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6
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Abstract

Tuberculosis remains a major global health threat with over 1.5 million deaths each year. My-

cobacterium tuberculosis’ success story is related to a flexible metabolism, allowing growth despite

restrictive conditions within the human host.

Host lipids stores are a major carbon source in vivo. Their catabolism yields propionyl-CoA, which is

processed by two parallel pathways, the methylmalonyl CoA pathway and the methylcitrate pathway.

Both pathways are considered potential drug targets. The methylcitrate pathway is upregulated in the

pathological context. However, intermediates of this pathway can be cytotoxic and Mtb’s preference

for its usage remains unclear.

We combine thermodynamic kinetic modeling, quantitative proteomics and time-resolved metabolomics

to characterize the interplay between the two pathways and to show their functionalities in an efficient

and fast propionate catabolism.

We find that the methylcitrate pathway acts as a transcriptionally regulated, high capacity catabolic

pathway due to its favorable thermodynamics and metabolic control distribution. In contrast, the

methylmalonyl pathway is constitutively fulfilling biosynthetic tasks and can quickly detoxify propionate

pulses, but is thermodynamically restricted to lower capacity.
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Introduction

Tuberculosis is the bacterial disease with the highest human death toll every year [47]. A highly

flexible and adaptive metabolism is thought to be a major pathogenic trait of the causative agent

Mycobacterium tuberculosis (Mtb) [32, 35]. Accordingly, pathways required for the catabolism

of host-derived carbon sources are promising targets for drug development [5, 27, 45], for which,

however, in depth mechanistic understanding is required.

Mtb resides within the hostile and ever-changing environment of the host phagosome, which is

naturally poor in nutrients. Recent evidence suggests that the intracellular bacteria likely feed on

substrates containing two or three carbon atoms [5], the end products of fatty acid and cholesterol

catabolism [29, 45, 49].In Mtb, two parallel pathways are responsible for the catabolism of such

compounds, the methylcitrate (MCIT) and the methylmalonyl CoA (MMCO) pathway (Figure 1). The

two seemingly redundant pathways can both fulfill the task of fueling the central carbon metabolism

from three-carbon compounds. However, they employ a different set of biochemical conversions

and show a distinct expression pattern in experimental studies. The reason why both pathways are

retained in the bacteria and the conditions under which either pathway is used preferentially have

been unknown and are the subject of this study.

The MCIT pathway, in analogy to the glyoxylate cycle in the central carbon metabolism, invests one

oxaloacetate molecule to convert the three-carbon compound propionyl-CoA (PCO) to pyruvate under

the release of succinate, which feed into lower glycolysis and the Krebs cycle, respectively. Enzymes of

the pathway are up-regulated and essential in the pathogenic context [4, 13, 15, 21, 34, 37, 38, 41].

Despite its preferential usage in the bacteria, the MCIT pathway also comprises some risks. Its

intermediates, especially methylcitrate, are toxic at high concentrations [43, 45]. This toxicity is linked

to the inhibitory effect on fructose 1,6-bisphosphatase in the central carbon metabolism [10].

The MMCO pathway depends on ATP activation in the first reaction step, thereby allowing for the

additional fixation of one molecule CO2. The ATP is regained in the last step of the pathway that

again produces succinate. Furthermore, the pathway fulfills biosynthetic tasks in the production of

branched-chain and surface exposed lipids, which are essential virulence factors in Mtb [16].

If the predominant MCIT pathway is lost, for example by genetic disruption, the MMCO drain in to

lipid biosynthesis can re-route flux from a damaged MCIT pathway and relieve cytotoxic stress from

MCIT intermediates [16]. Similarly, the MMCO pathway can partly compensate for the loss of MCIT

flux up to a certain capacity, but only if its activity is induced [10, 36]. These findings indicate some

degree of interplay and compensation between the two pathways, but quantitative and mechanistic

understanding thereof have been lacking.

In this study we address the question why mycobacteria keep two seemingly redundant pathways for

the same task of propionate catabolism, by means of thermodynamic-kinetic modeling, integrating

absolutely quantified proteomics and metabolomics data. We explain why both pathways are

required and why the bacteria favor the MCIT pathway despite the danger of self-intoxication by its

intermediates.

The flux through a reaction or pathway is shaped by the expression of enzymes but also by

metabolite dependent enzyme saturation and reaction thermodynamics (Figure 1 B, [7, 8, 11, 17, 24]).

Sub-optimality in any of those factors in the cellular context can render a pathway unfavorable. Here,

we use modeling approaches to test the significance of each of the factors for the two pathways in

question. We find that each pathway is optimal in a different nutritional condition, based on pathway
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thermodynamics and the optimal distribution of protein masses. While these insights are revealed under

steady state conditions, the full mechanistic interplay between the pathways requires to venture in to

the dynamic time scale. With the help of a full thermodynamic-kinetic model based on fast nutrient

switch experiments, we characterized the function of both pathways in detail: While the MMCO

pathway can quickly react to sudden changes in the propionate concentration and detoxify the cell ac-

cordingly, the MCIT pathway acts as a professional catabolizer, which has a higher overall flux capacity.

Figure 1: Pathways for propionate catabolism. A Schematic representation of the two pathways studied.
Each reaction is depicted by an arrow and labeled with the reaction name, the corresponding gene
name(s) in italics, and their standard Gibbs energy ∆rG

0 in kJ/mol (see also Supplementary Table
S2). Gray arrows depict uptake reactions and network derived biomass fluxes. Intermediates of
the MCIT pathway are shown in yellow, of the MMCO pathway in orange. Boundary species
(cofactors and pathway endpoints) are shown in gray. Superscripts denote the number of carbons
for each metabolite, neglecting the carbon in cofactor A. Abbreviations: CoA - cofactor A, PCO -
propionyl-CoA, S/RMMCO - S/R-methylmalonyl-CoA, SUCCO - succinyl-CoA, SUC - succinate,
OXA - oxaloacetate, MCIT - methylcitrate, MCAC - methylaconiate, MICT - methylisocitrate,
VB12 - vitamin B12 (see also Supplementary Table S1.) B Major factors defining the amount of flux
through a reaction [25]. Other factors, which are not covered by the models here can be regulatory
processes such as post-translational modifications or allosteric regulation.
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Results

Thermodynamic driving forces are comparable between the two pathways in catabolic direction but

prohibit biosynthetic flux through the MCIT pathway

Thermodynamics are a major flux shaping factor within cellular reaction networks [9, 11, 19, 24, and

others]. The direction and flux efficacy of a reaction is restricted by its thermodynamic gradient,

which is characterized by the Gibbs Energy of the reaction ∆rG
′. Only if ∆rG

′ is negative, the

reaction can proceed (i.e. has a positive net-flux). A lower ∆rG
′ thereby indicates a more favorable

reaction, i.e. less effort is required to achieve a higher net-flux through the reaction. The value

of ∆rG
′ depends on the reaction specific Standard Gibbs Energy ∆rG

0 as well as on the ratio

of substrate to product concentrations. Within a pathway, the ∆rG
′s of all reactions have to be

feasible, to allow flux. The reaction with the highest ∆rG
′ (i.e. the lowest absolute) is limiting the

pathway flux, it acts as a thermodynamic bottleneck. One method to identify and quantify such

bottlenecks is the calculation of the maximum-minimum driving force (MDF, [24]). It identifies the

pathway reaction with the highest ∆rG
′, given sensitive, physiological bounds on the metabolite

concentrations within the pathway (for details see Supplementary Text 1.2).

To test whether in vivo the MCIT pathway might be preferred over the MMCO pathway due to

less stringent thermodynamic bottlenecks, we first analyzed the thermodynamic gradients within

the two pathways. We acquired absolute metabolite measurements in the model organism M. bovis

BCG in conditions where either propionyl CoA catabolism (growth on propionate containing media) or

biosynthetic flux towards propionyl CoA (growth on glucose containing media) was required. For both

pathways we calculated the optimum driving force profiles and identified the limiting reaction with the

highest ∆rG
′ (Figure 2 A).

We found that while the thermodynamic profiles of the pathways differ, they have comparable

bottleneck ∆rG
′ values in the catabolic direction (Figure 2 A, upper panel). In contrast, only the

MMCO pathway is able to carry flux in the biosynthetic direction in both conditions (Figure 2 A, lower

panels). The most strongly prohibiting reaction of the reverse MCIT pathway is the final splitting of

methylcitrate into PCO and oxaloacetate by the mcs reaction.

Optimum enzyme investment between the pathways is condition dependent

The amount of enzyme required in a pathway to achieve a certain flux is crucial for the efficiency of

metabolic processes within a cell and its minimization is often considered an evolutionary objective.

From an enzyme investment point of view, some bottlenecks might therefore not be as prohibiting as

others. If the bottleneck reaction is catalyzed by a small protein which is easily synthesized, the cell

can increase the flux through that pathway by producing additional enzymes at low cost. To account

for this dependency on enzyme masses, we calculated the maximum flux through both pathways,

given a limited total protein mass that can be distributed, as an evolutionary constraint, between the

reactions of the two pathways. We focused on the catabolic direction, in which both pathways can

carry flux.

We optimized the total catabolic flux through both pathways in the two metabolic backgrounds by

scanning a range of possible ratios of enzyme mass distribution between the pathways (Figure 2

B). For each of the ratios, the total protein mass per pathway was fixed but could be distributed

optimally between the pathways enzymes to achieve maximum flux (for implementation details see
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Supplementary Text S.1.3).

The analysis reveals that pathway optimality, considering thermodynamics as well as enzyme masses,

depends on the metabolic background: In glucose media, the MMCO pathway can achieve a higher

flux per enzyme mass (Figure 2 B, upper panel), whereas the MCIT pathway is preferable in propionate

media (Figure 2 B, lower panel). Each of the pathways is therefore beneficial for the bacteria depending

on the available nutrient. If the supply in nutrients is variable in the bacterial environment, it can be

beneficial to retain both pathways’ in the genome, despite the higher biosynthetic costs.

Figure 2: Optimum thermodynamics and protein investment. A Driving force profiles after maximum-minimum
driving force optimization. The cumulative Gibbs energy ∆rG

′ along the pathway is plotted, the
MMCO (left) and the MCIT (right) pathways are analyzed in forward/catabolic (upper panels) and
backward/biosynthetic (lower panels) direction as indicated by light gray arrows. The participating
reactions are labeled on the x-axis. Monotonously decreasing lines in the direction of flux imply
pathway feasibility, increasing lines mark infeasible reactions. The different sets of bounds on the
metabolite concentrations are shown in different colors: gray - default physiological bounds, red -
measured concentrations under glucose conditions, blue - measured concentration under propionate
conditions. Color coded numbers in the top of the plots indicate the ∆rG

′ of the bottleneck
reaction in kJ/mol, positive values indicate pathway infeasibility. B Maximum pathway flux for
limited enzyme availability. We allowed 1% of the total M. bovis BCG protein mass to be distributed
between the two pathways in different ratios (x-axis, relative to the MCIT pathway). Hence, the
bounds of each plot represent the full amount of protein being contained in one of the pathways
(highlighted in the respective colors). The plots show the contribution of the MMCO (orange
line) and the MCIT (yellow line) to the total flux (blue line) for each ratio (11 sampling points,
c.f. Supplementary Figure S.1) for the growth on glucose (top) and propionate (bottom).

Dynamic detoxification of propionate pulses is predominantly facilitated by the MMCO pathway

Whereas the analyses of thermodynamics and optimal enzyme investment strategies revealed first

insights into the characteristics of the two pathways, they largely neglect kinetic aspects of enzyme

action. Firstly, they assume - due to the lack of available kinetic data - uniform catalytic parameters

for each pathway enzyme. Secondly, both approaches are limited to the analysis of steady state

behavior. However, in the changing environment of a ructious host cell, dynamic time scales are likely

to be of importance in the understanding of metabolic functionality.
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To characterize the dynamic behavior of the two pathways, we perturbed M. bovis BCG cells

experimentally by a fast shift between the two metabolic conditions: From steady state growth on

propionate to glucose media, in which reverse flux through the pathway in the biosynthetic direction

will be required, and from growth on glucose to propionate media, where a fast detoxification of

rising propionyl CoA levels is needed. We measured the dynamic metabolite concentration changes of

both pathways at several time-points within the first 160 seconds after the switch (Figure 3, dots).

Furthermore, we absolutely quantified the protein concentrations of the involved pathway enzymes in

both culture conditions (propionate and glucose), which can be safely assumed to be constant over

the short period of the shift experiment. We then built a full dynamic model (for details see Methods

and Supplementary Text S.2) with thermodynamically consistent rate laws that include the major flux

shaping factors (see Figure 1 B) to explain the observed behavior in detail. The model was calibrated

to the dynamic metabolomics data and included also the measured protein concentrations for each

nutritional condition. It was able to reproduce the experimental behavior (Figure 3, lines and shaded

areas as error estimates, corresponding fluxes are shown in Supplementary Figure S.3)

Indeed, the two pathways show very distinct dynamic reactions to the nutrient shifts. Only the MMCO

pathway (Figure 3 B) reacts dynamically to sudden increases and decreases in the propionyl CoA

concentration (Figure 3 A). The MCIT pathway shows only a minor dynamic reaction, but its overall

metabolite levels strongly change with the carbon source (Figure 3 C). We therefore conclude that

the MMCO pathway facilitates the dynamic detoxification of propionate pulses.

Figure 3: The MMCO pathway reacts dynamically to changes in the propionate supply, while the MCIT
pathway is up-regulated in catabolic conditions. Experimental metabolomics measurements (dots)
along with dynamic model simulations (lines) and the estimated error (shaded areas) for different
nutrient switches at time t=160s. The model was fitted to the data shown here (values in
Supplementary Table S.5) and used without further calibration for the predictions in all following
simulations. A Propionyl CoA (PCO) is the initial metabolite of the MMCO and MCIT pathways
and represents the entry point of propionate into the central carbon metabolism. B Observable of
intermediate species of the MMCO pathway C Observable of intermediate species of the MCIT
pathway (MCIT + MICT). D Co-factors, which are held constant in the model. E Dummy biomass
species required to guarantee appropriate fluxes draining into biomass production. Please note that
the final steady states after 160s depend on the enzyme concentrations (see Figure 1 B), which are
different in glucose and propionate conditions (Supplementary Table S.3).
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Thermodynamics limit MMCO flux

Our calibrated model further allowed us to analyze functional flux distributions in detail in order to

identify the limiting factors for each pathway and condition. Using the model, we simulated metabolic

challenges as they are likely to occur in the host phagosome, such as sudden changes in the availability

of nutrients. These simulations enabled us to understand the specific metabolic tasks and limitations

of the two parallel pathways.

We tested how changes in propionyl CoA concentration would impact on pathway fluxes in a given

metabolic background. To this aim, the rate dependencies on the substrate concentration (similar to

classical Michaelis-Menten curves) of the first enzyme of each of the two pathways were examined

(Figure 4 A), already indicating the benefits and limitations of each pathway. The modular character

of the thermodynamic rate law also allowed us to dissect the contributions of changes in enzyme

concentration, enzyme saturation and thermodynamic limitations to the curve (Figure 4 B). To avoid a

bias due to a local optimum of the parameter estimation, we calculated the mean curve of all feasible

(LL < LLmin + ∆95%) parameter sets found during the calculation of parameter profile likelihoods

([30], Supplementary Figure S.4).

From the rate dependency curves it becomes evident that under biosynthetic conditions (glucose

consumption, Figure 4 A and B, left), the MMCO flux (orange) tightly follows the PCO concentration,

with the potential to quickly switch from negative (biosynthetic) to positive (catabolic) rates around

the measured PCO concentration (gray dotted line). This switch is solely facilitated by the adaptation

of the thermodynamic gradient of the reaction (Figure 4 B, upper left, yellow line). The flux through

the MCIT pathway is almost insensitive to changes in the PCO concentration as the first enzyme is

strongly under-saturated at the lower PCO levels (Figure 4 B, lower left, green line). Hence, a sudden

PCO pulse, as in our experiments, will be solely drained via the MMCO pathway, which rapidly shifts

its reaction direction.

Under catabolic conditions (propionate consumption, Figure 4 A and B, right), the MCIT reaction

has a higher capacity due to a drastically increased enzyme level (Figure 4 B, lower right, dark

blue line) and hence out-competes the MMCO reaction. In the catabolic background, the pcc

reaction has a shallow thermodynamic gradient (Figure 4 B, upper right, yellow line), most likely

due to the decreased level of the co-substrate ATP. It would even invert its direction upon a slight

decrease in the PCO concentration, consequently not fulfilling any catabolic tasks. Here, as well as

in the biosynthetic case, the MMCO flux quickly saturates at increasing PCO concentrations in the

physiological range, explaining the upper capacity bound for the pathway observed experimentally

[10, 36]. The corresponding MCIT enzyme is still in the linear regimen of the rate dependency curve,

guaranteeing a proportional change of the flux with the PCO concentration.

Metabolic control is executed mainly by the first enzyme of the MCIT pathway

Employing metabolic control analysis [14] we could also resolve why the bacteria tune the metabolic

flux distribution by up-regulating prpC, the enzyme of the methylcitrate synthase reaction mcs in the

MCIT pathway. Metabolic control analysis is a standard method to quantify the influence of model

entities, such as enzyme levels or individual parameters, on the system’s steady state. As we see from

the flux control coefficients, which describe the effect of a local change in one enzyme concentration

on the steady state pathway flux, the only significant control under biosynthetic conditions is exerted

by mcs (Figure 4 C). Hence, only an up-regulation of mcs can significantly increase the steady state

catabolic flux as required when propionate is to be used as a carbon source. The flux through MMCO

reactions is only passively following the propionate uptake rate (RUP PRO). Under catabolic conditions
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the control shifts also to the reactions of the MMCO pathway (Supplementary Figure S.6), consistent

with the pathway’s compensating function described.

Quantitative assessment of the trade-off between flux capacity and intermediate toxicity

We conclude that the thermodynamic properties allow the MMCO pathway to react quickly to changes

in the PCO concentration, but also limit its overall capacity, rendering it insufficient to supply enough

carbon for bacterial growth. The MCIT pathway, on the other hand, gains momentum only if its

enzyme expression is increased, thereby reaching a higher capacity and avoiding saturation effects to

efficiently channel carbon to the central carbon metabolism. As a drawback, this pathway contributes

to the risk of accumulating toxic intermediates.

We used the kinetic model to quantitatively asses how this trade-off between toxicity and high flux

capacity is efficiently balanced by the two pathways. We thus simulated increased and decreased

carbon uptake via PCO compared to the reference condition in the model to quantify which percentage

of the carbon is fed into the central metabolism (“flux capacity”) where it can be used to generate

biomass precursors and energy. At the same time, we monitored the absolute concentrations of toxic

intermediates. With the help of in-silico knock-outs we further dissected the interplay between the two

pathways in this trade-off (Figure 4 D). For comparison, phenotypes of related experimental knock-out

studies are summarized in Supplementary file S3.

In the wild type (dark blue) increasing influx is only transmitted via both pathways up to a certain

capacity (∼80%), the rest is drained into lipids. Further increase in the propionate uptake results

in raising levels of toxic intermediates, but to levels that are only mildly inhibiting fructose 1,6-

bisphosphatase [10]. A boost in the MMCO pathway activity (light blue, here done by increasing the

activity of rmco 100-fold, the reaction with highest control coefficient in the pathway) can both lower

toxic metabolite levels and increase flux capacity to ∼90%. This additive behavior of the two pathways

is consistent with experimental observations [36]. The capacity limitations in the MMCO pathway

become evident in in-silico mutants with a disrupted MCIT pathway. In the also experimentally well

studied mcl knock-out, the MMCO pathway can only achieve ∼40% flux capacity in our simulations

(bright yellow). If boosted as described above, it can reach up to ∼65% capacity (orange) - still much

less than the wild type. Importantly, the MMCO boost cannot rescue the intermediate toxicity in

our simulations. If the first enzyme of the MCIT pathway mcs is lost (green) the compensation by

the MMCO pathway is even lower, with flux capacity decreasing below 50% with increasing input

flux, accompanied by a drastically increased buffering flux into lipids. However, these cells do not

experience intermediate toxicity, in accordance with experimental studies [45, 43].

Taken together, our simulations explain the metabolic capabilities of the two pathways in a quantitative

manner. The trade-off between flux capacity and intermediate toxicity is thereby identified as a

structural weakness of the catabolizing system that can be exploited to fight Mtb infection.
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Figure 4: The trade-off between flux capacity and intermediate toxicity. A/B Substrate dependency of the
first reaction step of both pathways dissected. The two experimental backgrounds glucose (left
panel) and propionate (right panel) are shown with the vertical dashed line highlighting the mean
PCO concentration of the metabolomics measurements. All simulated values are means of all
feasible parameter sets of the profile likelihood estimation. A Michaelis-Menten-like curves of pcc
(orange) and mcs (yellow), the first reaction steps of the MMCO and MCIT pathways, respectively.
The dependency of the flux on the concentration of PCO is plotted. Note that the flux can become
negative owing to the reversible nature of the thermodynamic rate law. B The total flux as depicted
in A, decomposed in the contributions of the individual terms of the reaction rate (see also Figure
1 B): Enzyme concentration as measured by proteomics (dark blue, for clarity values in µM are
shown on the axes), kinetic term representing the saturation state of the enzyme (green) and the
thermodynamic term quantifying the extent of the backward flux (yellow). The thermodynamic and
the kinetic term are bounded by 1. The product of the three terms and kcat (lower right corner,
right panel, given in 1/s) will give the values plotted in A. Upper panel shows dissection for the
MMCO reaction pcc, the lower for mcs from the MCIT pathway. Note that the MCIT terms are
plotted on a logarithmic scale. C Mean flux control coefficients in glucose media. The color coded
(red - positive control, blue - negative control, intensity of the color encodes strength), normalized
flux control coefficients are shown. The reactions labeled on the x-axis thereby exert the control
on the fluxes through reactions shown on the y-axis. D Simulation of mutant strains. Varying
propionate input fluxes (2 fold increase and decrease) were simulated for five different strains in
a propionate media background. The trade-off between the accumulation of toxic intermediates
and the percentage of carbon that is channeled into the central metabolism (“flux capacity”) is
shown. For comparison, the toxic effect of the intermediates on fructose 1,6-bisphosphatase (in %
remaining activity of the enzyme) as measured by Eoh and Rhee [10] is depicted in the top bar.
Please note that those simulations were only carried out with the optimum parameter set.
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Discussion

Professional high-capacity catabolism vs. flexibility for rapid detoxification

The presented analyses characterize the MCIT pathway as a high-capacity catabolic pathway that

exploits thermodynamically beneficial reaction steps, which operate below saturation in physiological

scenarios. The MMCO pathway acts as a flexible pathway capable of rapid PCO detoxification but

also of biosynthetic tasks. This flexibility is facilitated by a fine-tuned thermodynamic balance at the

cost of an upper catabolic flux capacity limit.

These distinct functionalities render it beneficial for the cell to retain both pathways despite their

redundancy in channeling carbon from PCO to the central carbon metabolism. Implementing both in

one pathway would reduce the efficiency of either functionality, as a high forward flux capacity with a

steep thermodynamic gradient contradicts the ability to quickly invert the flux direction.

Further metabolic tasks of each pathway could be seen as circumstantial of the described function-

alities. The constitutively expressed MMCO pathway also supplies precursors for virulence relevant

lipids, which are required under all environmental conditions. The MCIT pathway, as an additional

metabolic advantage, directly feeds pyruvate into lower glycolysis, thereby skipping potentially expensive

gluconeogenetic reactions.

Implications for treatment strategies

The MCIT pathway has been subject of extensive study as an anti-tubercular drug target, encouraged

by the lack of a homologue pathway in the human host. Recently, also its role in antibiotic tolerance

by specifically rerouting central carbon metabolic fluxes was described [23]. The pathway also occurs

in other pathogens and is up-regulated upon exposure to propionate, which is often part of their diet

in the pathological context (Salmonella enterica [28], Toxoplasma gondii [18]). The plasticity of this

crucial lipid biosynthetic and catabolic node has recently been shown to be relevant in eukaryotes, with

implications on human metabolic diseases [46], arguing for a general metabolic strategy. Functional

understanding of the pathway functionality and its interplay with the compensating MMCO pathway

as presented in this study is highly relevant for the development of new treatment strategies in these

contexts.

Eoh and Rhee [10] as well as Savvi and coworkers [36] show that in mycobacteria the MMCO pathway

can compensate for the loss of MCIT pathway functionality in ∆icl mutants in terms of survival but

cannot support growth in an equally efficient manner. However, Van der Ven et al. [45] and Upton

and coworkers [43] pointed out that the inhibition of the upstream enzyme prpC can reverse this

effect, implying that the growth defect is due to the accumulation of toxic MCIT intermediates rather

than due to a less efficient metabolic processing of carbon through the MMCO pathway. Our mutant

simulations quantitatively underline these findings.

Consequently, the optimum bactericidal strategy would be to inhibit both a downstream MCIT enzyme

such as icl as well as the first enzyme of the MMCO pathway, thereby increasing toxic intermediate

levels and abrogating the buffering flux bypass completely.

Quality of model calibration

Despite the limitations of modeling approaches - here for example the inability to resolve the dynamics

of propionate decay with high confidence - mechanistic conclusions can be drawn from the presented

analyses. Models can only yield predictions up to the level of accuracy and coverage of the data. But

during the modeling process, we can pinpoint parts of the system which are still ill-defined, for example
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by identifying parameter non-identifiabilites [30] which were present for the majority of the model

parameters, despite the high number and quality of data points included. However, other parts of the

model are well calibrated (identifiable parameters). Furthermore, mechanisms can become evident

for all possible scenarios of the non-identifiable parts of the model. For this reason, we performed

our simulations with all sets of parameters identified as yielding a model quality below the likelihood

threshold in the profile likelihood estimation. Our simulations therefore cover a range of feasible

behaviors given the experimental data, not just an individual point in the parameter space.

Generally, dynamic metabolic modeling efforts often face a lack of measured kinetic parameters,

especially in the appropriate condition. in vitro experiments investigating enzyme kinetics are sparse

for most pathways and organisms, always assay dependent and never reflect the intracellular situation.

In contrast, model calibration to absolute intracellular metabolite and protein concentrations can

determine enzyme kinetics in vivo in the natural environment of corresponding metabolic pathways.

Dynamics and quantitative data make the difference

The thermodynamic and enzyme cost analyses clearly highlight the condition dependent nature of

pathway optimality: The cheapest pathway in one condition might be out-competed by an alternative

route under different conditions. Despite their usefulness in many studies [8, 11, 17, 48], such

approaches are limited by their focus on time scales that allow for equilibration of the metabolism for

describing the evolutionary benefit of reducing resources and increasing metabolic outcome. However,

as Mtb invest only a small fraction of their resources in proteins [3, 33], the evolutionary pressure of

reducing protein cost might not be high for these bacteria. In addition, the cells might have other

objectives for pathway functionality that are not detectable by optimizing for a constant condition,

especially for bacteria subjected to variable environmental conditions as those Mtb faces in the human

host. In this context, multi-objective Pareto optimality has been found to describe the overall behavior

of systems well [8, 40]. Here, we add a distinct, temporal objective, describing metabolic non-steady

state optimality. The transient behavior in response to sudden metabolic challenges has proven to be

essential for the system in question here.

We also highlight the importance of concentration constraints based on quantitative metabolite

measurements. For example, only the measured metabolite concentrations reveal the infeasibility of the

MCIT pathway in biosynthetic direction, while under default physiological concentration bounds (1µM-

50mM) the MCIT pathway would falsely be classified as reversible (Figure 2 A, lower right, gray line).

The actual intracellular concentrations are far more strict constraints on the feasible flux space, which

underlines the importance of high quality metabolomics data to understand the underlying mechanisms.

In conclusion, our modeling-based approach was able to resolve the functional differences in the two

seemingly redundant pathways responsible for catabolizing in vivo carbon sources. The combination

of dynamic modeling and absolutely quantified experimental data revealed transient constraints in

thermodynamics as well as intermediate toxicity that force the cell to retain both pathways, explaining

an important aspect of metabolic plasticity in Mtb.

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 2, 2018. ; https://doi.org/10.1101/258947doi: bioRxiv preprint 

https://doi.org/10.1101/258947
http://creativecommons.org/licenses/by/4.0/


Methods

Experimental procedures

Cell culture and experimental setup

The experiments were conducted with M. bovis BCG, a widely used Mtb model system which requires

lower biosafety level and shares 99.5% of the Mtb genome [1]. M. bovis BCGis less persistent and

virulent than Mtb but many biological features were found to be similar (e.g. flux distributions [4],

ability to grow on cholesterol [44]). In our experiments, M. bovis BCG was grown on Middlebrook

7H9 medium without glycerol containing exclusively propionate or glucose as carbon source (0.5 g/L).

Samples were taken in exponential growth phase, transferred to a Büchner funnel with nitrocellulose

filter. For the shift experiments, the cells were perfused with fresh media with the culture carbon

source for 1 minute to allow acclimatization to the new aeration conditions. Afterwards perfusion

media was changed to the respective other carbon source. The method is described in detail for

mycobacteria in Murima et al. [22]. Additionally, proteomics samples were taken from the culture.

Proteomics measurements

For protein quantification, cells were disrupted and subjected to tryptic digestion. Resulting peptides

were quantified by absolute label free quantification [38] or internal heavy isotope labeled protein

standards [39], where available. Proteomics measurements are summarized in Supplementary Table S.3.

Metabolomics measurements

Cells on the filters were subjected to ethanol extraction after 0, 10, 20, 40, 80 and 160 seconds

of perfusion with the new media and absolutely quantified by mass spectrometry by normalizing to
13C-labeled internal standards as described before [6]. Metabolomics measurements are summarized in

Supplementary Table S.5. We selected the final time-point of 160s as the metabolite concentrations

have reached a new steady state during that time, while we can assume negligible changes in the

protein concentrations. This allows us to include them as constant in our model simulations.

Modeling, simulation and optimization procedures

Compilation of pathway reactions

The reactions and the corresponding enzyme complexes of both pathways used for all modeling

approaches were compiled from literature and are summarized in Supplementary Table S.2. The

pathways were embedded in the larger biological context via boundary fluxes based on biomass

backtracking [42] from a genome scale model of M. tuberculosis [33]. The compiled reaction were

used for all simulations and optimization approaches as well as for the dynamic model (see below).

Thermodynamic constants

The Gibbs energy of a reaction is defined as ∆rG
′ = ∆rG

0 +RT · ln
nx∏
i=1

x ϑi
i . It can be calculated

from the standard Gibbs energies of the reactions ∆rG
0, the substrate and product concentrations xi,

their respective stoichiometric coefficients ϑi, the absolute temperature T and the ideal gas constant

R. At ∆rG
′ = 0 the forward flux through an reaction equals the backward flux, such that the net-flux

of the reaction vanishes. For our calculations, the standard Gibbs energies of the reactions ∆rG
0 were
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obtained from the component contribution method (eQuilibrator tool [12, 26]) at pH 7.5 and a total

ionic strength of 0.2 M, they are summarized in Supplementary Table S.3.

Nonlinear constraint based optimization

Optimizations were performed in Matlab using the fmincon optimizer that allows for the integration

of linear and nonlinear constraints on the optimization problem. Optimizations were carried out with

Latin Hypercube [20] distributed initial points and convergence was examined over a sufficiently large

number of optimization runs. Mathematical formulations and detailed information on all optimization

problems can be found in the Supplementary Text S.1. In all cases the default concentration bounds

were between 1− 50 · 103µM (based on [2, 11, 50] and metabolomics data presented here).

Dynamic ODE modeling

The model reactions and their kinetics are summarized and explained further in Supplementary Ta-

ble S.2. The enzymatically modeled reactions (shown as black arrows in Figure 1) were modeled using

a decomposition of the Michaelis-Menten equation that differentiates between kinetic (saturation) term

and a thermodynamic term (Equation in Figure 1 B, [25]). The uptake of propionate was modeled

by a constant rate, perturbed by step functions representing the media switches. Cofactor (OXA,

CoA, H2O, ATP, ATP, Pi, CO2, PYR) concentrations were held constant, but their concentration

value was estimated in accordance with the experimental values, where available. For non-measured

cofactors the default concentration bounds were applied. Biomass flux was modeled as a simplified

Michaleis-Menten kinetics linked to the overall biomass production by biomass backtracking [42] and

corresponding dummy biomass observables (see Supplementary Text S.2). Enzyme concentrations in

the kinetic laws were taken directly from the proteomics measurements of the two growth conditions

and assumed to be constant for the comparably short time of the dynamic simulation after the nutrient

switch (160s).

Overall the model has 94 parameters of which 34 are initial concentrations, 10 error model pa-

rameters and 8 Gibbs free energies (Supplementary Table S.1). The model comprises 14 reactions

(Supplementary Table S.2), 9 dynamically modeled species and 11 constant inputs and co-factors

(Supplementary Table S.4).

Computational implementation and parameter estimation

The model was implemented in the D2D modeling framework [31]. Experimental data was mapped via

observables y (Supplementary Table S.4), a logarithmic error model of the form ym · σy was assumed

and estimated alongside the model parameters.

The objective function consists of the negative log likelihood of the model ym given the data y and

the error model and the fulfillment of applied steady state constraints. The constraints are necessary

to guarantee the model to be in steady state before the media shift is simulated and were implemented

as minimization of the metabolite trajectories’ derivatives at the initial point of the simulation (t = 0).

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 2, 2018. ; https://doi.org/10.1101/258947doi: bioRxiv preprint 

https://doi.org/10.1101/258947
http://creativecommons.org/licenses/by/4.0/


Optimizations were run with Latin Hypercube distributed initial points and the lsqnonlin optimizer in

D2D.

Calculation of profile likelihoods

Profile likelihoods [30] were calculated to asses parameter confidence bounds and identifiability. They

are summarized in Supplementary Figure S.4and Supplementary Table S.1.

Metabolic control analysis

The calculation of the metabolic control and response coefficients [14] was implemented within D2D,

based on the symbolically calculated matrices for ∂v/∂x and ∂v/∂p.

Accessibility

Programming code (public git repository https://github.com/tbphu/pdtx upon acceptance, re-

viewer access: login - PdtxReviewerMSB, password - PdtxReviewerMSBPassword) as well as the

models in SBML format (Supplement) are available online.
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