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Abstract 12 

For encapsulated bacteria such as Streptococcus pneumoniae, asymptomatic carriage is 13 

more common and longer in duration than disease, and hence is often a more convenient 14 

endpoint for clinical trials of vaccines against these bacteria. However, using a carriage 15 

endpoint entails specific challenges. Carriage is almost always measured as prevalence, 16 

whereas the vaccine may act by reducing incidence or duration. Thus, to determine sample 17 

size requirements, its impact on prevalence must first be estimated. The relationship between 18 

incidence and prevalence (or duration and prevalence) is convex, saturating at 100% 19 

prevalence. For this reason, the proportional effect of a vaccine on prevalence is typically less 20 

than its proportional effect on incidence or duration. This relationship is further complicated in 21 

the presence of multiple pathogen strains. In addition, host immunity to carriage accumulates 22 

rapidly with frequent exposures in early years of life, creating potentially complex interactions 23 

with the vaccine’s effect. We conducted a simulation study to predict the impact of an 24 

inactivated whole cell pneumococcal vaccine—believed to reduce carriage duration—on 25 

carriage prevalence in different age groups and trial settings. We used an individual-based 26 

model of pneumococcal carriage that incorporates relevant immunological processes, both 27 

vaccine-induced and naturally acquired. Our simulations showed that for a wide range of 28 

vaccine efficacies, sampling time and age at vaccination are important determinants of 29 

sample size. There is a window of favorable sampling times during which the required sample 30 

size is relatively low, and this window is prolonged with a younger age at vaccination, and in a 31 

trial setting with lower transmission intensity. These results illustrate the ability of simulation 32 

studies to inform the planning of vaccine trials with carriage endpoints, and the methods we 33 
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present here can be applied to trials evaluating other pneumococcal vaccine candidates or 34 

comparing alternative dosing schedules for the existing conjugate vaccines. 35 

  36 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/258871doi: bioRxiv preprint 

https://doi.org/10.1101/258871
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

4 

Author Summary 37 

Streptococcus pneumoniae, a bacterium carried in the nasopharynx of many healthy 38 

people, is also a leading cause of bacterial pneumonia, sepsis, and ear infections in children 39 

aged five years and younger. Vaccines targeting select strains of S. pneumoniae have been 40 

effective, and the development of new vaccines, particularly those that target all strains, can 41 

further lower disease burden. For clinical trials of these vaccines, the number of study 42 

participants needed depends on the expected effect of the vaccine on a conveniently 43 

measured outcome: asymptomatic carriage. The most economical way to test a vaccine for its 44 

effect on carriage is by measuring prevalence at a specific time, and comparing vaccinated to 45 

unvaccinated participants. The relationship between incidence (or duration) and prevalence is 46 

complex, and changes with time as children develop natural immunity. We explored this 47 

relationship using a mathematical model. Given a vaccine efficacy, our computer simulations 48 

predict that fewer study participants are needed if they are vaccinated at a younger age, 49 

taken from a population with intermediate levels of transmission, and sampled for carriage at 50 

a certain time window: 9 to 18 months after vaccination. Our study illustrates how simulation 51 

studies can help plan more efficient vaccine trials. 52 
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Introduction 54 

For encapsulated bacteria such as Streptococcus pneumoniae [1], Haemophilus 55 

influenzae [2], and Neisseria meningitidis [3], asymptomatic carriage in the human upper 56 

respiratory tract is a precursor to mucosal or invasive disease. The population of bacteria in 57 

the upper respiratory tract, which may be sampled in the oropharynx or nasopharynx, is also 58 

the primary or sole source of transmission of these bacteria. Because carriage is far more 59 

common and typically longer in duration than disease with these bacteria, it is often a more 60 

convenient endpoint for clinical trials of vaccines against them. If a vaccine can prevent or 61 

terminate carriage, then it is likely to reduce both the risk of disease and the opportunities for 62 

transmission, leading to herd immunity effects. Many of the current generation of vaccines 63 

against these organisms, made from their capsular polysaccharides chemically conjugated to 64 

a protein carrier (conjugate vaccines), have been evaluated in randomized controlled trials 65 

(RCTs) where carriage was the primary endpoint [4-10], and the case for carriage as an 66 

endpoint in vaccine licensure has been put forth by an international consortium [11]. Carriage 67 

endpoints have also been used for RCTs of other vaccines against encapsulated bacteria, 68 

such as the protein-based vaccine designed to protect against group B meningococci [12]. 69 

While the use of carriage as an endpoint in an RCT is often convenient and offers the 70 

possibility of smaller sample sizes than disease endpoints, it presents added complexities. 71 

Carriage is almost always measured as prevalence (whether the target organism is present at 72 

a particular time) rather than as incidence (the rate at which individuals acquire the organism), 73 

the more traditional endpoint in vaccine trials. For vaccines such as conjugate vaccines that 74 

are thought to act directly on vaccinated persons by reducing the incidence of acquiring 75 

colonization, the proportional reduction in prevalence due to a vaccine will in general be 76 
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smaller than the proportional reduction in incidence it causes [13], because prevalence 77 

increases less than linearly with incidence. Under certain assumptions, the estimated impact 78 

on prevalence can be converted into an estimate of the impact on incidence [13], though this 79 

becomes more complex when there are multiple serotypes targeted by the vaccine [14]. At a 80 

practical level, decisions must be made about when to sample the carriage population to 81 

estimate efficacy, with the goal of observing the largest effect possible (to reduce sample 82 

size) and also of being able to estimate a meaningful efficacy parameter [15]. Moreover, 83 

immunity to carriage of S. pneumoniae (also called pneumococci, the species on which this 84 

paper and the remainder of this introduction will focus) likely involves at least two different 85 

parts of the immune system: antibodies that act in a serotype-specific fashion to reduce the 86 

risk of acquisition [16] and T-helper cells that act in a serotype-independent manner to reduce 87 

the duration of a carriage episode [17]. Both of these forms of immunity are imperfect: even 88 

after multiple exposures to pneumococci, a human can acquire colonization and will not clear 89 

it immediately [16,18,19]. Vaccines typically augment or hasten the acquisition of immunity, 90 

but vaccine-induced immunity against carriage is also only partially effective [13]. In a vaccine 91 

trial conducted in infants or toddlers, participants in both the vaccine group and the control 92 

group will be repeatedly challenged by exposure to pneumococci. Through the experience of 93 

acquiring and clearing colonization, these individuals will develop immune responses that 94 

reduce their rate of acquisition on exposure and increase the rate at which they clear the 95 

colonization episode [16,20]. Further complexity arises from the fact that individuals may be 96 

colonized simultaneously with multiple strains of pneumococci [21-23], some of which may be 97 

undetected at sampling time and not all of which may be affected by the vaccine. Given these 98 

complexities, design of an RCT for a new vaccine involves challenging questions of choosing 99 
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the best population and inclusion criteria to improve the chances of seeing a real effect of the 100 

vaccine, choosing at what time after vaccination to measure carriage, and estimating power 101 

and sample size requirements.  102 

Mathematical transmission modeling [15] and simulations [24-26] have been used to 103 

assist in the design of intervention trials for infectious diseases. These approaches have been 104 

needed, and useful, because standard assumptions about the magnitude of effect size and 105 

predictable event rates in controls are often not met in the setting of a transmissible pathogen, 106 

particularly when accounting for complexities like those mentioned above. 107 

An inactivated whole cell pneumococcal (wSP) vaccine has recently been manufactured 108 

under Good Manufacturing Practices [27] and has been employed in dose-finding, 109 

immunogenicity, and safety studies in Kenyan adults and toddlers (clinicaltrials.gov 110 

NCT02097472) [28]. Although not powered for efficacy evaluation, this study was extended to 111 

evaluate nasopharyngeal carriage in toddlers participating in the trial. Based on murine data, 112 

it is believed that the primary impact of such a vaccine is to hasten the development of T-cell-113 

mediated immunity to colonization, thereby reducing the duration of carriage episodes [17,29]. 114 

To aid in evaluating the results of this study and in planning future, larger studies, we 115 

undertook simulation modeling of such a trial in different age groups and settings to answer 116 

several questions: 117 

1. What is the relationship between the amount of immune enhancement such a vaccine 118 

produces and the size of the effect on carriage prevalence in a setting similar to the 119 

Kenyan trial? 120 

2. How does this relationship depend on the age of the trial participants (which affects 121 

their level of immunity at baseline, as well as their exposure to transmission during the 122 
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trial), and on the intensity of transmission in the population (which affects the rate at 123 

which immunity develops in both vaccine recipients and controls)? 124 

3. What are the implications for the sample size required to detect a particular effect 125 

size? 126 

4. Which choice of setting, age group, and time from vaccination to carriage 127 

measurement will be most powerful in detecting various levels of vaccine impact on 128 

hastening immune development? 129 

Results 130 

Sampling time and participant age strongly influence sample size 131 

Our simulation study was based on a published individual-based model of pneumococcal 132 

transmission that incorporates many of the complexities described above [30]. To this model, 133 

we added the ability to simulate vaccine trials, and implemented an algorithm to fit parameters 134 

to carriage prevalence data. The wSP vaccine was modeled as accelerating the exposure-135 

dependent development of non-serotype-specific immunity against carriage duration, i.e. 136 

vaccination was immunologically equivalent to having cleared more colonizations. Three 137 

possible vaccine efficacies were considered: 3, 5, or 10 “colonization equivalents” (“c.e.”), 138 

which correspond, respectively, to an additional 26%, 39%, or 63% reduction in carriage 139 

duration. We assumed a minimum carriage duration of 20 days, and so reductions in duration 140 

affect the duration of carriage beyond the first 20 days. Trial participants in the model were 141 

vaccinated once, either as infants, at 60 days of age, or as toddlers, at 360 days, and the 142 

vaccine was assumed to be effective immediately upon receipt. Simulated trials took place in 143 
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two settings that differed in their transmission intensity: the higher transmission setting had an 144 

under-five carriage prevalence of 66%; the lower transmission setting, 55%. 145 

For the higher transmission setting, we ran 50 simulations of the vaccine trial using 146 

different random seeds and recorded the carriage prevalence every month (defined as 30 147 

days), starting from birth to 24 months after vaccination (Fig 1). For both infants and toddlers, 148 

all vaccine efficacies led to reductions in prevalence throughout the follow-up period. Higher 149 

efficacies resulted in greater reductions in carriage. However, that marginal benefit attenuated 150 

with time as both controls and vaccinees acquired more natural immunity from carriage 151 

episodes. Similar patterns were observed in the toddler trials, but with smaller reductions in 152 

prevalence (Fig 2A-C). 153 

 154 

Fig 1. Age-specific carriage prevalences from representative simulation runs. (A) Carriage prevalences, 155 
sampled every month starting from birth, is shown for three arms – control (black), those vaccinated as infants 156 
(blue), and those vaccinated as toddlers (purple) – in a simulated trial in the higher transmission setting. Only the 157 
10 colonization equivalent (c.e.) wSP vaccine efficacy is presented here. On the x-axis, two arrows indicate the 158 
age at which the vaccine was administered for the vaccinated arms. (B) Similar to (A), but for a simulated trial in 159 
the lower transmission setting. 160 

 161 

Fig 2. Prevalence and sample size over the follow-up period in the higher transmission setting. Panels 162 
are organized column-wise by vaccine efficacy: 3 colonization equivalents (c.e.), or 26% reduction in carriage 163 
duration (A, D); 5 c.e., or 39% (B, E); and 10 c.e., or 63% (C, F). Within each panel, results are presented 164 
separately for infants (blue) and toddlers (purple). (A-C) The joint kernel density estimate (see Methods) of the 165 
control and vaccine arm prevalences at each sampling time (every 3 months until 24 months post-vaccination) is 166 
shown as a contour map truncated by the convex hull of the simulated points, with the median values marked by 167 
a cross. These crosses are connected chronologically, and those corresponding to 0, 12, and 24 months post-168 
vaccination are labeled. The dashed line indicates equal prevalences in the two arms. (D-F) The kernel density 169 
estimate of the total sample size (combined size of both samples) needed to detect a difference between control 170 
and vaccine arm prevalences at each sampling time (assuming 80% power, 5% type I error rate, balanced 171 
arms). The horizontal bars in each violin plot indicate the minimum, median, and maximum values across all 172 
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simulations. In (D), the maximum sample sizes for infants and for toddlers at 3 months post-vaccination are 173 
greater than one million and not shown. 174 

   175 

For the infants, the prevalence in the control and vaccine arms followed non-monotonic 176 

trajectories over the course of the follow-up period. In the infants, the median prevalence in 177 

the control arms started at 74% at 2 months of age, peaked at 91% at 8 months of age, and 178 

then declined (Fig 2A-C, Fig 1A). The timing of the peak is consistent with previously 179 

reported data from Kilifi, Kenya [31]. In the vaccinated infants, the median prevalence peaked 180 

at the same time, at 8 months of age for the 3 c.e. vaccine efficacy, or slightly earlier, at 5 181 

months of age for the 5 c.e. and 10 c.e. wSP vaccine efficacies (Fig 2A-C, blue). For the 182 

toddlers, who are vaccinated later in life at 12 months of age, the age-specific prevalence in 183 

both the control and vaccine arms steadily declined across the 24-month follow-up period (Fig 184 

2A-C, purple). 185 

From the joint trajectory of the control and vaccine arm prevalence over the follow-up 186 

period, we determined how the sample size required for a two-sample test of equal proportion 187 

varied with sampling time. We assumed a 5% type I error probability, 80% power, and 188 

balanced arms, and use the term “sample size” to refer to the combined size of both arms. In 189 

infants, for all vaccine efficacies, the median sample size decreased dramatically—almost 190 

ten-fold or more—in the period 3 to 9 months post-vaccination, plateaued, and then started 191 

increasing around 18 months post-vaccination. In toddlers, the median sample size over time 192 

was also U-shaped, reaching a minimum at 9 months post-vaccination before increasing (Fig 193 

2D-F, purple). At virtually all sampling times and for all vaccine efficacies, the median sample 194 

size was larger in the toddler trials than in the infant trials (Fig 2D-F). 195 
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Lower transmission intensity lengthens window of favorable sampling times 196 

To examine the impact of transmission intensity in the population on carriage prevalence 197 

in the trial, we also ran 50 simulations of the vaccine trial in the lower transmission setting. As 198 

in the higher transmission setting, all vaccine efficacies resulted in reductions in carriage 199 

prevalence at all sampling times. The prevalence peak previously observed in infants was 200 

delayed, due to the slower acquisition of non-serotype-specific immunity in a lower 201 

transmission setting (Fig 1). Thus, the prevalence trajectories in controls and vaccinees 202 

followed non-monotonic trajectories in both infants and toddlers (Fig 3A-C). In the infant 203 

arms, the kink in the prevalence trajectory between 9 and 12 months post-vaccination was 204 

due to the change in age-specific contact patterns as the participants aged into the next age 205 

group (Fig 3A-C, Table S1). 206 

 207 

Fig 3. Prevalence and sample size over the follow-up period in the lower transmission setting. Panels are 208 
organized column-wise by wSP vaccine efficacy: 3 colonization equivalents (c.e.), or 26% reduction in carriage 209 
duration (A, D); 5 c.e., or 39% (B, E); and 10 c.e., or 63% (C, F). Within each panel, results are presented 210 
separately for infants (blue) and toddlers (purple). (A-C) The joint kernel density estimate (see Methods) of the 211 
control and vaccine arm prevalences at each sampling time (every 3 months until 24 months post-vaccination) is 212 
shown as a contour map truncated by the convex hull of the simulated points, with the median values marked by 213 
a cross. These crosses are connected chronologically, and those corresponding to 0, 12, and 24 months post-214 
vaccination are labeled. The dashed line indicates equal prevalences in the two arms. (D-F) The kernel density 215 
estimate of the total sample size (combined size of both samples) needed to detect a difference between control 216 
and vaccine arm prevalences at each sampling time (assuming 80% power, 5% type I error rate, balanced 217 
arms). The horizontal bars in each violin plot indicate the minimum, median, and maximum values across all 218 
simulations. In (D), the maximum sample sizes for infants and for toddlers at 3 months post-vaccination are 219 
greater than one million and not shown. 220 

 221 
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As in the higher transmission setting, the total sample size decreased substantially in the 222 

period 3 to 9 months post-vaccination, and reached similar minimums. In the infant arms, the 223 

total sample size remained close to the minimum until the end of the 24-month follow-up 224 

period. In the toddler arms, the median sample size increased slightly near the end of the 225 

follow-up period. However, this rebound was considerably smaller than in the higher 226 

transmission setting, and the median sample size at 24 months post-vaccination was roughly 227 

five- to six-fold smaller. The sample sizes for the infant and toddler arms were more similar 228 

than in the higher transmission setting, particularly for later sampling times (Fig 3D-F). 229 

Discussion 230 

Using a computational, individual-based transmission model of pneumococcal carriage, 231 

we estimated that a vaccine that enhances the immune response by an amount 232 

corresponding to 3, 5, or 10 carriage episodes could reduce age-specific carriage prevalence 233 

up to 7%, 10%, and 17%, respectively, compared to control in a setting similar to that of the 234 

wSP vaccine trial in Kenya, but that the magnitude of the reduction would depend strongly on 235 

the age at which participants were sampled. We found, however, that larger reductions could 236 

be observed if the same trial were performed in infants, in a lower-transmission setting, or 237 

both. Altogether, this analysis indicated that an infant trial conducted in a lower-transmission 238 

setting for a vaccine simulating 3, 5, or 10 exposures could be adequately powered with fewer 239 

than 800, 330, or 110 participants respectively, if the sampling window were chosen to be 15 240 

to 24 months post-vaccination. Suboptimal choices of setting, age group, and sampling time 241 

could multiply the required sample size by a factor of ten or more. 242 
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The individual-based computational model [30] on which our work is based was originally 243 

used to explain serotype diversity and explore serotype replacement following the introduction 244 

of conjugate vaccines. With modifications, this model is also well suited to address our 245 

modeling questions, because it incorporates many processes, epidemiological and 246 

immunological, that complicate the relationship between the efficacy of a vaccine believed to 247 

reduce carriage duration but not risk of acquisition, and its effect on carriage prevalence. Our 248 

extensions—an algorithm to fit the model to specific epidemiological settings and the ability to 249 

randomize trial participants to different vaccine interventions—allow this model to be used for 250 

vaccine trial planning. 251 

Our simulated vaccine trials show that sampling time and participant age greatly influence 252 

the number of participants needed to detect a protective effect of a vaccine whose effect is 253 

accelerating the development of immunity against carriage duration, as the wSP vaccine and 254 

perhaps other protein-based vaccines targeting carriage are expected to do. Across different 255 

combinations of vaccine efficacies and participant ages, the required sample size reached a 256 

minimum approximately 9 months post-vaccination before rebounding in later months. This 257 

favorable sampling time is consistent with simulation results by Scott et al., who explored 258 

similar questions, but more generally and for vaccines whose primary effect is on acquisition 259 

rather than duration, and using a compartmental transmission model [15]. This timing is also 260 

consistent with what Auranen et al., who explored pneumococcal trial design questions with a 261 

Markov transition model, suggest: waiting at least twice the average carriage duration after 262 

immune response before sampling [32]. 263 

In our simulations, the U-shaped trajectory of sample size over the follow-up period 264 

indicates a window of favorable sampling times, when the sample size is relatively small as 265 
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compared to earlier or later. We found that sample sizes are lower, and the favorable window 266 

longer, when trial participants were younger, and when the transmission level was lower. In 267 

these scenarios, natural immunity is weaker initially or develops more slowly, and thus 268 

immune enhancement by the vaccine is more apparent. This intuition is what our simulation 269 

study attempts to quantitate, in terms of sample size, for different trial conditions. 270 

Certain model assumptions may affect our conclusions. Our formulation of vaccine 271 

efficacy requires estimating the acquisition rate of exposure-dependent immunity. Direct 272 

estimates of vaccine efficacy against carriage, when they become available, can be used 273 

instead. We assume that the vaccine shortens only future carriage episodes, but not ones 274 

already present at the time of vaccination. Since the intrinsic duration of the fittest serotype is 275 

five months, this assumption would delay the vaccine’s effect on carriage prevalence, and 276 

thus, our reported favorable sampling times. This delay would affect infants more than 277 

toddlers, as they are more immunologically naïve and experience longer carriage durations. 278 

Auranen et al., in their study, report that sampling time is determined by the rate of clearance 279 

rather than rate of acquisition, which reinforces the importance of determining whether a 280 

vaccine accelerates the clearance of pre-existing carriage episodes [32]. Another important 281 

assumption is that exposure, rather than age alone, is responsible for the progressive 282 

shortening of carriage episodes as an individual gets older. If immune maturation due to 283 

calendar age, rather than or in addition to increased exposure, actually reduces carriage 284 

duration, then that would bolster the case for younger trial participants. Regardless of age at 285 

vaccination, the favorable sampling windows will likely be shortened as well. Our simulation 286 

framework can be easily updated should future evidence suggest revisiting these 287 

assumptions. 288 
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In its current form, our current simulation framework is already adaptable enough to 289 

examine a variety of scenarios. The ability to tailor simulations to specific settings is 290 

particularly useful—vaccine trials take place in countries with different age and serotype 291 

distributions, and Phase I/II and Phase III trials of the same vaccine may be conducted in the 292 

different locations. While we present results for a vaccine against carriage duration, we can 293 

also model vaccine protection against acquisition, and specify whether a vaccine effect is 294 

serotype-specific. The analysis presented here can be easily repeated, without changes to 295 

the source code, for trials involving polysaccharide conjugate vaccines, which protect against 296 

acquisition [4] and whose protection is serotype-specific [10], and novel vaccines with both 297 

polysaccharide and protein antigens [33], which may elicit a combination of serotype-specific 298 

and cross-reactive responses against carriage. The general population can also be 299 

vaccinated. Hence, our framework can be used to simulate trials—such as those comparing 300 

dosing schedules—that take place in countries with existing vaccination programs. In addition 301 

to planning future trials, our simulation framework can be used to examine completed trials. 302 

For completed trials with carriage endpoints that have not found a statistically significant 303 

vaccine effect, such as a recent phase II trial of a protein and polysaccharide-based vaccine 304 

in Gambian infants [33], simulation studies such as this can help assess whether inadequate 305 

power is a compelling explanation.  306 

The analysis presented in this paper does not consider the effect of vaccination on 307 

carriage density or other factors (apart from duration) that would affect the infectiousness of a 308 

person who is vaccinated yet still becomes colonized. More generally, we do not consider the 309 

impact of vaccination on transmission at all in our simulations: simulated trial participants are 310 

computationally isolated from other hosts to approximate an individually randomized trial in 311 
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which the participants are a negligible fraction of the population. However, our current 312 

framework can also simulate roll-outs of vaccination programs in the simulated population, 313 

where there is transmission between individuals, thus allowing the indirect effect of 314 

vaccination to be included. Vaccines with direct effects against transmissibility, possibly via 315 

reducing bacterial density in the nasopharynx, can be incorporated into our framework as 316 

well, with minimal modifications to the source code. 317 

Methods 318 

Mathematical model 319 

Pneumococcal transmission dynamic model. This simulation study was based on a 320 

published individual-based model of pneumococcal carriage that incorporates many of the 321 

complexities relevant to our modeling questions [30]. Briefly, hosts are exposed to and can be 322 

colonized by multiple serotypes through age-specific contact with others. Serotypes differ in 323 

their mean duration of colonization in a naive host (“intrinsic duration”), which ranges from 20 324 

to 150 days [19,20], and in their ability to prevent other strains from colonizing the same host. 325 

These phenotypes are positively correlated—i.e. fitter serotypes have longer intrinsic 326 

durations and are more likely to prevent concurrent colonizations—through their dependence 327 

on a serotype-specific fitness parameter. Hosts acquire immunity through colonizations. 328 

Clearing a colonization results in serotype-specific (anti-capsular) immunity that reduces risk 329 

of acquisition of the same serotype. Each clearance, of any serotype, enhances non-330 

serotype-specific immunity that reduces the mean duration of carriage episodes. 331 
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wSP vaccine effect. The wSP vaccine was modeled as accelerating the acquisition of 332 

non-serotype-specific immunity that reduces carriage duration. As in Cobey et al. [30], the 333 

duration of a carriage episode is drawn from an exponential distribution with a mean given by 334 

! ", $% = 	!min + (!- − !min) exp −3$% , 1  335 

where " is the serotype carried, $% is the number of cleared carriage episodes (of any 336 

serotype), !min is the minimum mean duration, and !- is the intrinsic duration of serotype ". 337 

The exposure-dependent development of non-serotype-specific immunity is captured in the 338 

exponential decay term in Equation 1. Each cleared colonization is immunizing, but with 339 

diminishing returns, and brings the mean duration closer to the minimum mean duration. For 340 

a vaccinated individual, the mean duration is given by 341 

! ", $% = ! ", $% + $5 , 2 		342 

where $5 is a positive constant characterizing the strength of the vaccine effect. Thus, the 343 

wSP vaccine can be thought of as boosting the non-serotype-specific immunity by an 344 

additional $5 cleared colonizations, and we can express its efficacy in terms of “colonization 345 

equivalents” or “c.e.” We considered three different values of $5: 3, 5, and 10. The duration of 346 

each carriage episode was determined at the time of colonization, and hence, the vaccine did 347 

not affect colonizations already present on the day of vaccination. For simplicity, we assumed 348 

that full efficacy is achieved immediately upon receipt of a single dose. 349 

Vaccine trials. To the original transmission model, we added the ability to simulate 350 

vaccine trials. Each trial arm was characterized by the number of participants, the enrollment 351 

date, and the vaccine and dose schedule used. In our implementation, trial participants were 352 

semi-isolated from the population: their demographics were tracked separately and their 353 
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colonizations do not contribute to the force of colonization for the main population, but their 354 

exposures and risk of colonization were equivalent to those of the same age in the main 355 

population. This implementation design ensured that their colonization histories remain 356 

representative of participants within the main population, while affording two advantages: 1) 357 

We can have an arbitrarily large number of trial participants without skewing the 358 

epidemiological dynamics of the population, and 2) participants can be “enrolled” simply by 359 

birthing them into the simulation, without skewing the age structure of the population. 360 

Alternatively, we could have achieved these properties by simulating a large enough 361 

population such that the trial participants are a negligible fraction and thus do not create 362 

appreciable herd immunity in the population—the case in most real-world individually-363 

randomized vaccine trials. However, that approach would have been considerably more 364 

computationally intensive. 365 

Simulations. Simulations were initiated with hosts of different ages and no colonizations. 366 

The number of hosts was kept constant throughout a simulation. Every simulation was run 367 

first for 50 years to allow the age distribution of the population to stabilize, after which 368 

colonizations were seeded in the population and the simulation was run for another 50 years 369 

to allow the epidemiological dynamics to equilibrate. At this point, the simulated vaccine trial 370 

was initiated. For simplicity, all participants were birthed into the trial on the same calendar 371 

day. To reduce sampling noise, each trial arm had 5000 participants, 100-fold more than the 372 

trial arms in the Kenyan wSP study [28]. The participants were followed for five years and the 373 

carriage prevalence in each trial arm was recorded every 30 days. These carriage 374 

prevalences were then used as “true prevalences” to calculate the sample size needed to 375 

compare between arms, based on a two-sample test for equal proportions and assuming a 376 
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5% type I error rate, 80% power, and balanced arms [34]. We use “sample size” to refer to the 377 

combined size of both arms. All combinations of vaccine efficacies (3, 5, 10 c.e. and control) 378 

and ages at vaccination (60 and 360 days) were represented in each simulated trial (for a 379 

total of 8 arms), allowing us to control for transmission in the main population when 380 

comparing between arms. For computational speed, the main population was set at 25 381 

thousand individuals. For each parameter set, we conducted 50 simulations runs – enough so 382 

that trends could be distinguished from stochastic variation between simulations, but not too 383 

many as to require an unreasonable amount of computation time. The model was 384 

implemented in C++11 with Boost C++ libraries. Analysis of simulation results was performed 385 

using Python 2.7 and browser-based Jupyter interactive notebooks [35]. Smoothed 386 

distributions were estimated using Gaussian kernel density estimation as implemented in the 387 

SciPy and Matplotlib Python libraries [36,37], and visualized as a violin plots (1-dimensional) 388 

or contour plots (2-dimensional). 389 

Parameter choices 390 

We considered two settings that differ in their transmission intensity. The higher 391 

transmission setting was chosen to approximate Kenya, the site of a recent dose-finding and 392 

safety study [28]. The age distribution of simulated hosts was matched to that of Kenya’s 393 

population in 2015 [38], the second year of the study, which ran from April 2014 to December 394 

2015. The age-specific mixing matrix was estimated from a social contact study in Kilifi, 395 

Kenya from 2011-2012 [39] and can be found in Table S1. The age structure in the model is 396 

described in more detail in Text S1. We fixed the non-serotype-specific immunity acquisition 397 

rate so the simulated age-specific carriage durations are consistent with the age-specific rates 398 

of clearance in Kenyan toddlers estimated by Abdullahi et al. [40] (Fig S3). The serotype 399 
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fitness parameters were fit to serotype-specific carriage prevalences from a cross-sectional 400 

study in Kilifi from 2006 to 2008 [31], before the introduction of the conjugate vaccine PCV10. 401 

We chose to fit using only pre-PCV10 data. Trying to reproduce changes in serotype 402 

distribution due to PCV10 would have introduced additional complications, while being 403 

unlikely to yield further insight into our modeling questions given that the wSP vaccine is 404 

expected to act in a serotype-agnostic manner [41]. A mathematical description of the fitting 405 

algorithm can be found in Text S2 and the fitted serotype fitness parameters are listed in 406 

Table S2. 407 

For the lower transmission setting, we used a smaller overall contact rate, so the 408 

simulated carriage prevalence at 12 months of age resembles preliminary estimates from a 409 

study in Indonesia [42], the proposed site for a follow-up wSP vaccine efficacy trial (Fig S3). 410 

To facilitate comparisons between settings, we kept the same age distribution, age-specific 411 

mixing pattern, and fitness parameters used in the higher transmission setting. A summary of 412 

the model parameters and their values can be found in Table 1. 413 

Table 1. Selected1 model parameters. 414 

Symbol2 Description Value(s) Refs 

Demographic  

7(8) Number of hosts (in thousands) 25 Main text 

- Maximum age (years) 101 [38], Text S1 

- Lifespan distribution Fig S1 [38], Text S1 

9 Age-specific mixing weights Table S1 [39], Text S1 

Epidemiological 

- Minimum intrinsic duration (days) 20 [20] 

- Maximum intrinsic duration (days) 150 [19] 

: Minimum carriage duration in any host (days) 20 [20] 

;max Maximum competitive exclusion 0.25 [20] 
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- Serotype fitness parameters Table S2 Text S2 

= Acquisition rate of non-serotype-specific 
immunity 

0.1# [40] 

> Overall contact rate (contacts per day per host) 0.1 or 0.13& Text S2  

Vaccine trial 

?@ Age at vaccination (days) 60 or 360 Main text 

- Vaccine efficacy (colonization equivalents) 26%, 39%, or 63%‡ Main text 

- Number of participants per arm (in thousands) 5 Main text 
1 Parameters adequately described in Cobey and Lipsitch’s paper [30] are not repeated here. Parameters in this 415 
table either have new values, or are newly introduced. 416 
2 The symbol used in Cobey and Lipsitch’s paper [30], or “-” if no symbol was used or if the parameter is new. 417 
# Chosen such that age-specific carriage duration is consistent with previous clearance rate estimates. 418 
& Fit to carriage prevalence in Indonesia and Kenya, respectively, and the only parameterization difference 419 
between the lower and higher transmission settings used in this paper. 420 
‡ Reduction in carriage duration, in addition to that due to natural immunity. Corresponding to the amount of 421 
immune enhancement from 3, 5, or 10 additional carriage episodes. 422 

Sensitivity analyses  423 

To isolate the effect of transmission intensity in our main analyses, we had used the same 424 

age-specific mixing pattern–based on Kenya contact survey data [39]–in both the higher and 425 

lower transmission settings. Real-world vaccine trials, however, will take place in the context 426 

of different mixing patterns, or may be planned in the absence of reliable social contact data. 427 

To examine the robustness of our findings to the pattern of age-specific mixing, we repeated 428 

our analyses assuming random mixing between individuals, i.e., equal contact rate for all 429 

pairs of individuals. We re-fit the model to the observed Kenya carriage survey data [31], and 430 

ran a set of 50 simulations. With a random mixing pattern, there was a slightly higher carriage 431 

prevalence in trial participants during the first two years of follow-up. However, the total 432 

sample sizes, in both magnitude and trend across sampling time, remained similar to those 433 

from the main analyses (Fig S4, Fig 2).  434 
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Other potential sources of bias were the population and trial arm sizes. In the main 435 

analyses, we chose values that were small enough to allow simulations to finish reasonably 436 

quickly, and reduced the effect of simulation variability by running multiple simulations and 437 

considering sample median. To assess whether the sample median may be biased, we 438 

performed univariate sensitivity analyses of the population and trial arm size. Specifically, 439 

within the higher transmission setting, we varied population size between 10K, 25K, and 50K 440 

individuals (not including trial participants), with the trial arm size fixed at 5K. We also varied 441 

the trial arm size between 2.5K, 5K, or 10K participants, with the population size fixed at 25K. 442 

Note that the middle values, a population size of 25K and a trial arm size of 5K, were the ones 443 

used in the main analyses. Twenty-five simulations were run for each set of parameter 444 

values. Varying the population and varying the trial arm size did not appreciably alter the 445 

sample median of the simulated carriage prevalences (Fig S5). Larger population sizes led to 446 

smaller variability between simulations, which is expected given the stochastic nature of 447 

transmission in the model (Fig S5A, B). Larger trial arm sizes did not reduce variability, 448 

suggesting that the epidemiological dynamics in the general population are driving the 449 

variability in the trial arm prevalences, at least for the trial arm sizes examined (Fig S5C, D). 450 

Code repository 451 

C++11 code for fitting and simulating the individual-based model can be found in the 452 

Github repository linked here: [will include link before publication] 453 

Supporting Information 454 

Text S1. Model age structure. Derivation of the lifespan distribution and age-specific contact weights used in 455 
the model.  456 
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Text S2. Model fitting algorithm. Mathematical description of the algorithm used to fit the transmission model 457 
to carriage prevalence data. 458 

Table S1. Age-specific mixing matrix. 459 

Table S2. Fitted serotype fitness parameters.  460 

Table S3. Parameters of the fitting algorithm. 461 

Fig S1. Lifespan distribution. The lifespan distribution used in all simulations. It is derived by assuming that the 462 
2015 Kenya age distribution [38] is stable, i.e. no population growth. The step-wise nature of the distribution 463 
reflects the five-year intervals in the age distribution data. 464 

Fig S2. Estimation of serotype fitness parameters. (A) The fitting process for one representative serotype, 465 
6A. The evolving estimate of 6A’s fitness parameter (thin line, right y-axis) and 6A’s simulated prevalence (gray 466 
dots, left y-axis) is shown over the course of 125 iterations. Lower values of the fitness parameter correspond to 467 
a fitter phenotype. The moving average (thick line, n=5) of the simulated prevalences more clearly shows the 468 
trend of the simulated prevalences towards the target prevalence (horizontal dashed line). The light gray shaded 469 
region highlights the last 25 iterations, whose results are considered in (B). (B) One method of assessing the 470 
quality of the model fit. The distribution of prevalence errors (simulated minus target prevalence) in the last 25 471 
iterations of the fitting process is shown for the top 25 serotypes (out of 56 total) by target prevalence (ranging 472 
from 9.96% for 19F to 0.53% for 35A). Each distribution is represented by a violin plot labeled by serotype name, 473 
and with horizontal bars marking the minimum, mean, and maximum values. 474 

Fig S3. Age-specific carriage prevalence and duration. (A, B) Distribution of carriage prevalence in infants, 475 
by 1-month age categories, for the higher (A) and lower (B) transmission settings. (C, D) Distribution of carriage 476 
duration in infants and toddlers, by 6-month age categories, for the higher (C) and lower (D) transmission 477 
settings. Distributions are shown as violin plots, with horizontal bars indicating the minimum, median, and 478 
maximum values. 479 

Fig S4. Prevalence and sample size over the follow-up period in the higher transmission setting, without 480 
age-structured mixing. Panels are organized column-wise by wSP vaccine efficacy: 3 colonization equivalents 481 
(c.e.), or 53% reduction in carriage duration (A, D); 5 c.e., or 71% (B, E); and 10 c.e., 92% (C, F). Within each 482 
panel, results are presented separately for infants (blue) and toddlers (purple). (A-C) The joint kernel density 483 
estimate (see Methods) of the control and vaccine arm prevalences at each sampling time (every 3 months until 484 
24 months post-vaccination) is shown as a contour map truncated by the convex hull of the simulated points, 485 
with the median values marked by a cross. These crosses are connected chronologically, and those 486 
corresponding to 0, 12, and 24 months post-vaccination are labeled. The dashed line indicates equal 487 
prevalences in the two arms. (D-F) The kernel density estimate of the total sample size (combined size of both 488 
samples) needed to detect a difference between control and vaccine arm prevalences at each sampling time 489 
(assuming 80% power, 5% type I error rate, balanced arms). The horizontal bars in each violin plot indicate the 490 
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minimum, median, and maximum values across all simulations. In (D), the maximum sample sizes for infants 491 

and for toddlers at 3 months post-vaccination are greater than one hundred thousand and not shown. 492 

Fig S5. Population and trial arm size sensitivity analyses. (A) The age-specific prevalence in the control and 493 

wSP 10 c.e. (conferring an additional 92% reduction in carriage duration) infant arms for three different 494 

population sizes – 10K, 25K, and 50K individuals – with the trial arm size fixed at 5K participants. (B) The age-495 

specific prevalence in the control and wSP 10 c.e. infant arms for three different trial arm sizes – 2.5K, 5K, and 496 

10K participants – with the population size fixed at 25K. Each violin plot shows the distribution of prevalences 497 

across 25 simulations, with horizontal bars marking the minimum, median, and maximum values, and darker 498 

shades indicating larger population or trial arm sizes. The values used in the main analyses – a population size 499 

of 10K and a trial arm size of 5K – are marked with asterisks in the legends. 500 
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S1 Text. Model age structure 

The age distribution and age-specific contact rate of hosts is important to consider in 

pneumococcal transmission modeling, since carriage prevalence varies with age [1,2], 

as does frequency of contact with other age groups [3,4].  

The age distribution of the simulated hosts was matched to the 2015 age distribution 

in Kenya, based on data from the United Nations World Population Prospects [5]. The 

number of simulated hosts was constant, and for a fixed-sized population, we can set its 

age distribution by choosing the correct lifespan distribution: For a simulated host, the 

probability of living exactly n years is calculated as the difference in the number of n-

year old people and n + 1-year old people, divided by the total number of people. For 

this method to be valid, the age distribution must be monotonically decreasing, i.e. there 

cannot be more people in an older age class as compared to any younger age class. 

This is the case for Kenya’s age distribution in 2015. The World Population Prospects 

data was given in 5-year age classes, which we linearly interpolated to obtain 1-year 

age classes. The oldest age class in the data was 100 years or greater; in our model, 

we assume that the maximum lifespan is 101 years. 
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We derived age-specific mixing weights from social contact data collected in Kilifi, 

Kenya from 2011 to 2012 by Kiti et al [3]. Specifically, normalized the age group-specific 

average number of contacts per day by the size of the contacting age group and the 

size of the contacted age group. Since we fit the overall contact rate, for simplicity, we 

scaled the mixing weights so the maximum is 1. The weights used can be found in 

Table S2. 
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S2 Text. Model fitting algorithm 

To simulate specific epidemiological settings, we implemented an algorithm that fit 

model parameters to given serotype-specific carriage prevalences, e.g. prevalences 

from survey data. In our model, the prevalence of each serotype is determined primarily 

by its fitness parameter and the overall contact rate shared by all serotypes. The fitness 

parameter can take values, possibly non-integral, from 1 to !", the number of serotypes, 

Lower values correspond to better fitness. Lowering the fitness parameter results in two 

phenotypic changes—longer colonization duration and enhanced competitive ability—

that both increase prevalence. Hence, there is a monotonic relationship between a 

serotype’s fitness parameter and its expected carriage prevalence, and this allows us to 

tune the fitness parameters in a straightforward manner.  

The algorithm iteratively updates its estimate of the serotype fitness parameters. Let 

the current estimate at the start of iteration # be denoted by the vector $%, indexed by 

serotype. We run a simulation using $%. For serotype &, let '"% be its average prevalence 

over the last 25 simulation years, '" be its observed prevalence, and ("% = 	'"% − ', be 
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the serotype-specific prevalence error. Based on this error, we update our estimate of 

the serotype’s fitness parameter according to: 

$"%-. = min !",max 1,				$"% 1 + 7"%("% , 1 	

where the prevalence error is weighted by a factor 7"% (Fig S2A). This factor is also 

updated iteratively, by comparing the prevalence error between the current and 

previous iteration. If the magnitude of the prevalence error is not decreasing enough 

between iterations, we increase the influence of the prevalence error in our updating of 

the fitness parameter, i.e. if sgn(("%) = 	sgn(("%<.)	and ("% > >?|("%<.|, then 

7"%-. = 	>A7"%, 2 	

where >C is a positive constant and >A is a constant greater than 1. On the other hand, 

if the magnitude of the prevalence error decreased enough between iterations, or if it 

has changed signs and has become larger in magnitude, then we reduce the influence 

of the prevalence error in our update, i.e. if sgn(("%) = 	sgn(("%<.)	and ("% ≤ >?|("%<.| or 

sgn(("%) ≠ sgn(("%<.)	and ("% > |("%<.|, then 

7"%-. = 	>F7"%, 3  

where >F is positive constant less than 1. By adjusting 7"% between iterations, we 

facilitate convergence of the fitness parameters: Equation (2) allows the algorithm to 

make larger adjustments when it is progressing too slowly, and Equation (3) causes the 

algorithm to be more cautious it is progressing quickly, or when the simulated 

prevalences start to oscillate around the observed prevalence. The latter is an indication 

that we are close to the optimal value for the fitness parameter—since the simulations 

are stochastic, we would not expect a properly fitted model to reproduce the observed 
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prevalence exactly, but rather a distribution of simulated prevalences centered on the 

observed prevalence (Fig S2B). 

This algorithm attempts to fit all serotype-specific prevalences simultaneously. It 

assumes that adjusting the fitness parameter of one serotype does not affect the 

prevalence of another serotype. Since there is competition between serotypes for hosts, 

that assumption is not strictly true. Nevertheless, we find that in practice, the fitting 

algorithm is able to converge reasonably quickly, within 125 iterations when using a 

population size of 20,000. 

There are !" observed serotype-specific prevalences we are fitting to, but !" + 1 

parameters: the !" serotype fitness parameters and the overall contact rate. So that the 

model is not underspecified, we fix the fitness parameter for the fittest serotype to be 1, 

which corresponds to an intrinsic colonization duration of 150 days and a relative 

reduction of 0.25 in the risk of colonization by other strains. With one of the fitness 

parameter fixed, we are free to fit the contact rate. Let H% be the current estimate of the 

contact rate in iteration #. Let '% = 	 '"%"  be simulated carriage prevalence during 

iteration #, ' = 	 '""  be the observed carriage prevalence, and (% = 	'% − '	be the total 

prevalence error. The update equation for H is similar to that of the fitness parameters: 

H%-. = max 0, H% 1 − 7J%(% , 4  

where 7J is a positive constant. As before 7J% is updated as well, in the same fashion as 

described above for 7"%, but with updating rules based on the (% rather than ("%. 

Parameters related to the fitting algorithm are summarized in Table S1. 
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Table S1. Parameters of the fitting algorithm. 

Symbol Description Value 

!" Initial overall contact rate 0.1 

#$" Initial fitness parameter for serotype % min	(+,, .$ + 5)† 

23" Relative step size for updating !" 1 

#$" Relative step size for updating #$" 5 

45 Relative error threshold for reducing relative step size 0.8 

46 Relative step size expansion factor 1.05 

47 Relative step size reduction factor 0.95 

- Years sampled from end of simulation 25 

- Simulation population size (in thousands) 20 
†+$ is the number of serotypes (56) and ., is the rank of serotype % by observed prevalence. 
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Table S2. Age-specific mixing weights. 

Age 
(years) <1 1-5 6-14 15-20 21-50 >50 

<1 0.1391 0.3739 0.4017 0.2938 0.4015 0.2566 

1-5 0.3739 0.6283 0.5460 0.2844 0.3561 0.2517 

6-14 0.4017 0.5460 0.8344 0.4775 0.3067 0.2304 

15-20 0.2938 0.2844 0.4775 1.0000 0.4243 0.2877 

21-50 0.4015 0.3561 0.3067 0.4243 0.7304 0.5665 

>50 0.2566 0.2517 0.2304 0.2877 0.5665 0.5582 
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Table S3. Fitted serotype fitness parameters. 

Serotype Parameter value 

19F 1.00 

6A 1.75 

6B 3.18 

23F 6.20 

11A 7.92 

14 8.37 

35B 8.40 

23B 10.01 

10A 11.67 

15B 12.03 

9V 12.52 

19A 12.56 

15A 12.70 

13 12.81 

15C 14.39 

34 15.66 

16F 16.83 

3 16.83 

18C 18.50 

19B 20.01 

7C 21.42 

20 22.14 

21 24.31 

23A 24.51 

35A 27.62 

33B 29.27 

1 29.55 

4 31.08 

38 37.22 

35F 39.19 

10F 41.82 

24F 47.45 

12F 48.24 

33D 48.33 

22A 51.21 
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18F 51.56 

29 52.07 

22F 52.54 

28F 53.03 

17F 53.20 

10B 53.89 

28A 55.99 

8 55.99 

9L 56.00 

15F 56.00 

40 56.00 

12B 56.00 

11D 56.00 

18B 56.00 

19C 56.00 

31 56.00 

33C 56.00 

5 56.00 

7F 56.00 

9A 56.00 

9N 56.00 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/258871doi: bioRxiv preprint 

https://doi.org/10.1101/258871
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/258871doi: bioRxiv preprint 

Fig S1

https://doi.org/10.1101/258871
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/258871doi: bioRxiv preprint 

Fig S2

https://doi.org/10.1101/258871
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/258871doi: bioRxiv preprint 

Fig S3

https://doi.org/10.1101/258871
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/258871doi: bioRxiv preprint 

Fig S4

https://doi.org/10.1101/258871
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/258871doi: bioRxiv preprint 

Fig S5

https://doi.org/10.1101/258871
http://creativecommons.org/licenses/by-nc-nd/4.0/

