cell colored
according to annotated cell types. The sub-panels in (B) capture differences in the similarity matrices on
the left side, and we see that similarity learning affects visualization of SC-RNA-seq data sets. SIMLR and
RAFSIL2 perform well on the Usoskin data set, and RAFSIL2 does especially well on the Leng dataset.
Also see Section 3.2.2 in the main text.
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Table 1: List of datasets analyzed and their attributes

Dataset # cells # genes # populations sparsity (in %) Units Reference

Patel 430 5,948 5 0 TPM (Patel et al., 2014)
Buettener 182 9,573 3 37 FPKM (Buettner et al., 2015)
Engel 203 21,690 4 80 TPM (Engel et al., 2016)
Kolod 704 13,473 3 10 CPM (Kolodziejczyk et al., 2015)
Goolam 124 41,480 5 69 CPM (Goolam et al., 2016)
Usoskin 622 17,772 4 78 RPM (Usoskin et al., 2015)
Treutlein 80 23,271 5 90 FPKM (Treutlein et al., 2014)
Leng 460 19,084 4 47 TPM (Leng and Kendziorski, 2015)
Pollen 301 9,966 11 67 TPM (Pollen et al., 2014)
Lin 402 9,437 16 43 TPM (Lin et al., 2017)

Table 2: Nearest neighbor error values for similarity learning (in percent, lower is better).
ALL = all expressed genes, FRQ = frequency-filtered genes, HiE = highly-expressed genes.
a Parentheses indicate that SIMLR was run with different parameters for this dataset.

Method Patel Buttener Engel Kolod Goolam Usoskin Treutlein Leng Pollen Lin Average

RAFSIL1 1.6 3.8 1.0 0.0 2.4 2.6 10.0 5.0 3.7 4.7 3.5
RAFSIL2 1.4 3.8 0.0 0.0 3.2 0.8 6.2 4.1 4.3 5.2 2.9

SIMLR 2.4 1.6 3.4 0.0 4 3.1 (25)a 14.8 3 6.2 6.0

Pearson-ALL 1.9 57.7 38.9 9.7 3.2 10.5 20.0 49.6 12.3 14.4 21.8
Pearson-FRQ 2.1 58.2 42.4 10.4 2.4 7.2 12.5 42.8 10.3 14.7 20.3
Pearson-HiE 3.5 33.5 15.3 9.8 1.6 4.7 11.2 48.5 6.3 10.4 14.5

Spearman-ALL 2.8 57.7 12.8 0.9 0.8 15.1 28.8 58.7 2.0 13.7 19.3
Spearman-FRQ 1.9 57.7 10.3 0.9 0.8 10.1 8.8 44.6 1.7 13.2 15.0
Spearman-HiE 14.4 43.4 9.9 1.8 2.4 7.4 10.0 29.1 5.3 8.5 13.2

Euclidean-ALL 30.0 51.6 48.3 24.7 2.4 14.5 21.2 44.6 6.0 22.4 26.6
Euclidean-FRQ 2.1 57.7 39.9 10.5 2.4 7.4 12.5 45.9 9.3 13.7 20.1
Euclidean-HiE 4.0 33.5 13.8 8.8 1.6 3.7 12.5 47.4 7.0 10.7 14.3
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Table 3: Nearest neighbor error values for dimension reduction (in percent, lower is better).
tSNE = t stochastic neighbor embedding, PCA = principal component analysis, pPCA = probabilistic PCA.
a Parentheses indicate that SIMLR was run with different parameters for this dataset.

Method Patel Buttener Engel Kolod Goolam Usoskin Treutlein Leng Pollen Lin Average

RAFSIL1-tSNE 1.9 3.8 0.5 0.0 4.0 1.0 7.5 4.1 2.7 5.5 3.1
RAFSIL1-PCA 8.1 4.4 11.3 0.0 9.7 21.5 12.5 26.5 12.6 24.9 13.2
RAFSIL1-pPCA 7.7 4.4 11.3 0.0 9.7 22.5 15.0 25.4 12.3 24.4 13.3

RAFSIL2-tSNE 1.9 2.7 0.0 0.0 4.8 0.6 6.2 4.6 4.0 9.2 3.4
RAFSIL2-PCA 10.2 6.6 5.9 0.0 4.8 5.6 12.5 25.9 16.3 33.1 12.1
RAFSIL2-pPCA 9.8 7.1 4.9 0.0 4.0 5.3 11.2 26.3 14.3 30.6 11.4

SIMLR-tSNE 3.7 3.3 4.4 0.0 4.8 5.5 (26.2)a 19.8 3.0 15.7 8.6
SIMLR-PCA 6.7 2.2 27.1 0.1 11.3 6.4 (43.8) 36.3 22.9 51.0 20.8
SIMLR-pPCA 7.4 2.2 27.6 0.1 9.7 5.9 (45) 37.0 22.3 53.2 21.0

Data-HiE-tSNE 7.4 12.1 14.3 0.3 1.6 3.7 15.0 37.0 3.3 10.7 10.5
Data-HiE-PCA 40.7 25.8 13.3 1.4 4.8 34.1 31.2 56.1 16.3 40.5 26.4
Data-HiE-pPCA 40.5 28.6 14.3 1.4 7.3 33.3 32.5 57.4 17.3 41.5 27.4

Euclidean-HiE-tSNE 4.4 4.4 3.9 0.4 6.5 8.2 23.8 39.1 5.3 21.1 11.7
Euclidean-HiE-PCA 36.5 7.7 35.0 7.0 25.8 58.7 32.5 52.8 19.9 39.1 31.5
Euclidean-HiE-pPCA 36.0 8.8 39.4 6.8 28.2 57.7 32.5 53.0 20.3 38.8 32.2

Pearson-HiE-tSNE 2.8 9.3 3.0 0.0 1.6 2.1 17.5 24.1 2.3 20.1 8.3
Pearson-HiE-PCA 25.1 23.1 16.3 0.1 2.4 27.8 12.5 49.1 10.6 27.9 19.5
Pearson-HiE-pPCA 24.0 23.1 17.2 0.3 2.4 27.5 15.0 47.6 11.3 28.1 19.7

Spearman-HiE-tSNE 3.3 11.0 1.0 0.0 0.8 3.2 5.0 15.4 3.0 18.4 6.1
Spearman-HiE-PCA 37.2 26.9 9.4 0.3 0.8 33.4 5.0 61.7 13.0 32.3 22.0
Spearman-HiE-pPCA 36.3 27.5 12.8 0.3 3.2 32.5 6.2 59.1 12.6 30.6 22.1
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Table 6: Number of clusters estimated by different methods for all data sets.

Method Patel Buttener Engel Kolod Goolam Usoskin Treutlein Leng Pollen Lin

Annotation 5 3 3 3 5 4 5 4 11 16

SC3 17 2 4 10 6 9 3 3 11 11
SINCERA 10 3 4 18 4 11 19 6 9 12
RAFSIL1-HC 5 2 6 3 7 4 2 6 11 16
RAFSIL2-HC 5 2 4 3 6 4 3 7 13 12

Table 7: RAFSIL2 compared with a subset of the results reported by Lin et al. (2017).
ARI: adjusted Rand index; Comp: completeness; FM: FowlkesMallows; Homo: homogeneity; Vmes: v-measure.
a: pca with 2 principle components.
b: PPITF uses prior biological knowledge to define a neural network architectures.

Method Homo Comp Vmes ARI FMI Average

pca 2a 0.833 0.883 0.854 0.786 0.873 0.846
SIMLR 40 0.834 0.831 0.83 0.747 0.835 0.815
Sincera 0.807 0.929 0.856 0.797 0.884 0.855
SC3 0.914 0.937 0.922 0.885 0.928 0.917
RAFSIL1 0.772 0.921 0.842 0.817 0.890 0.846
RAFSIL2 0.938 0.938 0.906 0.871 0.923 0.915
PPITF 1b layer

0.897 0.896 0.896 0.866 0.911 0.893
696+100
PPITF 2 layer

0.906 0.902 0.903 0.874 0.917 0.9
696+100/100
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