
	 1	

Exome-wide assessment of the functional impact and 1	

pathogenicity of multi-nucleotide mutations 2	

 3	
Joanna Kaplanis1, Nadia Akawi5, Giuseppe Gallone1, Jeremy F. McRae1, Elena 4	
Prigmore1, Caroline F. Wright2, David R. Fitzpatrick3, Helen V. Firth1,4, Jeffrey C. 5	
Barrett1, Matthew E. Hurles1* on behalf of the Deciphering Developmental Disorders 6	
study 7	
 8	
Affiliation 9	

1. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK 10	
2. Institute of Biomedical and Clinical Science, University of Exeter Medical 11	

School, RILD Level 4, Royal Devon & Exeter Hospital, Barrack Road, Exeter, 12	
EX2 5DW, UK 13	

3. MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western 14	
General Hospital, Edinburgh EH4 2XU, UK 15	

4. Department of Clinical Genetics, Cambridge University Hospitals NHS 16	
Foundation Trust, Cambridge, UK 17	

5. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, 18	
University of Oxford, Oxford, UK 19	

 20	
*Correspondence to: meh@sanger.ac.uk 21	

  22	

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 22, 2018. ; https://doi.org/10.1101/258723doi: bioRxiv preprint 

https://doi.org/10.1101/258723
http://creativecommons.org/licenses/by-nd/4.0/


	 2	

Abstract 1	
Approximately 2% of de novo single nucleotide variants (SNVs) appear as part of 2	
clustered mutations that create multinucleotide variants (MNVs). MNVs are an 3	
important source of genomic variability as they are more likely to alter an encoded 4	
protein than a SNV, which has important implications in disease as well as evolution. 5	
Previous studies of MNVs have focused on their mutational origins and have not 6	
systematically evaluated their functional impact and contribution to disease. We 7	
identified 69,940 MNVs and 106 de novo MNVs in 6,688 exome sequenced parent-8	
offspring trios from the Deciphering Developmental Disorders Study comprising 9	
families with severe developmental disorders. We replicated the previously 10	
described MNV mutational signatures associated with DNA polymerase zeta, an 11	
error-prone translesion polymerase, and the APOBEC family of DNA deaminases. 12	
We found that most MNVs within a single codon create a missense change that 13	
could not have been created by a SNV. MNV-induced missense changes were, on 14	
average, more physico-chemically divergent, more depleted in highly constrained 15	
genes (pLI>=0.9) and were under stronger purifying selection compared to SNV-16	
induced missense changes. We found that de novo MNVs were significantly 17	
enriched in genes previously associated with developmental disorders in affected 18	
children. This demonstrates that MNVs can be more damaging than SNVs even 19	
when both induce missense changes and are an important variant type to consider 20	
in relation to human disease.   21	
  22	
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Main Text 1	

Introduction 2	
In genomic analyses, single nucleotide variants (SNVs) are often considered 3	
independent mutational events. However SNVs are more clustered in the genome 4	
than expected if they were independent (Michaelson et al. 2012; Seidman et al. 5	
1987; Amos 2010). On a finer scale, there is an excess of pairs of mutations within 6	
100 bp that appear to be in perfect linkage disequilibrium in population 7	
samples(Segurel, Wyman, and Przeworski 2014; Stone et al. 2012; Harris and 8	
Nielsen 2014).  While some of this can be explained by the presence of mutational 9	
hotspots, natural selection or compensatory mechanisms, it has been shown that 10	
multi-nucleotide mutations play an important role (Schrider, Hourmozdi, and Hahn 11	
2011). Recent studies found that 2.4% of de novo SNVs were within 5kb of another 12	
de novo SNV within the same individual (Besenbacher et al. 2016), and that 1.9% of 13	
de novo SNVs appear within 20bp of another de novo SNV (Schrider, Hourmozdi, 14	
and Hahn 2011). Multi-nucleotide variants (MNVs) occurring at neighbouring 15	
nucleotides are the most frequent of all MNVs (Besenbacher et al. 2016). Moreover, 16	
analysis of phased human haplotypes from population sequencing data also showed 17	
that nearby SNVs are more likely to appear on the same haplotype than on different 18	
haplotypes (Schrider, Hourmozdi, and Hahn 2011).  19	
 20	
The mutational origins of MNVs are not as well understood as for SNVs however 21	
different mutational processes leave behind different patterns of DNA change which 22	
are dubbed mutational ‘signatures’. Distinct mutational mechanisms have been 23	
implicated in creating MNVs. Polymerase zeta is an error-prone translesion 24	
polymerase that has been shown to be the predominant source of de novo MNVs in 25	
adjacent nucleotides in yeast (Harris and Nielsen 2014; Besenbacher et al. 2016). 26	
The most common mutational signatures associated with polymerase zeta in yeast 27	
have also been observed to be the most common signature among MNVs in human 28	
populations (Harris and Nielsen 2014), and were also found to be the most prevalent 29	
in de novo MNVs in parent-offspring trios (Besenbacher et al. 2016). A distinct 30	
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mutational signature has also been described that has been attributed to the action 1	
of APOBEC deaminases (Alexandrov et al. 2013). 2	
 3	
Although MNVs are an important source of genomic variability, their functional 4	
impact and the selection pressures that operate on this class of variation has been 5	
largely unexplored. In part, this is due to many commonly used workflows for variant 6	
calling and annotation of likely functional consequence annotating MNVs as 7	
separate SNVs (Sandmann et al. 2017). When the two variants comprising an MNV 8	
occur within the same codon – as occurs frequently given the propensity for MNVs 9	
at neighbouring nucleotides – interpreting MNVs as separate SNVs can lead to an 10	
erroneous prediction of the impact on the encoded protein. The Exome 11	
Aggregation Consortium (ExAC) systematically identified and annotated over 5,000 12	
MNVs in genes, including some within known disease-associated genes(Lek et al. 13	
2016). Although individual pathogenic MNVs have been described ('ClinVar'), the 14	
pathogenic impact of MNVs as a class of variation is not yet well understood.  15	
 16	
Here we analysed 6,688 exome sequenced parent-offspring trios from the 17	
Deciphering Developmental Disorders (DDD) Study to evaluate systematically the 18	
strength of purifying selection acting on MNVs in the population sample of 19	
unaffected parents, and to quantify the contribution of pathogenic de novo MNVs to 20	
developmental disorders in the children. 21	
  22	
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Results 1	
Identifying and categorising MNVs 2	
We identified 69,940 MNVs transmitted from the 13,376 unaffected trio parents as 3	
well as 106 de novo MNVs in the trio children. We defined MNVs as comprising two 4	
variants within 20bp of each other that phased to the same haplotype across >99% 5	
of all individuals in the dataset in which they appear (Figure 1a). This definition 6	
encompasses both MNVs due to a single mutational event and MNVs in which one 7	
SNV occurs after the other. The variants were phased using trio-based phasing, 8	
which meant that the ability to phase the variants was not dependent on the 9	
distance between them and it also provided an additional layer of quality assurance 10	
by conditioning on the variant being called in both parent and child. MNVs tend to 11	
have lower mapping quality than SNVs and so traditional variant filtering criteria 12	
based on quality metrics would potentially miss a substantial number of MNVs. This 13	
also enabled us to use the same filtering criteria for different classes of variants to 14	
ensure comparability. The distance of 20bp between variants was selected as we 15	
observed that pairs of SNVs that define potential MNVs are only enriched for 16	
phasing to the same haplotype at this distance (Figure 1b). De novo MNVs were 17	
defined as two de novo SNVs within 20bp of each other and were confirmed to be 18	
on the same haplotype using read based phasing. Due to the small numbers we 19	
were able to filter these by manually inspecting these variants using the Integrative 20	
Genomics Viewer (IGV). Ten of the de novo MNVs fell within genes previously 21	
associated with dominant developmental disorders. These were all validated 22	
experimentally using MiSeq or capillary sequencing. 23	
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 1	
Figure 1: Properties of MNVs (a) Schematic showing how sim-MNVs, two variants 2	
that occur simultaneously, are defined as having two variants with identical allele 3	
frequencies and con-MNVs, two variants that occur consecutively, as having 4	
different allele frequencies (b) Proportion of pairs of heterozygous variants (possible 5	
MNVs) that phase to the same haplotype as a function of distance separated by sim 6	
and con. (c) The number of sim-MNVs and con-MNVs by distance between the two 7	
variants. 8	
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Different mutational mechanisms are likely to create MNVs at different distances. To 1	
capture these differences, we stratified analyses of mutational spectra based on 2	
distance between the variants. The distance between the two variants that make up 3	
an MNV will be denoted as a subscript. For example, adjacent MNVs will be referred 4	
to as MNV1bp. MNVs can be created by either a single mutational event or by 5	
consecutive mutational events. For MNVs that were created by a single mutational 6	
event, the pair of variants are likely to have identical allele frequencies as they are  7	
unlikely to occur in the population separately (we assume recurrent mutations and 8	
reversions are rare). The proportion of nearby pairs of SNVs with identical allele 9	
frequencies that phase to the same haplotype remains close to 100% even at a 10	
distance of 100bp apart (Figure 1b).  We can assume that these variants most likely 11	
arose simultaneously and will be referred to as sim-MNVs. The proportion of pairs of 12	
SNVs with different allele frequencies that phase to the same haplotype approaches 13	
50% at around 20bp. These probably arose consecutively and will be referred to as 14	
con-MNVs. We observed that sim-MNVs account for 19% of all MNVs and 53% of 15	
MNV1bp. All de novo MNVs are, by definition, sim-MNVs as they occurred in the 16	
same generation.  17	
 18	
MNV  
type 

Distance (bp) Intra 
Codon  

Inter 
Codon 

Non-coding TOTAL  
(% of all MNVs) 

sim 1 1893 863 3850 6606 (9.4%) 

2 243 350 975 1568 (2.2%) 

3-20 - 1832 2970 4802 (6.9%) 
con 1 1155 735 3923 5813 (8.3%) 

2 449 685 2649 3783 (5.4%) 
3-20 - 15316 32052 47368 (67.7%) 

TOTAL  
(% of all MNVs) 

3740 
(5.3%) 

19781 
(28.2%) 

46419 
(66.4%) 

69940 

 19	
Table 1: Numbers of MNVs in each category type 20	
 21	
Analysis of MNV mutational spectra confirms mutational origins. 22	
Differences in mutational spectra across different subsets of MNVs can reveal 23	
patterns or signatures left by the underlying mutational mechanism. We analysed 24	
the spectra of both simultaneous and consecutive MNV1bp, MNV2bp and MNV3-20bp.  25	
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For sim-MNVs the proportion of variants that fell into these groups were 51%, 12% 1	
and 37% respectively. For con-MNVs, most variants were further away with the 2	
proportions being 10%,7% and 83% (Table 1). We observed significant differences 3	
between the mutational spectra of sim-MNVs and con-MNVs (Figure S1a, S1c).  4	
 5	
DNA polymerase zeta, a translesion polymerase, is a known frequent source of de 6	
novo MNVs and has been associated with the mutational signatures GC->AA and 7	
GA->TT (Harris and Nielsen 2014; Besenbacher et al. 2016). These signatures, and 8	
their reverse complements, account for 22% of all sim-MNV1bps (Figure S1b). These 9	
two signatures made up 18% of the de novo sim-MNV1bps which is comparable to 10	
the 20% of observed de novo MNVs in a recent study (Figure S2b) (Besenbacher et 11	
al. 2016).   12	
 13	
APOBEC are a family of cytosine deaminases that are known to cause clustered 14	
mutations in exposed stretches of single-stranded DNA. These mutational 15	
signatures are commonly found in cancer and more recently discovered in germline 16	
mutations (Roberts et al. 2013; Pinto et al. 2016). The most common mutation for 17	
sim-MNV2bp is CnC->TnT where n is the intermediate base between the two 18	
mutated bases and for ~8% of the mutations (Figure S1c). They  are found primarily 19	
in a TCTC>TTTT or CCTC>CTTT sequence context (Figure S1d). CC and TC are 20	
known mutational signatures of APOBEC(Harris 2013; Alexandrov et al. 2013; Pinto 21	
et al. 2016). However, the APOBEC signature described previously in germline 22	
mutations were found in pairs of variants that were a larger distance apart (10-50bp). 23	
C…C  -> T…T was also the most prolific mutation in sim-MNV3-20bp and had a 24	
significantly larger proportion of APOBEC motifs in both variants compared to con-25	
MNV3-20bp  (p value 0.0056) (Figure S1e). The mutation C…C -> T…T was the most 26	
frequent de novo MNV2-20bp (Figure S2c). However only three of the twelve de novo 27	
MNV2-20bp had APOBEC motifs.  28	
 29	
Mutational signatures in con-MNVs were primarily driven by CpG sites. In humans, 30	
the 5’ C in a CpG context is usually methylated and has a mutation rate that is 31	
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approximately ten-fold higher than any other context(Duncan and Miller 1980). For 1	
con-MNV2-30bp the most common mutation is C…C->T…T and is driven by two 2	
mutated CpG sites CG…CG> TG…TG (S1d).  For con-MNV1bps, 24% are accounted 3	
for by the mutation CA->TG, and its reverse complement (S1b).  These adjacent 4	
consecutive mutations most likely came about due to a creation of a CpG site by the 5	
first mutation. If the first mutation creates a CpG then the mutations would be 6	
expected to arise in a specific order: CA>CG>TG. We would therefore expect that 7	
the A>G mutation would happen first and that variant would have a higher allele 8	
frequency than the subsequent C>T. This was the case for 96% of the 1,445 CA>TG 9	
con-MNV1bps. This was also the case for 96% and 92% of the other less common 10	
possible CpG creating con-MNVs CC>TG and AG>CA. CA>TG is probably the 11	
most common variant as it relies on a transition mutation A>G happening first which 12	
has a higher mutation rate compared to the transversions C>G and T>G. We also 13	
observed that for con-MNV1-3bps  that were not as a result of CpG creating sites, the 14	
first variant increases the mutability of the second variant more than expected by 15	
chance. We compared the median difference in mutation probability of the second 16	
variant based on the heptanucleotide sequence context before and after the first 17	
variant occurred using a signed Wilcoxon Rank Test (Aggarwala and Voight 2016). 18	
The median increase in mutation probability of the second variant was 0.0002 19	
(signed Wilcoxon rank test p-value 9.8x10-17).  20	
 21	
Functional Consequences of MNVs 22	
The structure of the genetic code is not random. The code has evolved such that the 23	
codons that correspond to amino acids with similar physiochemical properties are 24	
more likely to be separated by a single base change(Amirnovin 1997; Wong 1975). 25	
SNVs that result in a missense change will only alter one of the bases in a codon, 26	
however MNVs that alter a single codon (‘intra-codon’ MNVs) will alter two of the 27	
three base pairs. Therefore they are more likely to introduce an amino acid that is 28	
further away in the codon table and thus less similar physicochemically to the 29	
original amino acid. Most intra-codon MNVs result in a missense change (Table 2). 30	
Intra-codon missense MNVs can be classified into two groups: ‘one-step’ and ‘two-31	
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step’ missense MNVs. One-step missense MNVs lead to an amino acid change that 1	
could also have been achieved by an SNV, whereas two-step MNVs generate 2	
amino-acid  3	
changes that could only be achieved by two SNVs. For example if we consider the 4	
codon CAC which codes for Histidine (H) then a single base change in the codon 5	
can lead to missense changes creating seven possible amino acids (Y,R,N,D,P,L,Q) 6	
(Figure 2a). There are one-step missense MNVs within that codon that can lead to 7	
most of the same amino acids (Y,R,N,D,P,L). However two-step missense MNVs 8	
could also lead to an additional eleven amino acids that could not be achieved by 9	
an SNV (F,S,C,I,T,K,S,V,A,E,G). For some codons there are also amino acid changes 10	
that can only be created by a single base change, for this Histidine codon this would 11	
be Glutamine (Q). These will be referred to as exclusive SNV missense changes. For 12	
this analysis we only considered sim-MNVs that most likely originated from the same 13	
mutational event. This is because we were primarily interested in the functional 14	
effects of mutations occurring simultaneously and where the amino acid produced 15	
would have changed directly from the original amino acid to the MNV consequence 16	
and not via an intermediate amino acid.  17	
 18	
 19	
MNV Consequence Sim- MNV (% of all sim-MNVs) Con-MNV (% of all con-MNVs) 

Synonymous 10 (0.5%) 5 (0.3%) 

1-step missense 815 (38.2%) 814 (50.7%) 
2-step missense 1265 (59.2%) 757 (47.2%) 

Stop Loss 2 (0.1%) 4 (0.2%) 
Stop Gain 44 (2.0%) 24 (1.5%) 

 20	
Table 2: Numbers and proportions of consequence types for MNVs within same 21	
codon 22	
 23	
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 1	
Figure 2: Classification of intra-codon MNV missense mutations�(a) Example of how 2	
one-step missense MNVs and two-step missense MNVs are classified using a single 3	
codon ‘CAC’. Venn diagram shows amino acids that can be created with either a 4	
single base change or a two base change in the codon ‘CAC’.�(b-d) Across all 5	
codons the distribution of physiochemical distances for the amino acid changes 6	
caused by different types of missense variants, dashed line indicates the median of 7	
the distribution (b) exclusive SNV missense (c) one-step MNV missense (d) two-step 8	
MNV missense  9	
 10	
MNVs can create a missense change with a larger physico-chemical distance 11	
compared to missense SNVs 12	
We assessed the differences in the amino acid changes between exclusive missense 13	
SNVs, one-step MNVs and two-step MNVs by examining the distribution of 14	
physicochemical distance for each missense variant type across all codons (Figure 15	
2b). We used a distance measure between quantitative descriptors of amino acids 16	
based on multidimensional scaling of 237 physical-chemical properties(Venkatarajan 17	
and Braun 2001). We chose this measure as it does not depend on observed 18	
substitution frequencies which may create a bias due to the low MNV mutation rate 19	
making these amino acid changes inherently less likely. We found that the median 20	
amino acid distance was significantly larger for two-step missense MNVs when 21	
compared to one-step missense MNVs (Wilcoxon test, p-value 1.10e-07). The 22	
median distance for one-step missense MNVs was also significantly larger from 23	
exclusive SNV missense changes (Wilcoxon test, p-value 0.0008) (Figure 2 b-d).  24	
 25	
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Missense MNVs are on average more damaging than missense SNVs 1	
If the physico-chemical differences between these classes of missense variants 2	
resulted in more damaging mutations in the context of the protein then we would 3	
expect to see a greater depletion of two-step missense MNVs compared to one-4	
step missense MNVs or missense SNVs in highly constrained genes. We looked at 5	
the proportion of variants of different classes that fell in highly constrained genes, as 6	
defined by their intolerance of truncating variants in population variation, as 7	
measured by the probability of loss-of-function intolerance (pLI) score (Figure 3a). 8	
Highly constrained genes were defined as those with a pLI score >=0.9 (Samocha et 9	
al. 2014). MNVs that impact two nearby codons (inter-codon MNVs) are likely to 10	
have a more severe consequence on protein function, on average, than an SNV 11	
impacting on a single codon. We observed that the proportion of inter-codon MNV1-12	
20bp that fall in highly constrained genes (pLI>0.9) is significantly smaller compared to 13	
missense SNVs (p-value 0.0007) (Figure 3a).  For intra-codon MNVs, we saw that the 14	
proportion of two-step missense MNVs observed in highly constrained genes was 15	
also significantly smaller than for missense SNVs (p-value: 0.0016). The proportion of 16	
one-step missense MNVs was not significantly different from either missense SNVs 17	
or two-step missense MNVs. The analysis was repeated using SNVs and MNVs that 18	
were identified by the Exome Aggregation Consortium (ExAC) that were subject to 19	
different filtering steps(Lek et al. 2016). The same relationship was observed, the 20	
proportion of ExAC two-step MNVs in high pLI genes was significantly smaller than 21	
for ExAC missense SNVs (p-value: 9.84e-06).   22	
 23	
We then compared variant deleteriousness across the variant classes using 24	
Combined Annotation Dependent Depletion (CADD) score that integrates many 25	
annotations such as likely protein consequence, constraint and mappability (Kircher 26	
et al. 2014). We found that the median CADD score for two-step missense MNVs 27	
was significantly higher than both one-step missense MNVs (Wilcoxon test, p value 28	
0.00017) and  29	

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 22, 2018. ; https://doi.org/10.1101/258723doi: bioRxiv preprint 

https://doi.org/10.1101/258723
http://creativecommons.org/licenses/by-nd/4.0/


	 13	

 1	

Figure 3: Quantifying the pathogenicity of MNVs�(a) Proportion of variants that fall 2	
in genes with pLI >= 0.9 over different classes of variants for both DDD and ExAC 3	
datasets. Green are SNVs, Purple are MNVs. Lines are 95% confidence intervals�(b) 4	
The median CADD score over different classes of variants identified from DDD data 5	
with bootstrapped 95% confidence intervals�(c) Singleton proportion for different 6	
classes of DDD variants. In yellow are SNVs stratified by binned CADD scores with 7	
their corresponding singleton proportions. Lines are 95% confidence intervals.   8	
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 1	
missense SNVs (Wilcoxon test, p value 2.70x10-8). two-step MNV missense had a 2	
median CADD score of 22.8 compared to a one-step missense median CADD score 3	
of 20.7 and a SNV missense median CADD score of 20.2.  4	
 5	
The proportion of singletons across variant classes is a good proxy for the strength 6	
of purifying selection acting in a population (Lek et al. 2016). The more deleterious a 7	
variant class, the larger the proportion of singletons. We found that the singleton 8	
proportion for two-step missense MNVs was nominally significantly higher compared 9	
to missense SNVs (p-value 0.02). The increase in proportion corresponded to an 10	
increase of about two in the interpolated CADD score. This is concordant with the 11	
increase in CADD scores that was computed directly above.  12	
 13	
Contribution of de novo MNVs to developmental disorders  14	
We estimate the genome-wide mutation rate of sim-MNV1-20bp to be 1.78x10-10 15	
mutations per base pair per generation by scaling the SNV mutation rate based on 16	
the relative ratio of segregating polymorphisms for MNVs and SNVs (Watterson 17	
1975). For this estimate we only used variants that fell into non-constrained genes 18	
(pLI<0.1) and non-coding regions to avoid any bias from selection. We assume that 19	
recurrent mutation is insufficiently frequent for both classes of variation to alter the 20	
proportionality between the number of segregating polymorphisms and the 21	
mutation rate. This estimate is ~1.6% the mutation rate estimate for SNVs and 22	
accords with the genome-wide proportions of SNVs and MNVs described previously 23	
(Schrider, Hourmozdi, and Hahn 2011). We were concerned that the selective 24	
pressure on MNVs and SNVs would still be different in non-constrained genes and 25	
this might affect our mutation rate estimate. To see if this was the case, we applied 26	
the same method to estimate the SNV missense mutation rate across coding region 27	
and found that our estimate was concordant with that obtained from using an SNV 28	
tri-nucleotide context mutational model (Samocha et al. 2014). 29	
We also estimated the MNV mutation rate using the set of de novo MNVs that fell 30	
into non-constrained genes (pLI<0.1) that have not previously been associated with 31	
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dominant developmental disorders and obtained a concordant mutation rate 1	
estimate of 1.80x10-10 (confidence interval 0.88, 2.70 x 10-10 ) mutations per base pair 2	
per generation, very similar to the estimate based on segregating polymorphisms 3	
described above. 4	
 5	
We identified 10 de novo MNVs within genes known to be associated with dominant 6	
developmental disorders (DD-associated) in the DDD trios (Table 3), which is a 7	
significant (Poisson test, p value 1.03 x 10-3) 3.7 fold enrichment compared with what 8	
we would expect based on our estimated MNV mutation rate. This enrichment is 9	
similar in magnitude to that observed for de novo SNVs in the same set of DD-10	
associated genes (Figure 4). We evaluated whether DD-associated genes are 11	
enriched for the primary mutagenic dinucleotide contexts associated with the 12	
signatures of polymerase zeta to ensure this observation was not driven by 13	
sequence context. We found that DD-associated genes had a small (1.02 fold) but 14	
significant (proportion test, p-value 1.9x10-59) enrichment of polymerase zeta 15	
dinucleotide contexts compared to genes not associated with DD. However, this 16	
subtle enrichment is insufficient to explain the four-fold enrichment of de novo 17	
MNVs in these genes. The enrichment for de novo MNVs remains significant after 18	
correcting for sequence context (Poisson test, p value 2.28 x 10-3).  19	
 20	
Eight of the 10 de novo MNVs in DD-associated genes were 1bp apart while the 21	
other two were 3 and 13bp apart. All of these de novo MNVs were experimentally 22	
validated in the child (and their absence confirmed in both parents) using either 23	
MiSeq or capillary sequencing. All ten MNVs are thought to be pathogenic by the 24	
child’s referring clinical geneticist. Seven of the MNVs impacted two different 25	
codons while three fell within the same codon, one of which created a two-step 26	
missense change. Of those MNVs that impacted two codons, five caused a 27	
premature stop codon. Interestingly we found a recurrent de novo MNV in the gene 28	
EHMT1 in two unrelated patients that bore the distinctive polymerase zeta signature 29	
of GA>TT. 30	
 31	
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 1	
Figure 4: Enrichment of de novo MNVs in DDD study Ratio of observed number of 2	
de novo MNVs vs the expected number of de novo MNVs based on the estimate of 3	
the MNV mutation rate. Compared to enrichment of SNVs in DD genes in 4	
consequence classes synonymous, missense and stop gain.  5	

De Novo MNVs are underrepresented in clinically reported variants in DD-6	
associated genes 7	
To assess whether de novo MNVs are being underreported in genes associated with 8	
DD, we downloaded all clinically reported variants in DD-associated genes from 9	
ClinVar (accessed September 2017). We looked at the number of intra-codon 10	
missense MNVs in genes that have at least one reported pathogenic missense 11	
mutation.  This was to ensure that missense mutations in that gene would likely 12	
cause DD. We focused on intra-codon MNVs as it is the interpretation of this class of 13	
MNV that is most impacted by failing to consider the variant as single unit. We 14	
calculated the expected number of pathogenic de novo MNVs in these genes based 15	
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on the MNV mutation rate and the number of pathogenic SNV missense variants 1	
reported. We observed a significant depletion of only 24 reported pathogenic de 2	
novo MNVs compared to the expected number of 52 across 321 genes (p-value 3	
2.8x10-5, Poisson test).  4	
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Table 3: De Novo MNVs that fall in genes associated with developmental disorders 1	

 Decipher ID Distance 
between 
variants 

  Chrom Positions Gene Ref Alt Consequence 
(first variant/second variant) 

MNV falls 
within/between codon 

Clinician pathogenicity 
annotation on Decipher 

 261423 1   5 161569244, 161569245 GABRG2 CC TT missense (two step) Within codon Likely pathogenic (Full)  

 292136 1   14 29237129, 29237130 FOXG1 TC CT missense (one step) Within codon Likely pathogenic (Full) 

 280956 1   19 13135878, 13135879 NFIX GC TT missense (one step) Within codon Likely pathogenic (Partial) 

 270803 1   3 49114312, 49114313 QRICH1 GC AA stop gain/missense Between codon Likely pathogenic (Partial) 

 258688 1   5 67591021, 67591022 PIK3R1 TA GC missense/missense Between codon Likely pathogenic (Full) 

 274482 1   16 30749053, 30749054 SRCAP GG AT synonymous/stop  gain Between codon Definitely pathogenic (Full) 

 274606 1   9 140637863, 140637864 EHMT1 GA TT missense/stop gain Between codon Likely pathogenic (Full)  

 274453 1   9 140637863, 140637864 EHMT1 GA TT missense/stop gain Between codon Definitely pathogenic (Full)  

 260753 13   6 157454286, 157454297 ARID1B G..C T..G missense/stop gain Between codon Definitely pathogenic (Full) 

 270916 3   1 7309651, 7309654 CAMTA1 G..G A..A missense/missense Between codon Likely pathogenic (partial)  
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Discussion 1	
MNVs constitute a unique class of variant, both in terms of mutational mechanism 2	
and functional impact. We found that 18% of segregating MNVs were at adjacent 3	
nucleotides. We estimated that 19% of all MNVs represent a single mutational 4	
event, increasing to 53% of MNV1bp. We estimated the sim-MNV germline mutation 5	
rate to be 1.78x10-10 mutations per base pair per generation, roughly 1.6% that of 6	
SNVs. Most population genetics models assume that mutations arise from 7	
independent events (Harris and Nielsen 2014). MNVs violate that assumption and 8	
this may affect the accuracy of these models. Recent studies suggest that certain 9	
phylogenetic tests of adaptive evolution incorrectly identify positive selection when 10	
the presence of these clustered mutations are ignored (Venkat, Hahn, and Thornton 11	
2017). Correcting these population genetic models will require knowledge of the 12	
rate and spectrum of MNV mutations. We replicated the observations from previous 13	
studies that several different mutational processes underlie MNV formation, and that 14	
these tend to create MNVs of different types. Error-prone polymerase zeta 15	
predominantly creates sim-MNV1bp (Harris and Nielsen 2014; Besenbacher et al. 16	
2016). APOBEC-related mutation processes have been described to generate MNVs 17	
in the range of 10-50bp (Roberts et al. 2013; Alexandrov et al. 2013; Harris 2013), 18	
but here we show that an enrichment for APOBEC motifs can be detected down to 19	
MNV2bp. Nonetheless, there remain other sim-MNVs that cannot be readily 20	
explained by either of these mechanisms, and it is likely that other, less distinctive, 21	
mutational mechanisms remain to be delineated as catalogs of MNVs increase in 22	
scale. These future studies should also investigate whether these MNV mutational 23	
signatures differ subtly between human populations as has been recently observed 24	
for SNVs (Harris 2015). Consecutive MNVs, by contrast, exhibit greater similarity with 25	
known SNV mutation processes, most notably with the creation and subsequent 26	
mutation of mutagenic CpG dinucleotides. The non-Markovian nature of this 27	
consecutive mutation process challenges Markovian assumptions that are prevalent 28	
within standard population genetic models (Rizzato, Rodriguez, and Laio 2016). 29	
 30	
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Our findings validated the intuitive hypothesis that MNVs that impact upon two 1	
codons within a protein are likely, on average, to have a greater functional impact 2	
than SNVs that alter a single codon. We evaluated the functional impact of intra-3	
codon MNVs using three complementary approaches: (i) depletion within genes 4	
under strong selective constraint, (ii) shift towards rarer alleles in the site frequency 5	
spectrum and (iii) enrichment of de novo mutations in known DD-associated genes 6	
in children with DDs. We demonstrated that intra-codon MNVs also tend to have a 7	
larger functional impact than SNVs, and that MNV missense changes that cannot be 8	
achieved by a single SNV are, on average, more deleterious than those that can. 9	
This is most likely due to the fact that they are on average more physico-chemically 10	
different compared to amino acids created by SNVs and are not as well tolerated in 11	
the context of the encoded protein. These ‘two-step’ missense MNVs make up more 12	
than half of all sim-MNVs that alter a single codon. We also identified 10 pathogenic 13	
de novo MNVs within the DDD study, including both intra-codon and inter-codon 14	
MNVs. With larger trio datasets we will have more power to tease apart more subtle 15	
differences in pathogenic burden and purifying selection between different classes 16	
of MNVs and SNVs, for example, to test whether two-step missense de novo MNVs 17	
are more enriched than missense SNVs or one-step missense MNVs in 18	
developmental disorders. More data will also allow us to assess the population 19	
genetic properties of inter-codon MNVs.  20	
 21	
Our findings emphasise the critical importance of accurately calling and annotating 22	
MNVs within clinical genomic testing both to improve diagnostic sensitivity and to 23	
avoid misinterpretation. We observed that pathogenic de novo MNVs are 24	
significantly underrepresented among reported pathogenic clinical variants in 25	
ClinVar, indicating that current analytical workflows have diminished sensitivity for 26	
identifying pathogenic MNVs. In a recent comparison of eight different variant 27	
calling tools it was noted that only two callers, freeBayes and VarDict, report two 28	
mutations in close proximity as MNVs. The others reported them as two separate 29	
SNVs (Sandmann et al. 2017). Both freeBayes and VarDict are haplotype aware 30	
callers which is necessary for MNV detection (Garrison and Marth 2012; Lai et al. 31	
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2016). Even if variant callers do not identify MNVs directly, software also exists that 1	
can correct a list of previously called SNVs to identify mis-annotated MNVs(Wei et 2	
al. 2015). To further our understanding of the role of MNVs in evolution and disease, 3	
calling and annotating these variants correctly is a vital step.4	
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Subjects and Methods 1	
Variant and De Novo Calling in DDD 2	
The analysis in this report was conducted using exome sequencing data from the 3	
DDD study of families with a child with a severe, undiagnosed developmental 4	
disorder. The recruitment of these families has been described previously(Wright et 5	
al. 2015). 7833 trios from 7448 families and 1791 singleton patients (without 6	
parental samples) were recruited at 24 clinical genetics centres within the United 7	
Kingdom National Health Service and the Republic of Ireland. Families gave 8	
informed consent to participate, and the study was approved by the UK Research 9	
Ethics Committee (10/H0305/83, granted by the Cambridge South Research Ethics 10	
Committee and GEN/284/12, granted by the Republic of Ireland Research Ethics 11	
Committee). In this analysis, we only included trios from children with unaffected 12	
parents in our analysis to avoid bias from pathogenic inherited MNVs. This was 13	
defined as those trios where the clinicians did not report any phenotypes for either 14	
parent. This resulted in a total of 6,688 complete trios. Sequence alignment and 15	
variant calling of single nucleotide variant and insertions/deletions were conducted 16	
as previously described. De novo mutations were called using DeNovoGear and 17	
filtered as before (Deciphering Developmental Disorders 2017). 18	
	19	
Identifying MNVs 20	
MNVs were defined as two nearby variants that always appear on the same 21	
haplotype. To identify all possible candidate MNVs we searched for two 22	
heterozygous variants that were within 100bp of each other in the same individual 23	
across 6,688 DDD proband VCFs and had a read depth of at least 20 for each 24	
variant. These pairs of variants were classified as MNVs if both variants appeared on 25	
the same haplotype for more that 99% of individuals in which they appear. This was 26	
determined by phasing variants using parental exome data. We were able to 27	
determine phase for approximately 2/3 of all possible MNVs across all individuals. 28	
Those that could not be phased were discarded. Read based phasing for these 29	
variants proved to be more error-prone than trio-based phasing and so was not 30	
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performed. After examining the properties of these MNVs we restricted the analyses 1	
to those that were 1-20bp of each other. We identified 69,940 unique MNVs.  2	
 3	
A set of 693,837 coding SNVs was obtained from the DDD probands with the exact 4	
same ascertainment as those for MNVs (read depth >20, phased to confirm 5	
inheritance). These were used when comparing MNV properties to SNVs to reduce 6	
any ascertainment bias.  7	
 8	
To identify de novo MNVs we looked within a set of 51,942 putative DNMs for pairs 9	
of de novo variants within 20bp of each other. This set of DNMs had been filtered 10	
requiring a low minor allele frequency (MAF), low strand bias and low number 11	
parental alt reads. We did not impose stricter filters at this stage as true de novo 12	
MNVs tend to have worse quality metrics than true de novo SNVs. We found 301 13	
pairs, approximately 1.2% of all candidate DNMs. A third of these were 1-2bp apart 14	
(Figure 3a). For analysis of mutational spectra we did not filter these further however 15	
when looking at functional consequences of these de novo MNVs we wanted to be 16	
more stringent and examined IGV plots for all de novo MNVs of which 106 passed 17	
IGV examination.  18	
 19	
Estimating the MNV mutation rate   20	
We estimated the MNV mutation rate by scaling the SNV mutation rate estimate of 21	
1.1x10-8 mutations per base pair per generation by the ratio of MNV segregating 22	
sites/ SNV segregating sites observed in our data set(Roach et al. 2010). This 23	
approach is based on a rearrangement of the equation for the Watterson 24	
estimator(Watterson 1975). This is outlined below where ! is the watterson 25	
estimator, " is the mutation rate, K denotes the number of segregating sites, Ne is 26	
the effective population size, n is the sample size and an is n-1th harmonic number.  27	

! =
$%&'
()

= 4+,"%&'	28	

"%&' =
$%&'
()4+,

= 1.1×1023	29	

()4+, =
$%&'

1.1×1023
	30	
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"4&' =
$4&'
()4+,

	1	

												=
$4&'
$%&'

1.1×1023 2	

To avoid any potential bias from selection we excluded variants that fell into 3	
potentially constrained genes (pLI>0.1). The MNV mutation rate was estimated to 4	
be 1.78 x 10-10 mutations per base pair per generation.  5	
 6	
We estimated the SNV missense mutation rate in the same way by scaling the 7	
overall SNV mutation rate by the ratio of the number of missense SNVs in 8	
unconstrained genes compared to all SNVs and obtained an estimate of the 9	
missense mutation rate across coding regions to be 1.07x10-8 per coding base pair 10	
per generation which agrees with the estimate of 1.09x10-8 per coding base per 11	
generation which was calculated using the trinucleotide context mutational model as 12	
described by Samocha et al(Samocha et al. 2014).  13	
 14	
Enrichment of de novo MNVs   15	
To test for the enrichment of de novo MNVs we used a Poisson test for three 16	
categories of genes: all genes, genes known to be associated with developmental 17	
disorders and genes that are not known to be associated with developmental 18	
disorders. Genes known to be associated with developmental disorders, in which de 19	
novo mutations can be pathogenic, were defined as those curated on the 20	
Gene2Phenotype website(EBI 2017) and listed as monoallelic that were ‘confirmed’ 21	
and ‘probable’ associated with DD. We did the same tests for synonymous, 22	
missense and protein-truncating variants using gene-specific mutations rates for 23	
each consequence type derived by Samocha et al, 2014 (Samocha et al. 2014) 24	
(Figure S3). Significance of these statistical tests was evaluated using a Bonferroni 25	
corrected p-value threshold of 0.05/12 to take into account the 12 tests across all 26	
three subsets of genes, SNV consequence types and MNVs (Figure S3). To correct 27	
for sequence context when comparing DD genes and non-DD genes, we adjusted 28	
the expected number of MNVs in the DD genes category based on the excess of 29	
polymerase zeta dinucleotide contexts. We also estimated the MNV mutation rate 30	
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using all variants as well as a more stringent estimate just using variants that fell into 1	
non-coding regions. When we redid the enrichment analysis using these mutation 2	
rate estimates of varying stringency, the enrichment of de novo MNVs in DD-3	
associated genes remained significant (all variants p-value: 2.7x10-4, non coding 4	
control regions p-value: 4.9x10-3 , Figure S4a). The SNV mutation rate estimate 5	
varies across studies therefore we also recalculated the MNV mutation rates using 6	
SNV mutation rate estimates of 1.0x10-8 and 1.2x10-8 mutations per base pair per 7	
generation (Segurel, Wyman, and Przeworski 2014). These were also recalculated 8	
across the three different variant subsets (all variants, excluding variants in genes 9	
with pLI>0.1, variants in non-coding control regions).  The enrichment ratio of de 10	
novo MNVs that fall into DD genes ranged from 2.7 to 4.8 however always remained 11	
significantly greater than 1 and the confidence intervals consistently overlapped with 12	
that of the SNV missense enrichment ratio (Figure S4b).  13	
 14	
Analysis of the number of clinically reported de novo MNVs 15	
We downloaded all clinically reported variants from the website ClinVar and 16	
subsetted these variants to those that fell into autosomal dominant DDG2P genes 17	
and those that were annotated as ‘definitely pathogenic’ or ‘likely pathogenic’.  This 18	
set was then subsetted to 321 genes with at least one pathogenic missense 19	
mutation. This was to ensure that missense mutations cause disease in these genes. 20	
We then counted the numbers of SNV missense variants and used this to estimate 21	
the number of expected missense MNVs across those genes. This was scaled using 22	
the ratio of the SNV to MNV missense mutation rate across these genes. The MNV 23	
missense mutation rate calculated as:  24	

"55678	4&'	9:;;,);, = 	 "4&' ∗
2
3
∗ 0.97 ∗ ABCDEF	GH	DE	IIJ2K	FLELM ==	 25	

Where 2/3 is the probability of an MNV falling within a codon and 0.97 is the 26	
probability that a within-codon MNV results in a missense change. The expected 27	
number of missense MNVs in DDG2P genes was then calculated as follows: 28	

NOHLAPLC	#RLHBRPLC	H(PℎBFLEDA	TDMMLEML	U+VM29	
= #RLHBRPLC	TDMMLEML	W+VM ∗

"55678	4&'	9:;;,);,	
"55678	%&'	9:;;,);,

 30	
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 1	
This assumes that the enrichment of MNV and SNV missense mutations in these 2	
genes  are comparable as we have observed in DDD.  This yielded an expected 3	
number of 51.94 reported pathogenic MNVs compared to 24 observed reported 4	
pathogenic MNVs. To test if this difference was significant we performed a poisson 5	
test (p-value 2.8x10-5). 6	
 7	
 8	
 9	
  10	
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