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Abstract 

Chemical pollutant exposure is a risk factor contributing to the growing epidemic of non-
alcoholic fatty liver disease (NAFLD) affecting human populations that consume a Western 
diet. Although it is recognized that intoxication by chemical pollutants can lead to NAFLD, 
there is limited information available regarding the mechanism by which typical 
environmental levels of exposure can contribute to the onset of this disease. Here we 
describe the alterations in gene expression profiles and metabolite levels in the human 
hepatocyte HepaRG cell line, a validated model for cellular steatosis, exposed to the 
polychlorinated biphenyl (PCB) 126, one of the most potent chemical pollutants that can 
induce NAFLD. Sparse partial least squares classification of the molecular profiles revealed 
that exposure to PCB 126 provoked a decrease in polyunsaturated fatty acids as well as an 
increase in sphingolipid levels, concomitant with a decrease in the activity of genes involved 
in lipid metabolism. This was associated with an increased oxidative stress reflected by 
marked disturbances in taurine metabolism. A gene ontology analysis showed hallmarks of 
an activation of the AhR receptor by dioxin-like compounds. These changes in metabolome 
and transcriptome profiles were observed even at the lowest concentration (100 pM) of PCB 
126 tested. A decrease in docosatrienoate levels was the most sensitive biomarker. Overall, 
our integrated multi-omics analysis provides mechanistic insight into how this class of 
chemical pollutant can cause NAFLD. Our study lays the foundation for the development of 
molecular signatures of toxic effects of chemicals causing fatty liver diseases to move away 
from a chemical risk assessment based on in vivo animal experiments. 

 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 3, 2018. ; https://doi.org/10.1101/259093doi: bioRxiv preprint 

https://doi.org/10.1101/259093


Introduction 

A growing epidemic of non-alcoholic fatty liver disease (NAFLD) is affecting human 
populations that consume a Western diet (Argyrou et al., 2017). The spectrum of NAFLD 
ranges from fatty infiltration of the liver (steatosis), to more advanced stages characterized 
by liver inflammation and fibrosis (non-alcoholic steatohepatitis, NASH), and subsequent 
cirrhosis, and hepatocellular carcinoma (Michelotti et al., 2013; Vernon et al., 2011). NAFLD 
currently affects 25% of the US population, and approximately 2–5% have NASH (Vernon et 
al., 2011) with concomitant massive clinical and economic burden (Younossi et al., 2016). 
Annual direct medical costs have been estimated to be approximately $103 billion ($1,613 
per patient) in the US. The occurrence of NAFLD in Europe is also very high and ranges 
from 20-30% with annual medical costs currently running at €35 billion (from €354 to €1,163 
per patient) in countries such as Germany, France, Italy, and the United Kingdom (Younossi 
et al., 2016). Risk factors identified to date for the development of NAFLD include being 
overweight or obese, having diabetes and high cholesterol or high triglycerides in the blood. 
Rapid weight loss and poor eating habits can also lead to NAFLD. The heritability of NAFLD 
was estimated at ~50% (Sookoian and Pirola, 2017). However, some individuals develop 
NAFLD even if they do not have any of these risk factors  (Foulds et al., 2017) and with 
exposure to physiologically active environmental pollutants being a recognised additional 
determinant of disease establishment.  

 

Chemical exposure has long been known to be a risk factor for NAFLD/NASH 
(Wahlang et al., 2013), which is also known as toxicant-associated fatty liver disease 
(TAFLD) and its more, severe form, toxicant-associated steatohepatitis (TASH). TAFLD has 
been commonly associated with acute chemical exposures at the workplace (Cave et al., 
2010b), or after industrial accidents (Yu et al., 1997). However, there is also evidence 
showing that environmental pollutants have the ability to cause TAFLD at environmental 
levels of exposure (Cave et al., 2010a). The ability of environmental pollutants to disturb 
metabolic processes at low environmental levels of exposure generally results from their 
ability to interfere with the activity of natural hormones by binding to their receptors (Heindel 
et al., 2017). Different structural classes of environmental pollutants have been shown to 
modulate liver nuclear receptors, such as dioxins acting on the aryl hydrocarbon receptor 
(AhR), organotins on peroxisome proliferator-activated receptor γ (PPARγ), or 
organochlorines on the constitutive androstane receptor (CAR) (Foulds et al., 2017). Some 
environmental pollutants also promote NAFLD because of their hormone mimicking 
properties on distant organs. For example, bisphenol A acts on the pancreas by stimulating 
the production and secretion of insulin which, in turn, increases the storage of fat by 
stimulating lipogenesis in the liver (Fabricio et al., 2016). Commonly defined as obesogens, 
some other endocrine disrupting chemicals (EDCs) have been found to promote adipose cell 
differentiation and lipid accumulation (Janesick and Blumberg, 2016) with some studies 
establishing a direct link between human exposures to some EDCs and risk of obesity 
(Tang-Peronard et al., 2014). Recent advances in human microbial ecology has also 
revealed that alterations of the gut microbiota by chemicals at early stages of life accelerates 
hepatic lipid metabolism (Ba et al., 2017). However, TAFLD is not only a hormone receptor-
mediated disease but can also arise from metabolic imbalances. For instance, fatty acid 
breakdown can be altered following a direct inhibition of mitochondrial β-oxidation by, for 
example, the pesticide chlordecone (Kaiser et al., 2012). Mitochondrial β-oxidation can also 
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be indirectly inhibited by an alteration in NAD+ cofactor metabolism by compounds such as 
vinyl chloride. 

Overall, biological mechanisms underlying the development of steatosis are grouped 
into 4 biological processes affecting the metabolism of fatty acids: an increased uptake, a 
decreased efflux, an increased synthesis, or defects in their oxidative metabolism (Angrish et 
al., 2017). All these processes are interrelated with a need for more studies providing 
mechanistic insight into the alteration of hepatic lipid metabolism, which in turn induces the 
development of NAFLD (Foulds et al., 2017). This is a priority for regulatory toxicology 
programs and includes a move away from a chemical risk assessment based on in vivo 
animal experiments (Merrick et al., 2015). This can be achieved by detailed molecular 
profiling studies describing the effects of known toxicants on validated tissue culture model 
systems, such as the human hepatocyte HepaRG cell line (Angrish et al., 2017). 

We describe here the alterations in the gene expression profile and metabolite levels 
of HepaRG cells exposed to the polychlorinated biphenyl (PCB) congener 126, one of the 
most potent chemicals associated with development of TAFLD (Al-Eryani et al., 2015). Our 
investigation included a metabolomics analysis, which identified 802 metabolites, which were 
analysed with MetExplore (Cottret et al., 2010), in order to extract the metabolic sub-network 
involved in the biological response to low environmental levels of PCB 126. This was 
coupled with a transcriptomics analysis allowing identification of gene networks involved in 
the response to PCB 126. Our study is the first in depth investigation of the molecular 
profiles underlying the toxic effects of PCB 126, integrating the transcriptome and the 
metabolome in HepaRG cells in response and ultimately highlighted TAFLD-associated 
sensitive biomarkers of exposure to this class of pollutant. 

 

Material and methods 

Reagents 
All reagents and chemicals, unless otherwise specified, were of analytical grade and 

were purchased from Sigma-Aldrich (Gillingham, Dorset, UK). The PCB 126 (98.5% purity, 
CAS Number 57465-28-8) was purchased from LGC Standards GmbH (Wesel, Germany). 
Stock solutions of PCB 126 were made by dissolving in DMSO. The Williams’E medium + 
GlutaMAXTM were purchased from Gibco (Thermo Fisher, Loughborough, UK). The 
supplement ADD670, as well as the DMSO, was provided by Biopredic International 
(Rennes, France).  

 
HepaRG cell culture 

 
HepaRGTM cells (HPR 116) were purchased from Biopredic International (Rennes, 

France). Cells were thawed, suspended and plated in the general purpose medium 
(Williams’E medium + GlutaMAXTM) containing the ADD670 supplement. A total of 72,000 
and 2,000,000 cells were plated in collagen-coated 96 well-plates (Greiner Bio-One, 
Germany) and 6 well-plates (Biopredic) respectively. All cells were cultured at 37°C and a 
5% CO2 atmosphere. The medium was refreshed at days 2, 5 and 7 after initial plating. The 
cells were kept in the general purpose medium until day 8, when the culture becomes well 
organized and includes well-delineated trabeculae and many canaliculi-like structures. At 
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this time, the culture is composed of primitive biliary epithelial cells and mature hepatocytes 
with basal metabolic activities similar to fresh hepatocyte cells. From day 8 to day 14, cells 
were switched to the test medium composed of Williams’E medium + GlutaMAXTM 
supplemented with 2% fetal bovine serum (FBS; GE Healthcare Life Sciences, 
Buckinghamshire, UK), 2mM L-glutamine (GE Healthcare Life Sciences), 10 μg/ml 
penicillin/streptomycin (Life technologies) and 1% DMSO, as well as different concentrations 
of PCB 126 or the solvent control. Three concentrations of the PCB were tested in order to 
cover a wide range of biological effects, starting from low environmental exposures (100 pM) 
to high concentrations of (1 uM), with an intermediate concentration (10 nM). 

 

Mass spectrometry-based metabolomics 

Approximately 5,000,000 cells per sample were harvested from the 6 well-plate 
cultures to obtain a sufficient amount of material to perform the metabolomics analysis. Cells 
were detached using 0.05% trypsin EDTA (Fisher Scientific, Loughborough, UK), and 
collected by centrifugation in order to eliminate trypsin residues and cell pellets frozen, The 
frozen cell pellets were then sent to Metabolon Inc. (Durham, NC, USA) who conducted the 
metabolomics analysis. Samples were prepared using the automated MicroLab STAR® 
system from Hamilton Company. Proteins were precipitated with methanol under vigorous 
shaking for 2 min (Glen Mills GenoGrinder 2000), followed by centrifugation. Samples were 
placed briefly on a TurboVap® (Zymark) to remove the organic solvent.  The sample 
extracts were stored overnight under nitrogen before preparation for analysis. The resulting 
extract was analysed on four independent instrument platforms: two different separate 
reverse phase ultrahigh performance liquid chromatography-tandem mass spectroscopy 
analysis (RP/UPLC-MS/MS) with positive ion mode electrospray ionization (ESI), a 
RP/UPLC-MS/MS with negative ion mode ESI, as well as a by hydrophilic-interaction 
chromatography (HILIC)/UPLC-MS/MS with negative ion mode ESI. 

All UPLC-MS/MS methods utilized a Waters ACQUITY ultra-performance liquid 
chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass 
spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap 
mass analyzer operated at 35,000 mass resolution. The sample extract was dried then 
reconstituted in solvents compatible to each of four methods used. Each reconstitution 
solvent contained a series of standards at fixed concentrations to ensure injection and 
chromatographic consistency. One aliquot was analyzed using acidic positive ion conditions, 
chromatographically optimized for more hydrophilic compounds. In this method, the extract 
was gradient eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) 
using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% 
formic acid (FA). Another aliquot was also analyzed using acidic positive ion conditions, 
chromatographically optimized for more hydrophobic compounds.  In this method, the extract 
was gradient eluted from the same afore mentioned C18 column using methanol, 
acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher 
organic content. Another aliquot was analyzed using basic negative ion optimized conditions 
using a separate dedicated C18 column. The basic extracts were gradient eluted from the 
column using methanol and water, with 6.5mM ammonium bicarbonate at pH 8. The fourth 
aliquot was analyzed via negative ionization following elution from a HILIC column (Waters 
UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of water and acetonitrile 
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with 10mM ammonium formate, pH 10.8. The MS analysis alternated between MS and data-
dependent MSn scans using dynamic exclusion. The scan range varied slightly between 
methods but covered 70-1000 m/z.   

Instrument variability was 5%. This was determined by calculating the median 
relative standard deviation (RSD) for the standards that were added to each sample prior to 
injection into the mass spectrometers. Overall process variability was 10%. This was 
determined by calculating the median RSD for all endogenous metabolites (that is, non-
instrument standards) present in 100% of the pooled matrix samples.   

Raw data was extracted, peak-identified and QC processed using Metabolon’s 
hardware and software. Compounds were identified by comparison to library entries of 
purified standards or recurrent unknown entities. Biochemical identifications are based on 
three criteria: retention index within a narrow retention time/index (RI) window of the 
proposed identification, accurate mass match to the library +/- 10 ppm, and the MS/MS 
forward and reverse scores between the experimental data and authentic standards. While 
there may be similarities between these molecules based on one of these factors, the use of 
all three data points can be utilized to distinguish and differentiate biochemicals. Peaks were 
quantified using area-under-the-curve.   

 

RNA Sequencing (RNA-seq)  

RNA extraction and double-stranded cDNA library preparation 
RNA extraction was performed using the Qiagen RNeasy kit according to the 

manufacturer's instructions. The samples were checked for RNA quality using the Agilent 
2100 Bioanalyzer and quantified using a Nanodrop instrument (ND-1000 
Spectrophotometer; Thermo Fisher Scientific, Wilmington, DE, USA). The extracted RNA 
was subsequently subjected to treatment with DNAse I (Thermo Fisher Scientific Cat. No: 
AM222) followed by purification with Agencourt Ampure XP beads (Thermo Fisher Scientific 
Cat. No: A63881).  A 20 ng aliquot of intact high quality total RNA (RIN>9) from each sample 
was then used as input to generate libraries for RNA-seq using the NEBNext Ultra II 
Directional RNA kit (NEB, Cat. no: E7760S) following the manufacturer’s recommendations. 
This protocol involved an initial step of rRNA depletion, followed by fragmentation prior to 
first strand cDNA synthesis and barcoding of the second-strand cDNA synthesised with 
indices for Illumina platform sequencing for final library amplification. The resulting libraries 
were assessed on the Bioanalyzer 2100 for purity. Sequencing of the resultant double-
stranded (ds) cDNA libraries was performed by applying Illumina sequencing by synthesis 
technology.  

 

Sequencing of ds-cDNA libraries  
Out of a total of 40 cDNA libraries generated, 15 were randomly selected and 

assessed for quality and fragment size distribution using the Agilent 2200 Tapestation 
(Agilent Technologies, Waldbronn, Germany) prior to sequencing. All samples showed 
libraries of good quality, with minimal adapter-dimer contamination, and an average 
fragment size of 345bp. All 40 libraries were quantified using the Qubit 2.0 
spectrophotometer and the high-sensitivity dsDNA Qubit reagent kit (Life Technologies, 
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California, USA). An equimolar quantity of each library was pooled for sequencing, and the 
resulting complete pool was quality checked using the Agilent 2200 Tapestation. Sequencing 
consisted of generating 75bp paired-end reads for the final pool of 40 libraries using the 
Illumina NextSeq®500 instrument in conjunction with the NextSeq®500 v2 High-ouput 150-
cycle kit (Illumina Inc., Cambridge, UK). 

 

Statistical analysis  

The metabolome data analysis was performed using MetaboAnalyst 3.0 (Xia and 
Wishart, 2016). We removed variables with more than 50% of missing values. We also 
replaced remaining missing values with a small value (half of the minimum positive values in 
the original data) assuming to be the detection limit. Furthermore, variables that show low 
repeatability as measured using the relative standard deviation were removed. This step is 
recommended for untargeted metabolomics datasets with a large number of variables to 
remove baseline noise (Hackstadt and Hess, 2009). Data was then median scaled, log 
transformed, and normalized to protein concentration, as determined using the Bradford 
reagent, from the cell pellets. A principal component analysis (PCA) was first performed in 
order to inspect the data variance and see how the samples are related to each other. This 
was then followed by an orthogonal projection to latent structures discriminant analysis 
(OPLS-DA) to identify the source of variation between control and treated groups (Worley 
and Powers, 2016). OPLS-DA is an extension of the PLS-DA method, which incorporates an 
orthogonal component distinguishing the variability corresponding to the experimental 
perturbation (here the effect of PCB 126) from the portion of the data which is orthogonal; 
that is, independent from the experimental perturbation. Although PCA is an unsupervised 
method, the OPLS-DA is supervised. The separation between the different classes is 
calculated by maximizing the co-variance between the metabolome matrix (x) and the 
experimental group labels (y). It is thus prone to overfitting, which we addressed by 
performing permutation testing. Statistically significant alterations in the levels of metabolites 
were identified based on the significance after analysis with a one-way ANOVA test adjusted 
for multiple comparison with Fisher’s least significant difference (q<0.05). The metabolome 
network visualisation was performed with MetExplore as described (Cottret et al., 2010). 
Briefly, the sub-network was obtained by keeping reactions belonging to shortest paths up to 
a length of 4 between pairs of metabolites in the fingerprint. Network was modelled based on 
Recon2 (Thiele et al., 2013) human metabolic network by using atom conservation graph 
(Frainay and Jourdan, 2017) where two metabolites are connected if they are substrate and 
product of the same reaction and share at least one carbon (excluding carbon dioxide from 
the network). 

The RNA-seq data analysis was performed using the latest version of the Tuxedo 
protocol with HISAT, StringTie and Ballgown (Pertea et al., 2016). First, we analysed the 
quality scores and other metrics using FASTQC (Andrews, 2017). Contamination from rRNA 
was measured by aligning the sequences of human rRNA to the FASTQ files 
(http://genomespot.blogspot.co.uk/2015/08/screen-for-rrna-contamination-in-rna.html).  
Sequences were then aligned to the human genome (Supplementary File 1) using the 
hierarchical indexing for spliced alignment of transcripts program HISAT2 (Kim et al., 2015). 
For this purpose, we used prebuilt indexes (H. sapiens, GRCh38) downloaded from the 
HISAT2 website. Alignment rates ranged from 85.12% to 95.53% (average of 91.63%). The 
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number of reads per samples ranged from 9,467,558 to 35,623,876 (average of 21,575,770 
reads). Then, StringTie was used to assemble and quantify the transcripts in each sample 
using the Homo_sapiens.GRCh38.89 database (Pertea et al., 2016). Finally, the differential 
gene expression analysis was made with Ballgown (Frazee et al., 2015) in R environment 
(Team., 2017). Low abundance transcripts with a variance across samples of less than one 
were filtered. A standard linear model-based comparison of transcript abundance was 
performed without adjusting for other covariates to identify differentially expressed 
transcripts (q<0.05). 

Functional implications of the alteration in gene expression profiles were analysed 
using ClueGO (Bindea et al., 2009) and CluePedia plugins in Cytoscape (version 
3.5.1)(Shannon et al., 2003). The GO biological process database (23.02.2017) and the 
KEGG annotation database (01.03.2017) were used. The analysis was conducted using a 
two-sided hypergeometric test for enrichment using a p-value threshold of 0.05 after its 
adjustment by the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). GO 
term fusion was employed to integrate GO categories, minimize the output, and create a 
functionally organized GO category network. Our network displayed GO terms found in the 
levels 5-10 of the GO hierarchy, in order to avoid meaningless high-level hierarchy terms. 
Since it is well known that gene-annotation enrichment tools can give different results, we 
corroborated our interpretations by undertaking an additional KEGG functional analysis 
using the Wallenius non-central hypergeometric distribution in the Bioconductor package 
GOSeq (Young et al., 2010). This analysis has the advantage of correcting for the gene 
selection bias due to differences in transcript length present in RNA-seq datasets. KEGG 
annotation enrichment profiles were found to be very similar to the results obtained with 
ClueGO. These RNA-seq data have been submitted to Gene Omnibus and are accessible 
through accession number GSE109565. 

The metabolome and transcriptome datasets were then integrated by a sparse 
Partial Least Squares regression (sPLS) performed with the MixOmics package. PLS is an 
supervised method, which selects correlated variables (genes, metabolites) across the same 
samples by maximizing the covariance between the datasets. The sparse version of PLS 
(sPLS) was used to select the most correlated variables using LASSO penalization on the 
pair of loading vectors as described (Le Cao et al., 2008).  

 

Results 

We determined transcriptome and metabolome signatures of the effect of a 10-day 
exposure to PCB 126 in differentiated HepaRG cells (Figure 1). The cells presented no 
visible signs of aging at this time point. The metabolome platform detected 802 metabolites. 
We removed 7 variables with more than 50% missing values, and 199 variables that showed 
low repeatability. The effects of the PCB 126 were first visualized by plotting each sample as 
a point in space defined by the two principal components from a PCA, in order to reduce the 
596-dimensional space defined by the variations in the metabolites levels (Figure 2A). The 
components separated the group of samples treated with the PCB126 from the control 
group. As the dose of PCB 126 increases, the groups become more clustered. We then built 
an OPLS-DA model (Figure 2B) on the basis of the PCA results. The OPLS-DA model for 
PCB 126 (R2X = 0.177, R2Y = 0.769, and Q2 = 0.58) appropriately classified all samples 
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(Figure 2D). This model explains 17.7% of the variation in metabolite levels (R2X) and 
76.9% of the variations between the different groups (R2Y). The average prediction 
capability (Q2) was 58%. The difference between R2Y and Q2 was less than 0.2 and the Q2 
value was greater than 50%, revealing an excellent predictive capability (Robotti and 
Marengo, 2016). A 1,000-time permutation test was conducted to further validate the OPLS-
DA model (Figure 2C). The empirical p-values for R2Y (p = 0.022) and Q2 (p < 0.001) 
indicate that the observed statistic (based on our data) is not part of the distribution formed 
by those from the permuted data. Thus, the dose-dependent clustering of the data is 
statistically significant. 

An S-plot was then constructed to visualize the loading of the PCB 126 OPLS-DA 
model (Figure 2E), and determine which variables are the best discriminators between the 
different treatment groups. This plot combines the modelled covariance (p1) and the 
modelled correlation (p(corr)) from the OPLS-DA model in a scatter plot. Ceramides had the 
highest magnitude (p1) and reliability (p(corr)) scores. By contrast, the highest magnitude 
and reliability scores were attributable to polyunsaturated fatty acids (docosatrienoate 
22:3n3 and 22:3n6). However, because OPLS-DA loading is difficult to interpret with more 
than 2 classes, we used the OPLS-DA method for score overview but for significantly 
disturbed metabolites (red dots, Figure 2E) selected based on the results of a one-way 
ANOVA test. A total of 30 metabolites had their levels disturbed by the PCB 126 treatments 
(Table 1). Most of the changes were dose dependent (Figure 3). The most pronounced 
metabolic differences were attributed to a change in lipid metabolism. A total of 4 glycosyl-
ceramides and 3 glycosyl-sphingosines had their levels increased (fold change (FC) up to 
13.2 for glycosyl ceramide d181/231, d171/241), while polyunsaturated fatty acids such as 
docosatrienoate 22:3n3 (FC ranging from -1.3 to -5.4), and docosatrienoate 22:3n6 (FC from 
-1.6 to -6.5) and 1-palmitoleoylglycerol (FC from -1.8 to -370) had their levels decreased. 
These lipids are common constituents of cell membranes, and thus changes in their levels 
suggest that membrane integrity and maintenance is adversely affected by the PCB 126 
treatment.  

Our results also show an increased activity within detoxification pathways. Multiple 
metabolites, including cysteine sulfinic acid, taurine, hypotaurine, N-oleoyltaurine, and N-
acetylmethionine sulfoxide are significantly elevated in a dose-dependent manner. The 
predominant pathway elicited as a response to oxidative stress seems to be taurine 
metabolism as indicated by the network analysis performed using MetExplore (Figure 4A). 
Our network analysis reveals that bilirubin and biliverdin are further away from most 
metabolites in the fingerprint (Figure 4B). Thus, the network extraction focused on the first 
cluster which contains more metabolites (Figure 4A). The core part of the taurine and 
hypotaurine metabolism seems to be modulated (disregarding bilirubin and biliverdin) as a 
consequence of the oxidative stress induced by the PCB 126. 

Multiple gamma−glutamyl amino acids such as gamma-glutamylglutamine and 
gamma-glutamylcysteine are also elevated. This is possibly in response to oxidative stress 
being caused by the PCB 126 exposure. Several activators of aryl hydrocarbon receptor 
(AhR)-mediated transcription such as the bile pigments biliverdin and bilirubin, as well as 
tryptophan metabolites kynurenine and picolinate, had their levels decreased by the PCB 
126 treatment. Other intermediates in tryptophan metabolism such as quinolinate, 
kynurenate and pyridoxate were also decreased but did not reach statistical significance.  
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Transcriptome profiles of HepaRG cells were then analysed using Illumina-based 
RNA sequencing. An unsupervised visualisation of the variance structure by a PCA showed 
comparable results to those of the metabolome profiles. The control group separates from 
the PCB 126 groups in a dose-dependent manner on the second component (Figure 5). The 
source of variation causing the clustering on the first component remains unknown as no 
batch effects was identified in the experimental procedure. As a result, the standard linear 
model-based comparison of transcript abundance was performed without adjusting for other 
covariates. A total of 264 transcripts had their levels altered by the PCB 126. We present a 
detailed analysis of CYP1A1 expression as a representative of the changes we observed 
(Figure 6). CYP1A1 is known to be highly expressed following exposure to dioxins and PCBs 
as its promoter contains 7 dioxin-responsive elements, which bind the aryl hydrocarbon 
receptor. The evaluation of expression levels among 12 distinct isoforms of CYP1A1 shows 
that some transcripts are expressed at a much higher level than others (Figure 6A). Four of 
these 12 isoforms had their expression increased from the lowest concentration (q < 0.05). A 
scatter plot of the expression levels for the 24 most differentially expressed transcripts 
shows that alterations were dose-dependent and detectable at concentrations as low as 100 
pM (Supplementary File 2). 

We then performed a gene-annotation enrichment analysis in order to determine the 
biological processes affected by the exposure to PCB 126 (Figure 7, Supplementary File 3). 
Unsurprisingly, the most important network affected by PCB 126 were related to the 
metabolism of xenobiotics by P450 cytochromes (CYP1A1, CYP1A2, CYP1B1) and UDP 
glucuronosyltransferase (UGT1A1, UGT1A3, UGT2A3, UGT2B11), both being well known 
PCB metabolism pathways, but also aldehyde dehydrogenases (ALDH1A3, ALDH3A1), 
which catalyze oxidation of aromatic aldehydes produced by-products of mono-oxygenation 
reactions. These are hallmarks of an activation of xenobiotic metabolism by dioxin-like 
compounds (Grimm et al., 2015). More surprisingly, genes involved in the 
glycosaminoglycan metabolic process were the most enriched category (AP2A1, CEMIP, 
CHSY1, FUCA1, GALNT5, GPC6, LUM). This can reflect an increase in glucuronidation 
metabolism as UGT enzymes are central players in glycosylation processes. Perhaps one of 
the most surprising enriched pathways is the systemic lupus erythematosus (SLE) KEGG 
pathway containing histone genes (C5, H2AFV, HIST1H2AB, HIST1H2AE, HIST1H2AG, 
HIST1H2BO). The AGE-RAGE signalling pathway associated with diabetic complications 
was also enriched (AGTR1, CDKN1B, COL3A1, MMP2, PRKCA, SERPINE1). The same 
genes are found in the HIF-1 signalling pathway, which were also enriched. Altogether, 
these results point to a role of hypoxia in the toxic effects generated by the exposure to the 
PCB 126.  

We then integrated the results from the transcriptome and the metabolome by 
performing an sPLS analysis, with two components being sufficient to model the data (Q2 of 
0,1 and 0,17). The performance of the sPLS analysis was weak because of the relatively 
small number of samples. However, the different groups were well separated (Figure 8A), 
with the samples from the two highest concentrations of PCB 126 treatments being clustered 
together and separate from the control and the lowest dose samples. We then investigated 
the correlation between variables (Figure 8B and 8C). Sphingolipids and polyunsaturated 
fatty acids (PUFA) were negatively and positively correlated respectively with the expression 
of genes involved in triglyceride metabolism (such as APOA2, CPS1, HMGCS2, LPL). That 
is, the decrease in PUFA levels, as well as the increase in sphingolipid levels, is concomitant 
to a decrease in the activity of genes involved in lipid metabolism.  
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Discussion 

With the steadily increasing number of synthetic chemicals being released in our 
environment, the ability to use human cell lines to evaluate toxicity of pollutants and move 
away from more time-consuming and expensive risk assessment based on in vivo animal 
experiments, has become one of the challenges of the 21st century (Hartung, 2009). We 
present here an in-depth investigation of the toxic effects of the PCB 126, a model chemical 
for the induction of TAFLD, on the transcriptome and metabolome of human liver HepaRG 
cells (Merrick et al., 2015; Mueller et al., 2014). We envisages that our investigation would 
be particularly useful for the establishment of high-throughput assays using the HepaRG cell 
line, which has been found to be a model system to predict the results of acute and repeated 
dose toxicity (Mueller et al., 2014) and to study human xenobiotic metabolism (Guillouzo et 
al., 2007). HepaRG is one of the best characterized cell lines. The most recent application of  
metabolomics analytical methods on the HepaRG cells reported coverage of 2200 
metabolites (Cuykx et al., 2017). HepaRG cells are also metabolically competent and more 
stable than other hepatic cell lines, producing more reproducible data than primary human 
hepatocytes (Guillouzo et al., 2007). They are thus a reliable system to obtain information on 
networks of pathways adversely affected by pollutants that could lead to hepatic steatosis 
(Angrish et al., 2017). 

Our study provides interesting insights into the development of sensitive biomarkers 
for TASH development. The most significant effect of PCB 126 exposure was a decrease in 
free long chain fatty acids (LCFAs) and PUFAs. Our results show that docosatrienoate 
22:3n3 and 22:3n6 are the most sensitive biomarkers of lipid metabolism disturbances in 
HepaRG cells (Figure 1). This is in accord with the results obtained from a birth cohort from 
a fishing community that linked a high seafood intake, and thus high PCB exposure, to 
alterations in lipid profiles (Grandjean and Weihe, 2003). Other experimental studies suggest 
that PCBs may affect the utilization of PUFAs by inhibition of Δ5- and Δ6-desaturation 
(Matsusue et al., 1999). Such enzyme inhibition in fishing communities lead to deficient 
formation of arachidonic acid from its precursor, linoleic acid, attenuating the beneficial 
effects of essential lipids contained in seafood (Grandjean and Weihe, 2003).  

The analysis of gene expression profiles revealed alterations in pathways reflecting 
PCB-induced metabolic diseases such as the activation of xenobiotic metabolism by dioxin-
like compounds. This can guide the development of gene expression biomarkers, which 
have been advocated by the US Environmental Protection Agency (EPA) as promising tools 
to reduce the cost and time of toxicity testing (EPA., 2015), such as for the detection of 
potential EDCs acting as estrogen receptor agonists (Mesnage et al., 2017). Other projects 
have implemented online tools to provide an easy access to gene expression signatures 
allowing the detection of novel associations between genes, diseases and drugs (Wang et 
al., 2016). We provide here putative biomarkers of metabolic disturbances induced by PCB 
126, which are known to correlate with the mechanisms by which this class of pollutants 
induce TASH (Al-Eryani et al., 2015). The expected hallmarks of an activation of xenobiotic 
metabolism by dioxin-like compounds were detected in the molecular profiles of HepaRG 
cells exposed to the PCB 126 (Figure 7). A limit of this study is that the changes induced by 
the PCB 126 were measured at a late time point and may not reflect the first wave of 
transcriptional changes induced by the PCB 126.  
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Other pathways altered in our study could correlate with other less known health 
effects of PCB compounds. For instance, SLE KEGG pathway was one of the most altered. 
This in all likelihood is not coincidental as the exposure to PCBs has been linked to an 
increased incidence of SLE (Kamen, 2014). Histone gene expression was the most 
disturbed of the SLE pathway in our study (Supplementary Material 3). This correlates with 
the fact that patients with SLE often carry anti-histone antibodies (Sun et al., 2008). A link 
with SLE is further corroborated by laboratory experiments showing that docosahexaenoic 
acid consumption attenuates the autoimmune response in a mouse model of SLE (Bates et 
al., 2016). It may be argued that the detection of this gene expression signature in an 
hepatic cell line has no direct relevance to SLE. However, comparable responses have been 
found in other cell types equipped with AhR signalling (Vorrink et al., 2014). Another 
category of genes whose levels we found altered were those involved in the 
glycosaminoglycan metabolic process. This correlates with findings obtained from the 
analysis of the gene ontology enrichment in peripheral blood mononuclear cells of children 
chronically exposed to PCBs (Dutta et al., 2012).  

Our study also provides mechanistic insights into perturbations provoked by very low 
environmental concentrations of PCB 126. Although the exposure to persistent organic 
pollutants such as PCBs is decreasing overtime as they are progressively banned, they are 
still found in human tissue at levels capable of causing pathologies. PCB 126 was found at 
concentrations of 209 ng/kg and 80.4 ng/kg in the breastmilk of Inuit women and Caucasian 
women, respectively, in a survey performed in 1989-1990 (Dewailly et al., 1994). The 
analysis of the National Health and Nutrition Examination Survey (NHANES) data (1999-
2002) reveals associations between PCB serum levels and adverse cognitive effects in older 
US adults (Przybyla et al., 2017). In more recent biomonitoring surveys, PCB 126 was found 
at a mean concentration of 6.5 μg/L in umbilical cord serum of populations living near waste 
dump sites in Italy (Grumetto et al., 2015).  

The transcriptome and metabolome signatures that we have identified in response to 
PCB 126 in HepaRG cells are likely to be similar to what occurs in cases of NAFLD caused 
by other factors. It is known from metabolome profiles that hepatic PUFAs are lower in 
NAFLD patients (Arendt et al., 2015). This suggests that the exposure to environmental 
pollutants could also be an aggravating factor in the development of NAFLD, amplifying the 
effects of over-nutrition or a sedentary lifestyle. It has been proposed that PCB exposure can 
act as a second hit in NAFLD, driving progression of steatosis to NASH as has been found in 
laboratory animals exposed to PCB and a high fat diet (Wahlang et al., 2014). 

 

Conclusion 

Although is it recognized that occupational exposures to chemical pollutants can lead 
to NAFLD, there is limited information available regarding the mechanism by which typical 
environmental levels of exposure can contribute to the onset of this disease. Importantly, the 
alterations in metabolome and transcriptome profiles in response to PCB 126 were observed 
even at the lowest concentration (100 pM) tested corresponding to what may be found in 
humans. Overall, our integrated multi-omics analysis provides mechanistic insight into how 
this class of chemical pollutant can cause NAFLD as demonstrated in other studies (Al-
Eryani et al., 2015). In addition, we confirm the HepaRG cell line as a reliable model for 
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molecular profiling investigations of TAFLD. Metabolome profiling reveals docosatrienoate 
levels as the most reliable marker of the exposure to PCB 126. Hallmarks of activation of the 
AhR receptor by dioxin-like compounds were detected in the transcriptome profiles. Our 
study provides the foundation for the development of molecular signatures of fatty liver 
diseases to rapidly assess chronic toxic effects in a reliable hepatoxicity model system, in 
order to lessen the burden of chemical risk assessment based on in vivo animal 
experiments. 
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Supplementary Data 

Supplementary File 1. Summary of RNA-seq alignment files. 

 

Supplementary File 2. Box plot of transcriptome changes associated with the 
exposure to PCB 126 in HepaRG cells. All the transcript displayed have their levels 
significantly altered (q < 0.05). Most of the changes caused by the PCB treatment were dose 
dependent.  

 

Supplementary File 3. Gene ontology analysis performed with ClueGO. Functional 
implications of the alteration in gene expression profiles were analysed using ClueGO 
(Bindea et al., 2009) and CluePedia plugins in Cytoscape (version 3.5.1). The GO biological 
process database (23.02.2017) and the KEGG annotation database (01.03.2017) were 
used. The analysis was conducted using a two-sided hypergeometric test for enrichment 
using a p-value threshold of 0.05 after its adjustment by the Benjamini-Hochberg procedure. 
GO term fusion was employed to integrate GO categories, minimize the output, and create a 
functionally organized GO category network. Our network displayed GO terms found in the 
levels 5-10 of the GO hierarchy, in order to avoid meaningless high-level hierarchy terms. 
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Figures and Figure legends  

 

 

Figure 1. Morphology of HepaRG cells. After undergoing a complete programme of 
hepatocyte differentiation, HepaRG cells display the phenotype reflective of normal human 
liver cells including binuclear hepatocytes and forming bile canaliculus-like structures. A 
mixed population of 2 types of cells is visible, namely hepatocyte-like colonies (H) 
surrounded by clear epithelial cells corresponding to primitive biliary cells (B).  
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Figure 2. Multivariate analysis of HepaRG cell metabolome following treatment with 
PCB 126 shows alterations in lipid metabolism. A. Principal component analysis of 
metabolome profiles separate the group of samples treated with the PCB126 from the 
control group. As the dose of PCB 126 increases, the groups become more clustered. B. 
Orthogonal projection to latent structures discriminant analysis (OPLS-DA) properly 
classified all samples (R2X = 0.177, R2Y = 0.769, and Q2 = 0.58). The 95% confidence 
regions are displayed by shaded ellipses. C. A 1,000-time permutation test shows that the 
observed statistic is not part of the distribution formed by the statistic from the permuted data 
(R2Y p = 0.022 ; Q2 p < 0.001). D. Cross-validation parameters, R2 and Q2, representing 
the quality of the model E. The S-plot visualizes the variable influence in the OPLS-DA 
model. Significantly disturbed metabolites towards the separation in OPLS-DA models (red 
dots) were selected based on the significance threshold of q < 0.05 after analysis with one-
way ANOVA test adjusted for multiple comparison with Fisher’s least significant difference. A 
total of 30 metabolites had their levels disturbed by the PCB 126 treatments. 
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Figure 3. Box plot of metabolome changes associated with the exposure to PCB 126 
to HepaRG cells shows a dose dependent effect. All the metabolites displayed have their 
levels significantly altered (q < 0.05) after analysis with one-way ANOVA test adjusted for 
multiple comparison with Fisher’s least significant difference. Most of the changes caused by 
the PCB treatment were dose dependent.  
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Figure 4. Network analysis of metabolome profile alterations demonstrates a role of 
taurine and hypotaurine in oxidative stress induced by PCB 126 in HepaRG cells. A. 
Sub-network. Circles are metabolites, rectangles are reactions. Reaction labels are EC 
numbers and metabolite names are from Recon2 model. Red circle metabolites are the ones 
from the fingerprint. B. Distance matrix between metabolites belonging to the network. Red 
corresponds to shorter distance (0) and white to longer distances (12 reactions between 
nodes). 
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Figure 5. Principal component analysis of transcriptome profile alterations provoked 
by exposure of HepaRG cells to PCB 126. Transcript abundances were assessed using 
Stringtie. The PCA was performed using log2 transformed FPKM measurements of 
transcripts across samples assessed with Ballgown. The groups become more clustered as 
the dose of PCB 126 increases. The 95% confidence regions are displayed by ellipses.  
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Figure 6. Differential CYP1A1 expression analysis using RNA-seq in HepaRG cells 
exposed to three concentrations of PCB 126. A. Structure and expression levels of 12 
distinct isoforms of CYP1A1 across the different treatment groups. Differences in expression 
levels are displayed in varying shades of yellow. The ENST00000395048 isoform of 
CYP1A1 is expressed at a much higher level than the others, as indicated by the dark 
orange colour. B. FPKM distributions of four CYP1A1 transcripts displayed as box-and-
whiskers plots.  All four isoforms have their expression significantly altered (q < 0.05) by 
exposure to PCB 126 as measured by a standard linear model-based comparison in 
Ballgown. 
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Figure 7. Pathway enrichment analysis in the transcriptome of HepaRG cells exposed 
to PCB 126 shows an activation of xenobiotic metabolism by dioxin-like compounds. 
Gene functions were studied using ClueGO and CluePedia plugins in Cytoscape (version 
3.5.1). The analysis was conducted using a two-sided hypergeometric test for enrichment 
using a p-value threshold of 0.05 after its adjustment by the Benjamini-Hochberg procedure.  
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Figure 8. Sparse Partial Least Squares regression (sPLS) integration of the 
metabolome and transcriptome profiles of HepaRG cells exposed to PCB 126 shows 
that alteration in sphingolipid levels is concomitant to a decrease in the activity of 
genes involved in lipid metabolism . A. Individual plots displaying the covariance between 
the metabolome and the transcriptome datasets. B. The variables selected by the sPLS are 
projected on a correlation circle plot in order to display the clusters of correlated variables. In 
this plot, the angle defined by the coordinates of the variables on the axis defined by the 
components give an indication on the nature of the correlation. If the angle is sharp and the 
variables cluster together, the correlation is positive. If the angle is obtuse and the variables 
are not clustered together, the variables are negatively correlated. Perpendicular angles 
represent uncorrelated variables. C. A clustered image map visualises correlations between 
the metabolites and the genes by a colour gradient on a 2-dimensional colored image. The 
negatively correlated variables (blue) are represented along the positively correlated 
variables (red). Dendrograms are added to represent the clusters produced by the 
hierarchical clustering. 
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Table 1. Metabolome disturbances provoked by exposure to PCB 126 in HepaRG cells.  All the metabolites displayed have their levels 

significantly altered (q < 0.05) after analysis with one-way ANOVA test adjusted for multiple comparison with Fisher’s least significant 

difference. 

BIOCHEMICAL SUPER_PATHWAY SUB_PATHWAY 
pyroglutamine* Amino Acid Glutamate Metabolism 

betaine Amino Acid Glycine, Serine and Threonine Metabolism 
betaine aldehyde Amino Acid Glycine, Serine and Threonine Metabolism 

cysteine sulfinic acid Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 
hypotaurine Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 

N-acetylmethionine sulfoxide Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 
taurine Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 

kynurenine Amino Acid Tryptophan Metabolism 
picolinate Amino Acid Tryptophan Metabolism 

5-methyltetrahydrofolate (5MeTHF) Cofactors and Vitamins Folate Metabolism 
bilirubin (Z,Z) Cofactors and Vitamins Hemoglobin and Porphyrin Metabolism 

biliverdin Cofactors and Vitamins Hemoglobin and Porphyrin Metabolism 
glycosyl ceramide (d16:1/24:1, d18:1/22:1)* Lipid Ceramides 
glycosyl ceramide (d18:1/20:0, d16:1/22:0)* Lipid Ceramides 
glycosyl ceramide (d18:1/23:1, d17:1/24:1)* Lipid Ceramides 
glycosyl ceramide (d18:2/24:1, d18:1/24:2)* Lipid Ceramides 

glycosyl-N-behenoyl-sphingadienine (d18:2/22:0)* Lipid Ceramides 
glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) Lipid Ceramides 
glycosyl-N-stearoyl-sphingosine (d18:1/18:0) Lipid Ceramides 

oleoyl-oleoyl-glycerol (18:1/18:1) [2]* Lipid Diacylglycerol 
N-oleoyltaurine Lipid Endocannabinoid 

arachidonoylcarnitine (C20:4) Lipid Fatty Acid Metabolism(Acyl Carnitine) 
1-palmitoleoylglycerol (16:1)* Lipid Monoacylglycerol 
glycerophosphoethanolamine Lipid Phospholipid Metabolism 

docosatrienoate (22:3n3) Lipid Polyunsaturated Fatty Acid (n3 and n6) 
docosatrienoate (22:3n6)* Lipid Polyunsaturated Fatty Acid (n3 and n6) 

sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)* Lipid Sphingolipid Metabolism 
asparaginylvaline Peptide Dipeptide 

lysylserine Peptide Dipeptide 
serylglutamate Peptide Dipeptide 
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