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ABSTRACT		

Sequencing the genomes of individual cells enables the direct determination of genetic heterogeneity 
amongst cells within a population. We have developed an injection-moulded valveless microfluidic 
device in which single cells from colorectal cell (LS174T, LS180 and RKO) lines and fresh colorectal 
cancers are individually trapped, their genomes extracted and prepared for sequencing, using multiple 
displacement amplification (MDA). Ninety nine percent of the DNA sequences obtained mapped to a 
reference human genome, indicating that there was effectively no contamination of these samples 
from non-human sources. In addition, most of the reads are correctly paired, with a low percentage of 
singletons (0.17 ± 0.06 %) and we obtain genome coverages approaching 90%. To achieve this high 
quality, our device design and process shows that amplification can be conducted in microliter 
volumes as long as extraction is in sub-nanoliter volumes. Our data also demonstrates that high 
quality single cell sequencing can be achieved using a relatively simple, inexpensive and scalable 
device. 
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INTRODUCTION 

Standard molecular methods that analyse DNA sequences in populations of cells need sufficiently 
deep sequencing to detect heterogeneity at any given location of the genome and do not clearly 
define the co-occurrence of mutations in a given cell, and so do not generally define the genetic 
heterogeneity in a tissue, especially cancers.	

Cancers arise from a somatic evolutionary process in which mutations, or relatively stable epigenetic 
changes, are successively selected for and therefore occur with relatively high frequency in the 
population of cancer cells. It is these genetic and epigenetic changes that determine the properties of 
a cancer and so are the major determinants of prognosis and of the responses to different treatments. 
With the extraordinary development of DNA sequencing technology, there is now extensive data on 
the types and frequencies of the major, so called ‘driver’, mutations found in a wide variety of cancers, 
and in some cases very clear evidence of the relationship between the mutational content of a cancer, 
and its response to therapy. As a result, there is now great interest in DNA sequencing of single 
cancer cells to determine the nature and extent of clonal genetic heterogeneity in a given cancer. 

Treatment can then be directed at the different clones that co-exist in the cancer and thus single cell 
DNA sequencing (1) becomes an extremely important tool for matching the treatment of a cancer to 
its genetic make up. This is the essence of precision medicine as applied to cancer treatment. There 
is also an interest in single cell mRNA analysis (2), which can help to identify gene expression 
differences, due mainly to DNA methylation as well as interest in examining methylation directly (3). 
There has therefore been increasing focus on the development of methods that obtain molecular 
information from single cells by isolating and sequencing their DNA and mRNA content (4-6). Similarly, 
in metagenomics, where bacteria, fungi and other microbes may not be culturable, a robust single cell 
analysis is important to evaluate the genomes of the distinct microbes present in a sample (7).  In 
addition to untangling heterogeneity, the single cell methods are relevant to cases when only a small 
number of cells is available, for example in the analysis of circulating tumour cells (8,9) and circulating 
fetal cells in maternal blood (10).  

A single diploid human cell contains around 7 picograms of genomic DNA and some form of 
amplification is therefore needed to obtain the amounts of material necessary for current sequencing 
methods. Amplification by multiple displacement amplification (MDA) (11) and PCR based methods 
such as DOP-PCR (12), Picoplex (13) and, Multiple Annealing and Looping-based Amplification 
Cycles (MALBAC) (14) have been used relatively effectively to do single cell whole genome DNA 
sequencing. Genome coverage of >90% has been claimed to be routinely obtained from single cells 
using MDA and MALBAC, with a MDA kit adapted for single cells reportedly giving superior all round 
performance (12). However, issues around uniformity of coverage, allelic dropout, false positives 
(amplification and/or sequencing errors) and unmappable reads (e.g. from primer-dimers), remain 
(15).  

The MDA process results in uneven coverage across the genome. Some of the amplification biases 
are presumed to be a result of stochastic effects due to the sampling of a small number of molecules. 
In MALBAC amplification bias can be corrected by normalizing the GC content (16). Another 
approach to dealing with this problem is the use of barcoding or identification tags (17-19). 

Contamination, if not carefully controlled can lead to difficulty in interpreting results and limits the 
sequencing capacity that is available for a single cell of interest. To combat this, single cell genomics 
is preferably conducted in a clean room (15), in microwells (20) or in a microfluidic device (7,11,16).  
Contamination can also be assessed by the use of appropriate known genetic markers. 

Existing microfluidic devices (7,16) requiring multiple-PDMS layers (21), one layer for the passage of 
fluids and another for valves to control the fluids through the device, are difficult and expensive to 
manufacture because PDMS casting is not a scalable industrial process. We introduce a novel valve-
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less microfluidic device for single cell genomics that is manufactured in a thermoplastic material by 
injection moulding, a process that is scalable at low cost (22). Our chip design is based on a 
hydrodynamic cell trap (23) derived from a previously described device for cell culture (24). Our 
device design enables the process to be carried out on an optical microscope or in “Cell-O-Matic” a 
specially built single cell processing instrument (Philips BioCell), in either case allowing us to monitor 
both cell trapping and genome extraction.  

Our single cell sequencing data obtained using the Cell-O-Matic instrument show that we can achieve 
reasonable levels of whole genome coverage in a significant proportion of cells. Our results compare 
well with other reported whole genome sequencing from single cells using instrumentation in which 
the amplification is performed in nanoliter-reaction chambers. In our device only the DNA extraction 
occurs in a sub-nanoliter volume of solution, while the amplification is performed by adding microliter 
volumes of reagents in the device outlet. We conclude that the critical step in single cell whole 
genome amplification with regard to sequence allelic dropout, contamination and genome coverage is 
to elute/extract DNA in sub-nanoliter volumes in the confinement of the microfluidic device, while 
performing the amplification in such small volumes may only be required for high reduction of reagent 
consumption, but at the cost of higher device complexity and cost. 

MATERIAL AND METHODS 

Device Fabrication 

The device is fabricated by injection moulding of TOPAS 5013, a Cyclic Olefin Copolymer with a glass 
temperature of 130◦C as described elsewhere (25) but with some modifications. First, the 
microchannel network is defined to have a depth of 30 µm in a silicon substrate by UV lithography and 
reactive ion etching. All dimensions of the microchannel network can be found in Supplementary 
Figure S1A-F. Next, a Ni/V seed layer is deposited on the silicon master and Nickel is electroplated at 
a final thickness of 300 µm. Silicon is removed by KOH etching. 

The Nickel shim is cut to fit in the mould of the injection moulder (Engel, Germany). The mould 
creates a 2 mm-thick, 50 mm diameter disc replica of the shim and 12 holes through the disc used to 
connect the microfluidics. It also creates for each hole, a female LUER connector on the side opposite 
the microfluidics side. The temperature of the mould is regulated such that injection moulding is 
performed using a variotherm process (26) allowing the polymer part to be moulded and removed 
from the mould at different temperatures. The shim is replicated using a mould temperature of 115◦C, 
a shim temperature of 155◦C, a holding pressure of 1150 bar and a cooling time of 14 seconds so the 
demoulding temperature is below 126◦C. 

The microfluidics chips are sealed with a 150 µm-thick TOPAS 5015 foil using UV assisted thermal 
bonding. The initial roughness of the foil is reduced by a hot embossing process on a hydraulic press 
(P/O/Weber, Germany) at 140◦C and 5.1 MPa using two smooth Nickel discs electroplated from 
silicon wafers. The glass transition temperature (Tg) of TOPAS 5013 is 130◦C. The devices and lids 
are exposed to UV-light from a mercury arc lamp for 30 s and then placed in an Aluminium holder that 
fits to the LUER fittings. A smooth nickel disc and a thin PDMS plate were placed on top of the lid to 
ensure a uniform pressure across the device during bonding at 125◦C and 1.5 MPa for 3 minutes.	

Instrument 

The microfluidic device can either be mounted on a conventional epi-fluorescence microscope or on a 
custom designed instrument. The instrument is a modified Philips BioCell Fluidscope (6) 
(Supplementary Figure S1G). In brief, the single use microfluidic chip is mounted on a stage equipped 
with translation (y-axis) as well as temperature control via three Peltier elements. The temperature 
inside the wells of the chip is calibrated and regulated by a proportional–integral–derivative (PID) 
controller using the temperature of the stage as input. The lid closing the microfluidic chip wells is 
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connected to a multi-channel pressure controller (MFCS-EZ, 300 mbar range, Fluigent). The chip is 
imaged using an objective (10x, NA 0.45 Wild Heerbruug) mounted on a translation stage (x-axis) and 
focusing by z-translation. Epi-fluorescence imaging is performed with an excitation at 470 nm (LED, 
Thorlabs model M470L3) equipped with collimator lenses. A dual band filter cube (Semrock, 
excitation filter model 733-495/605-Di01-25x36, dichroic mirror model 733-474/23-25, emission filter 
model 733-527/645-25) allows imaging of green fluorescence and bright field. The bright-field 
illuminator delivers light from the top side of the device through a window in the lid using a LED with 
center wavelength of 505 nm and a 20 nm bandwidth. A CMOS imaging sensor (Fairchild, CIS1910) 
with 1920 x 1080 pixels, and pixel size 6.5 µm, is used with a home-built image board. Finally, all the 
elements are controlled through software which guides the user through a pre-established workflow 
for priming, cell capture, lysis and amplification.	

Device Operation (see supplementary Protocol S8 for the detailed operation procedure) 

Solutions are pipetted into the LUER connectors used as reservoirs containing up to 50 µL of solution. 
Air pressure supplied by the pressure controller attached to the wells drives the flow inside the device. 
We apply pressure to the cell inlet as well as the buffer inlets B1 and B2 (Figure 1) while the waste 
and the trap outlets are always left at atmospheric pressure. For cell capture, pressures in the range 
of 5 to 10 mbar were applied, corresponding to sample flow rates of 2.9 - 5.7 µL/h. Details of the 
pressure settings used are given in the supplementary Protocol S8.	

Wet lab  

Cells from colorectal cancer cell lines LS174T, LS180 or RKO (concentration: 6x105 cells/mL) were 
stained with 1 mM calcein AM and suspended in BD FACSFlow buffer. After cell capture, the trap 
occupancy is checked by bright field and fluorescence imaging of the calcein signal. After trapping 
cells, the B1 and B2 inlets were emptied leaving negligible volumes in the outlets. 

On-chip protocol 1: (39 cells, processed in Oxford) 

The devices were primed with degassed 0.1% v/v Triton X-100 in BD FACSFlow buffer (1 minute at 
200 mbar) followed by degassed 0.1 mg/mL BSA in BD FACSFlow buffered (2 minutes at 200 mbar). 

The cell suspensions were loaded onto the chip and cells were trapped (see supplementary Protocol 
S8). 

The alkaline lysis buffer of a commercial MDA kit was used to lyse the trapped cells (REPLI-g 
UltraFast Mini Kit, Qiagen). The lysates were pushed with 20 µl of the alkaline lysis buffer, incubated 
for 20 minutes at room temperature, and then pushed with 20 µl of the neutralisation buffer for 20 
minutes at room temperature. (For further details see supplementary Protocol S8). 

On chip protocol 2: (13 cells, processed in Eindhoven) 

In a second experiment, we process cells in a different laboratory using a different cell lysis based on 
proteolysis. The protocol is essentially the same as protocol 1 with a few modifications. The device 
was primed with ethanol from all inlets (cells, B1 and B2) then BD FACSFlow buffer was loaded in all 
wells before cells were loaded. In all the samples, the cell cytosol is removed by a solution of 0.5% 
triton-X100 in 0.5xTBE buffer, containing 1 µM of YOYO-1 dye (6). The DNA was eluted from the cell 
traps by proteolysis buffer (13 cells) containing >200 µg/mL protease K, 0.5% v/v Triton-X100 in 
0.5xTBE buffer. Then alkaline lysis solution from the REPLI-g Single cell kit was added to the outlet 
well (6).  

Whole genome amplification in device outlets 
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Whole Genome Amplification (WGA) was performed using REPLI-g Single cell or the Qiagen REPLI-g 
UltraFast Mini Kit (Qiagen) which are based on Multiple Displacement Amplification (MDA) technology 
to amplify gDNA from small samples. 10 µL of reaction mix with Phi29 polymerase was added to the 
chip outlets containing gDNA. The device was left on the heated stage of the instrument (alternatively 
placed in a thermal cycler) for 8 hours at 30°C. The final step was 5 min at 65°C to inactivate the 
polymerase. All WGA steps were done on chip. Following this the amplified DNA was transferred to 
PCR tubes, tested for quality and, subject to passing quality control, sent to Fasteris for library 
preparation and DNA sequencing. 

Multiplex chromosome check at Oxford (off-chip): 

To confirm the quality of WGA products, multiplex PCR was performed. (See 
http://www.sigmaaldrich.com/technical-documents/articles/life-science-innovations/qualitative-
multiplex.html). Five primers targeting 5 chromosomes (2, 4, 12, 13 and 22) were used. PCR products 
(295 bp Chr13, 235 bp Chr12, 196 bp Chr2, 150 bp Chr22 and 132 bp Chr4) were visualized on a 4% 
agarose gel (see supplementary Protocol S8). Those 5 positions were chosen based on 
https://www.sigmaaldrich.com/technical-documents/articles/biology/ffpe-wga-poster.html.  

Library preparation and sequencing 

Samples for sequencing were quantified using a Qubit fluorometer instrument before starting the 
library preparation procedure. Depending on the initial sample concentration, the library preparation 
was done using the Illumina Nextera or the Illumina Nextera XT kits. Sequencing reactions were 
performed for all samples using Illumina HiSeq technology as 2x125 base pairs high-output runs. 

Bioinformatics 

All libraries sequenced were then mapped against the human genome GRCh37.  

We report on the percentage of reads mapped to the human genome (Figure 2A) and the total 
number of reads (Figure 2B). We also use the cumulative fraction of bases covered to generate 
Lorenz plots (Figure 3) and the coverage plots (Figure 4). 

For all samples, allelic dropout estimates (Figures 5 and 6) were based on a set of validated 
heterozygous variants, selected for each cell line: 12 SNPs were used for the LS174T and LS180 
cells, 13 for the RKO cells (see supplementary Table S10). The known variants were searched for in 
the raw variant results, namely without applying any filter on the variant quality.  All selected variants 
were correctly detected in the respective bulk samples as heterozygous variants.  For single cells, a 
drop of a heterozygous variant to a homozygous call would reflect dropout of a single allele, while 
absence of any call would represent a dropout of both alleles (resulting in no coverage of the position). 
The procedure used for generating Figure 5 and 6 is described in detail in the results section. 

From the Lorenz and the coverage plot we calculate the Gini coefficient G and the Eveness score E 
respectively. For the latter, the normalized coverage curve is used and scaled by the maximum 
fraction of genome covered in a bulk sequencing run of 10/9.136. This is done to account for the fact 
that in the bulk sequencing of LS174T, 8.36% of the bases remain uncovered (6). 

RESULTS  

We mainly used the LS147T cell line derived from a colorectal cancer (CRC) as a model system for 
singe cell analysis. This is a very well characterized cell line (see e.g. (27)) that has been widely used 
for CRC cell characterization and drug response studies (see e.g. (28,29)). In some experiments, we 
also processed cells from the RKO and LS180 cell lines (the latter was alternatively derived from the 
same CRC as LS174T), and from cells obtained directly from fresh CRCs. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 1, 2018. ; https://doi.org/10.1101/258780doi: bioRxiv preprint 

https://doi.org/10.1101/258780


Page 6 of 21	

For each experiment a single use microfluidic device (Figure 1A and supplementary Figure S2) is 
placed in an instrument derived from a Philips BioCell Fluidscope allowing bright field and 
fluorescence imaging, controlling the device temperature and connecting the device inlets (Cell, B1 
and B2 inlet, Figure 1B) to a multi-channel air pressure controller (6) (supplementary Figure S2G).  
Fluorescence imaging and the use of YOYO-1 intercalating DNA dye enables monitoring of cell lysis. 
However, the dye may be omitted to avoid interference with the subsequent quality of the 
preparations with respect to their use for DNA, or RNA sequencing (6). 

Device design and fabrication 

The microfluidic device is a single use passive device fabricated by injection moulding using a mould 
that creates 12 connectors placed at distances corresponding to a 96-well plate standard and can 
contain up to 50 µL of a solution (7) (Figure 1B). The microfluidic device has a single depth 
microchannel network with dimensions such that LS174T and similar colorectal epithelial cells are 
successfully transported and trapped (supplementary Figure S3). LS174T cells have a median 
diameter of 14 µm, which is in the characteristic size range for colorectal cancer cells, and so we 
designed the microfluidic network to be 30 µm-deep and at least 30 µm-wide except for the flow 
constrictions that are used as cell traps. 

Our design is the result of iterative optimization where we identified and improved three critical 
aspects of the device design and fabrication: i) the flow through the trap, which depends on its cross 
section and the flow resistance of the outlet channels, ii) the shape of the cell pocket and iii) the 
moulding quality of the cell inlet.  

The trap cross section has to be smaller than the LS174T cells size to retain the cells, but also 
sufficiently large so that it collects a significant fraction of the main flow in the feeding channel for cells 
to be directed through the trap. As a boundary condition, our choice of a single depth design means 
that the trap depth remains the same throughout the chip, namely 30 µm. As a result, the trap has a 
high aspect ratio, within the limit achievable during the fabrication of the master in silicon by 
micromachining. Finally, the fabrication by polymer replication results in the channels and in particular 
the trap having tilted sidewalls (up to 3 degrees) to allow the separation of the polymer part from the 
mould during injection moulding. As a result, the cell traps have a cross section 30 µm-deep, 4.5 µm 
wide at the bottom and 7.5 µm wide at the top. 

The pocket receiving the cell has an asymmetric design (Figure 1C-D). This is in contrast to 
previously reported devices based on hydrodynamic trapping where flow focusing is used to direct the 
cell to a microfluidic constriction that is a bypass in an otherwise symmetric flow profile. In our device, 
the flow focusing is asymmetric since cells are aligned against the wall of the feeding channel. A 
symmetric pocket creates a dead volume after the constriction (Supplementary Figure S3) that is a 
spot where a cell decelerates and can settle just outside the cell trap. By making the pocket 
asymmetrical, we improve the flow profile such that cell trapping is more efficient. The optimized 
design gave the best results in terms of numbers of traps per chip having single cells.  

Finally, the connection of the feeding channel and the well receiving the cells is a critical aspect of the 
design. The surface roughness at the inlet is of paramount importance since a sharp edge tends to 
stop cells entering the channel. The injection moulding parameters are therefore adjusted to produce 
a round edge. In addition, we ensured that the shim is mounted into the injection moulder only once. 
This greatly improved the quality of the final device since successive mounting of the shim increases 
the roughness at the connections with the inlets due to the alignment tolerance of the shim in the 
mould. 

On the optimized device (Figure 1), single cells were trapped routinely, on average, in 3 to 6 out of 8 
possible traps. On some occasions, cell doublets are trapped and this may be because cell doublets 
enter the device in the first place. For that reason, cell traps are imaged in bright field and 
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fluorescence after trapping to confirm the presence of, and then exclude, such cell doublets from 
further analysis. 

Cell capture and lysis 

For each experiment, solutions are loaded in the device wells and a single pressure is applied to the 
inlets either to wet the device, trap cells or lyse the trapped cells (Figure 1E-G and supplementary 
Protocol S8). After priming of the microfluidics, cells loaded in a cell inlet are pushed into the feeding 
channel where they become aligned against a sidewall of the channel by the incoming flow from the 
buffer inlets (B1 and B2 in Figure 1B), similarly to a recently described cell-trapping device (30). Once 
aligned, a cell of radius r follows a streamline at a distance r from the sidewall. The cell traps are 
constrictions that connect the feeding channel with separate outlets. A trap collects a fraction of the 
flow from the feeding channel such that we call rc the position of the last streamline entering the trap. 
A cell of radius r enters the trap downstream if r<rc (Figure 1C). Since a trap is only 4.5 µm-wide, a 
cell entering it is captured in the constriction. This cell then occupies a pocket recessed from the main 
flow through the feeding channel. A cell cannot block the flow through the trap completely since the 
channel depth (30 µm) is much larger than the cell. However, the flow resistance is sufficiently 
increased for the next incoming cells to pass by and be directed to the following free trap (Figure 1D). 
Cells that are not trapped are collected in the waste outlet. It is possible routinely to achieve 3-6 single 
cells in the 8 possible traps. 

Cellular DNA is eluted from the cell trap by introducing a lysis solution from the inlet B1 (Figure 1 B). 
In our study, we compared two lysis solutions. For one, a solution for proteolysis including proteinase 
K and Triton-X100 was used for the 13 cells (LS174T and RKO) whose results were obtained in 
Eindhoven. This lysis solution enables collecting the RNA prior to collecting the DNA of the trapped 
cell (6). Alternatively, an alkaline lysis buffer (D2, pH above 12) provided with the Repli-g UltraFast kit 
was used in Oxford for the analysis of the 39 single cells from the LS174T and LS180 cell lines, and 
from two fresh tumour samples (see supplementary Figure S3). The alkaline lysis is the one adopted 
in commercially available kits for eluting DNA for sequencing. Both solutions successfully lyse the 
cells trapped and elute the DNA from the trap as observed in experiments where the DNA is labelled 
with an intercalating dye so it can be visualized by fluorescence microscopy.  From the results of the 
single cell sequencing using the two different approaches, as discussed below, we conclude that both 
approaches to lysis were appropriate for MDA. This is, perhaps, surprising in the case of DNA 
extraction by proteolysis since proteinase K might be expected to digest the polymerase. However, 
there are six orders of magnitude difference between the volumes of lysate (pL) and the volumes of 
the reagents added to the well (µL), which thus makes the protease content in the MDA mix 
insignificant (6). The success of the amplification and sequencing is the best indication that the lysis is 
successful.  

DNA samples that successfully amplified were passed through a quality control. For the samples 
processed in Oxford, we PCR amplified five genes from five different chromosomes to give five 
different sized fragments, and visualized them on an agarose gel (see supplementary Protocol S8 for 
details).  Only samples which successfully displayed at least 4 of the 5 PCR products were used for 
library preparation and sequencing. Essentially all of the single cell lysates were successfully 
amplified for DNA and more than 90% of the Oxford samples passed the subsequent quality filter (i.e. 
quantification by a pico-green assay (Qubit)) before being passed on for DNA sequencing. For 
samples processed in Eindhoven, a quality check consisting in a PCR of RNase P was performed on 
some samples. Next, some of the samples were then checked by 1) quantification by Qubit and 2) a 
test run of sequencing performed at a low number of reads in order to asses the quality of the library 
before the actual sequencing presented in this paper. Sequencing libraries were successfully 
prepared from 97% of the samples that passed the initial quality control.  

Contamination  
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Figure 2A shows the percentage of reads that mapped to the reference genome for 52 cells that were 
whole genome sequenced. Apart from 7 clear outlier cells (<99% mapped reads), ninety nine percent 
of the DNA sequences obtained mapped to a reference human genome, indicating that there was 
effectively no contamination of these samples from non-human sources. This is a significant 
achievement as there are several published reports of reagent-induced contamination (31-33). In 
addition, most of the reads are correctly paired, with a low percentage of singletons (0.17 ± 0.06%). 

Libraries prepared from single cell DNA could be separated into three main groups according to the 
level of representation of the human genome: good (9-15 % of non-covered bases), moderate (15-
60% of non-covered bases), and bad (90-100 % of non-covered bases). Bad representation of the 
human genome may be caused by the loss of DNA in the device as supported by the fact that 
increasing the depth of sequencing for a representative subset of samples did not result in 
significantly improved coverage. The distribution of the number of reads per cell is given in Figure 2B.  

Coverage  

We generated Lorenz plots displaying the fraction of the genome covered versus the fraction of the 
reads for 39 cells processed in Oxford (Figure 3A-C) and 13 of the single cell sequencing sets 
obtained from the Eindhoven laboratory (Figure 3D). There is good agreement between these plots 
and the coverage data shown in Figure 2A.  Thus, those plots farthest from the diagonal are for the 
cells with the poorest whole genome coverage. 

We follow Szulwach et al. (34) and calculate G, the Gini coefficient for the Lorenz plots, to quantify the 
uniformity of the genome coverage. The Gini coefficient G is calculated as: 

                                   G = 1-2A,       (1) 

In which A is the area under the Lorenz curve. For an ideally uniform coverage of the genome, the 
Lorenz plot displays a diagonal and the area under the curve is 0.5. G = 0 indicates an ideally uniform 
coverage of the genome. In our study, G=0.3 for the sequencing of the bulk of LS174T and many cells 
have a G= 0.5 (see Figure 3D and supplementary Figure S4). In the top tercile of the cells processed 
in Oxford, corresponding to the highest coverage, G= 0.6	± 0.1 (n=13 cells). For comparison, using 
commercial instrumentation, Szulwach et al. report G = 0.36 ±	0.04 (n=5) for GM12752 cells where 
the bulk sequencing gives a G just below 0.2, but also G = 0.6 for another cell type (34).  

Thus far most of the single cell sequencing studies only report the coverage results using the Lorenz 
graph (4,5,14,34). Although the Lorenz graph is effective in reporting which fraction on the genome is 
not covered, for reporting the distribution of the coverage the so-called coverage graph is more suited 
and used in (bulk) sequencing experiments. Previously we have reported a coverage graph of single 
cell sequencing experiments (6). Here, we report a more complete overview of the coverage of our 
results in Figure 4. The evenness score E:  

E =100%× F(i)di
0

1
∫        (2) 

in which F(i) is the fraction of the positions with normalized coverage of at least C(i)/Cave and Cave is 
the average coverage provides a  metric  to quantify the evenness of a read distribution (35). This 
metric has been has been proposed as one of the 7 metrics to form a description metric for targeted 
enrichment experiments (36). Here, we use the E-score to quantify the evenness of the read 
distribution in our single cell sequencing experiments. Note that the E-score provides a quantitative 
metric to the coverage graph in the same way as the Gini -coefficient does this for the Lorenz graph.  
The E-score has been put with the coverage and rose from a value 29.3 ± 5.9 % for the poorest 
results in Figure 4A  to around 55-56 ± 10 % for our best results (Fig. 4C.-D).  Comparing this result to 
E-scores found in targeted sequencing experiments of 70 ± 5 % (35) and the E-score of 87.5%  in 
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bulk sequencing (Figure 4D) this suggests that further optimization of the evenness in the read 
distribution and in the first step of the gDNA amplification process is still needed. Note that the E-
score is calculated from a normalized coverage distribution. In the SI these normalized coverage 
graphs are shown in supplementary Figure S6. We show the E-score per cell in supplementary figure 
S7 as well as the coverage graphs in Figure 4, without normalization as this gives a more direct view 
of the read distribution.   

Allelic dropout 

Next, single nucleotide polymorphism (SNP) data were used to obtain estimates of the total recovery 
of genomic DNA taking into account the near diploid karyotype of LS174T, given that it is mismatch 
repair defective (Figure 5). From bulk DNA sequencing of both LS174T and LS180 we can easily 
identify SNPs that are unequivocally heterozygous in both cell lines and which must represent germ 
line heterozygosity in the patient from whose cancer the two cell lines were derived. Full coverage of 
the near diploid genome present in LS174T in a single cell sequence would mean, that for such SNPs, 
both alleles must always be present and observed. If, in the presence of incomplete coverage, we 
assume that p is the probability that one allele of the SNP pair is observed, and that the probability of 
observing either allele is the same, then p2 is the probability of finding both SNP alleles, 2p(1-p) is the 
probability of finding only one of the alleles, and (1-p)2 is the probability that neither allele is found, 
namely a drop out from both genomes. This is the same binomial result as represented by the 
frequencies of homozygotes and heterozygotes in a random mating population according to the 
Hardy-Weinberg law. If a is the number of times both alleles are found, b the number of times one 
allele is found and c the number of times neither allele is found then the maximum likelihood estimate 
of p is: 

 p = 2a+b/2n,     (3) 

where n = a + b + c. This estimate uses the information from all three types of situation rather than 
just the frequency of heterozygosity, which is a direct estimate of p2 and ignores the information 
contained in the number of times just one allele is observed. If this calculation is done for a number of 
SNPs known to be heterozygous in each single cell, then a, b and c can be estimated from the 
aggregated data on the number of times: a, both alleles for the various SNPs are found in the single 
cell’s DNA sequence, b, when only one of the alleles is found and c, when neither allele is found. The 
estimate, p, from this aggregate will then be an estimate of the probability of finding any position of 
the genome in that cell’s DNA sequence once, and p2 will be the probability that the DNA from both 
the genomes at that site should be present. Thus, assuming the SNPs are a random sample of points 
on the genome both with respect to position and differential amplification, p2 is an estimate of the true 
probability of coverage of the total genomic content of the DNA in that singe cell. This is different from 
the proportion of sequences that map to a reference genome, which does not take into account the 
presence of two genomes in each cell and so is more or less an estimate of p rather than p2. 

Figure 5 shows the results of such an analysis for DNA prepared from the single cells in Oxford using 
a panel of 12 SNPs known to be heterozygous in the LS174T and LS180 cell lines. The different 
colours of the vertical bars for each single cell show the proportions of times 2, 1 or no alleles are 
found, and the cells are ordered from highest to lowest estimate of p. The corresponding Lorenz plots 
for these DNA sequences (Figure 3A-C) show that there is a reasonable relationship between the 
coverage estimates from the Lorenz plots and the p value estimates. About 44% (17/39) of these 
single cell DNA sequences give p value estimates of around 0.7 or more, indicating total genomic 
coverage per cell of around 50%, while about 25% give total coverage of greater than 70%. The 
overall average p value using the data on all 39 single cells is 0.60 ± 0.25 corresponding to complete 
coverage of just under 40% (the average p-value for the Eindhoven data in Figure 6 is 0.63 ± 0.22).  
Out of more than 10,000 reads covering the 13 pairs of alleles for the SNPs, only 63 were ‘incorrect’ 
in the sense that they were not expected for either allele pair of a given SNP. This indicates a 
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sequencing error rate of less than 1% and also the absence of any contaminating human DNA from 
external sources, namely other than the cells being analysed.  

Additional evidence for the absence of contamination with exogenous DNA was obtained from the 
density of reads that mapped to male-specific genes on the Y-chromosome, see Supplementary 
Table S10. Since both the LS174T and the RKO cell lines are derived from female patients and the 
operators in the Eindhoven laboratory were male, lack of Y chromosome reads provides evidence that 
there was at least no contamination of Y chromosome reads from them. The male-specific genes 
used in this analysis are those for which there are no homologies on the X-chromosome as taken 
from the work of Page and co-workers (37). For almost all male-specific genes we found zero reads 
mapping to them whereas the mean number of reads per gene on the X-chromosome (taken over all 
genes listed in the Ensemble human genome annotation GTF file) is over 900 reads/gene on average 
for these all samples (Supplementary Table S10). This value is to be compared to average number of 
reads found for the male-specific genes which is 0.4 read/gene (Supplementary Table S10). This 
effectively rules out exogenous DNA contamination from the male operators in the Eindhoven 
laboratory to occur and suggests that these reads mapping to male specific genes found corresponds 
to amplification, sequencing and mapping errors. Since the error rate for sequencing on an Illumina 
HiSeq system is in the order of 1%. One usually refers to a minimum number of Q30 base (number of 
base where the error rate is below 1/1000). For 2x125 bp reads of HiSeq, we should have error rate 
below 1.5% (estimation using an indexed PhiX). The exact value depends on each run. Our data 
suggest a mapping error of 0.4/900 = 0.04 %. 

The heterogeneity of the frequencies of reads (data not shown) between SNPs within single cells 
suggests dropping out, namely absence of DNA in the initial single cell preparation, as the main 
reason for lack of complete coverage. 

Similarly, Figure 6 gives an estimate of the allelic drop-out for the single cells processed in Eindhoven 
for which the Lorenz graph is shown in Figure 3D. Note that for the RKO cells, 13 heterozygous SNPs 
across the genome where used. Again, the results are concordant with the measures of coverage and 
the Lorenz curves. The poorest cells, with the highest allelic drop-out are right in the far lower corner 
of the Lorenz plot in Figure 3D, while the best cells, with 60%-70% sharing, correspond to the curves 
nearest to the diagonal. 

In addition to the analysis of single cells from the colorectal cancer-derived cell lines, some single cell 
whole genome sequences were obtained directly from two fresh colorectal cancers. These were 
analysed following the same procedure described above using different appropriately chosen sets of 
SNP markers for each cancer. The results shown in supplementary Figure S5 for a further total of 15 
single cells demonstrate that at least comparable quality single cell whole genome DNA sequences 
can be obtained from fresh tumours as were obtained from the cell line cultures. 

Our overall results indicate that the independent analyses of singe cell DNA sequences using two 
different protocols in different laboratories, but using the same device and instrument, gave 
comparable results, with perhaps somewhat better coverage using the protocol with alkaline lysis 
compared to the protocol using proteolytic lysis. Moreover, the results obtained using our valve free 
devices which are simpler in design and manufacture are comparable with the best published results. 
For details of the experimental protocols and the use of the instrument see the Methods section and 
the supplementary protocol S8. 

DISCUSSION 

Experimental omics approaches (38, 39) to separately process multiple single cells are increasingly 
important. Four types of approaches are available for partitioning the molecular contents of one cell 
from another: 1) Dilution and separately processing; 2) Statistical dilution, tagging and pooling (40), 2) 
Droplet (41, 42), 3) micro/nanowell (20, 43), 4) Microfluidic trapping (6,7, 44-47).  
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We found that sequencing genomic DNA extracted from single cells inside our low-cost microfluidic 
device, gave single cell DNA sequencing results of comparable quality to those reported using more 
complex and expensive instruments. Our device is valve free and can thus be fabricated by injection 
moulding a polymer. It is also straightforward and can be operated on a commercial optical 
microscope or using a custom-built instrument, Cell-O-Matic. 

Previously described microfluidic devices isolate single cells using either a physical valve (7) or an oil 
phase (20) at the time of the lysis and subsequently for the amplification. The use of valves to trap the 
cells necessitates two-layer devices which are complex and hard to manufacture. By contrast, our 
devices have no valves and are thus easier to design, manufacture and use. We are able to operate 
without valves because the liquid flow from different inlets is strictly controlled by air pressure with 
high accuracy. This, in particular, allows us to exchange reagents in the feeding channel while 
maintaining the cells trapped until they need to be lysed. The flow rate is minimal as too high flows 
would dislodge the cells from the traps. The laminar flow conditions in the feeding channel and 
through the traps ensure that the lysate is pushed through the trap. At a later stage, during the 
amplification, the solution is confined to the outlet since we can assume there is no significant 
transport between outlets separated by a channel several centimetres in length. The design of the 
traps and the mode of lysis and collection of the resulting DNA makes it unlikely that there is 
significant contamination between the cells trapped on the same chip. Preliminary data obtained by 
analysis of the LS174T cell line, which is a known mixture of two cell populations (unpublished 
observations), suggests that there is no major contamination between neighbouring traps on the 
same chip. 

A further proof of the absence of contamination between neighbouring traps can be derived from a 
subset of data where mRNA was extracted from the captured cells (6). There, PCR of the AXIN2 and 
Beta-actin genes was used to assess the presence of mRNA in the outlet wells. In those experiments, 
no mRNA was detected from empty traps adjacent to those where cells were successfully captured 
and lysed. 

Finally, we also consider contamination by exogenous human DNA. The allele analysis of 
heterozygous SNPs from throughout the entire genome shown in Figure 5 and 6 gives us a good 
indication that there is no contamination from extraneous human DNA. In addition, we also look at the 
presence of reads mapped to Y-chromosome genes knowing that the cell lines used in this study are 
female cell lines. Here, we find generally no reads mapping to those genes (see supplementary Table 
S10). Some reads do map to a few Y-chromosome genes such as PCDH11Y for all samples but we 
show that this is due to homologies with genes on the X-chromosome. The density of reads that map 
to chromosome Y is below 3% and typically 0.05% of the input of a single cell, so should be attributed 
to amplification and sequencing errors.   

When comparing our data to previously published DNA sequencing from single cells we see that the 
Gini coefficients (see Figure 3) are comparable to results obtained on a commercial system (34). 
Previously (6) and here we have shown coverage graphs of our single-cell sequencing data. To our 
knowledge, this has not been done before for single cell sequencing data and we suggest that this 
should be incorporated in future single sequencing experiments as this gives a better insight in the 
read distribution in these experiments and to what extent reliable SNP calling can be performed. 
Finally, we have presented our results in terms of maximum likelihood estimate of allelic dropout p 
and find this value to be 0.6 ± 0.2.  

The first commercial microfluidic device method for processing single cells for sequencing (17) was 
known to suffer significantly from the capture of doublets rather than single cells. Our approach has 
the advantage that we can take an image of trapped cells to confirm the single cell occupancy of each 
trap before proceeding to sequencing.  
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The more recently emerging droplet-based single cell fluidics and dilution tagging and pooling 
approaches offer the highest throughput (1-10,000s of cells) compared to 10-100s of the microfluidic 
trapping approaches. However, an advantage of our approach, is that it can be used to extract and 
process RNA from the same cell as the DNA (6); such multi-omic characterization will be important for 
making the connection between genotype and molecular phenotype to gain a better understanding of 
cellular mechanisms and to better select the mutations that may be driving a cancer phenotype and 
which might be candidates for targeted therapy. 

For such integrative omics applications it is important to know that the comparative performance 
metrics of our single cell processing devices are equivalent to other types of devices and approaches. 
We can conclude that our DNA sequencing results show that the output of our device is at least 
comparable to, if not better than the valve-based commercial devices and offers advantages over 
non-microfluidic approaches such as a very low contamination level. 
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TABLE AND FIGURES LEGENDS 

	

 

 

	

	

Figure 1. Device design and operation. A) Image of the single use polymer device. Scale bar is 

1cm. B) Microfluidics layout. C) Conditions for cell trapping an unoccupied trap r<rc. D) The trapped 

cell reduces the flow through the trap such that for the next incoming cell, r>rc. E-G) Flow directions in 

the device under priming, cell capture and lysis. 
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Figure 2. Metrics. A) Percentage of mapped reads B) Total number of reads. Legend displays the 

mean, the standard deviation and the standard error of the mean (s.e.m.).  

	

	

Figure 3. Lorenz plots for the cells processed by alkaline lysis in Oxford, in three groups of n = 13 

cells: (A) bottom, (B) middle and (C) top tercile according to the percentage of non-covered bases in 

the genome. (D) Lorenz plot for the single cells processed by proteolysis in Eindhoven, n = 13 cells.  

Cells 124 to 236 are LS174T cells. Cells 335 to 343 are RKO cells. The bulk of LS174T is also shown 

(sample ID 46). We display the Gini coefficient G mean value and the standard deviation for each 

group. 
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Figure 4. Coverage plots corresponding to the (A) bottom, (B) middle and (C) top tercile and (D) the 

single cells processed by proteolysis in Eindhoven. Cells 124 to 236 are LS174T cells. Cells 335 to 

343 are RKO cells. The bulk of LS174T is also shown (sample ID 46). We display the E-score as 

mean value and the standard deviation for each group. The E-score is calculated from a normalized 

coverage curve as described in (Mokri et al).	
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Figure 5. Extent of Allelic Dropout for 12 heterozygous SNPs selected for LS174T (36 cells) and 

LS180 cells (3 cells). On the x-axis, the sample ID for the cells analyzed. Cells are ordered by 

increasing p-value (in percent). The mean (SD) for all 39 cells processed in Oxford is 60 (25). 

	

	

Figure 6. Extent of Allelic Dropout for heterozygous SNPs for cells processed in Eindhoven. Cells 

124 to 236 are LS174T cells (12 heterozygous SNPs) and cells 335 to 343 are RKO cells (13 

heterozygous SNPs). 
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