
 

 

 

Oscillatory dynamics of perceptual to conceptual transformations 

in the ventral visual pathway 

 

Alex Clarke1*, Barry J. Devereux1,2, Lorraine K. Tyler1 
1Department of Psychology, University of Cambridge. 

2Institute of Electronics, Communications & Information technology, Queen’s University Belfast 

 

*Corresponding author 

 

 

 

 

Correspondence to Alex Clarke, ac584@cam.ac.uk 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 29, 2018. ; https://doi.org/10.1101/259127doi: bioRxiv preprint 

https://doi.org/10.1101/259127
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 

Abstract 

Object recognition requires dynamic transformations of low-level visual inputs to complex 

semantic representations. While this process depends on the ventral visual pathway (VVP), 

we lack an incremental account from low-level inputs to semantic representations, and the 

mechanistic details of these dynamics. Here we combine computational models of vision 

with semantics, and test the output of the incremental model against patterns of neural 

oscillations recorded with MEG in humans. Representational Similarity Analysis showed 

visual information was represented in alpha activity throughout the VVP, and semantic 

information was represented in theta activity. Furthermore, informational connectivity 

showed visual information travels through feedforward connections, while visual information 

is transformed into semantic representations through feedforward and feedback activity, 

centered on the anterior temporal lobe. Our research highlights that the complex 

transformations between visual and semantic information is driven by feedforward and 

recurrent dynamics resulting in object-specific semantics.  
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Introduction 

Visual object recognition requires dynamic transformations of information from low-level 

visual inputs to higher-level visual properties and ultimately complex semantic 

representations. These processes rely on the ventral visual pathway (VVP) from the occipital 

lobe along the ventral surface of the temporal lobe (Kravitz et al., 2013), with the perirhinal 

cortex (PRC) sitting at the apex of the pathway (Barense et al., 2012; Bussey and Saksida, 

2002; Clarke and Tyler, 2014; Cowell et al., 2010; Taylor et al., 2006; Tyler et al., 2013). 

Along the VVP, object representations become increasingly complex and abstracted from 

their inputs, such that higher-level visual properties are coded in LOC and posterior IT that 

show object invariance (DiCarlo et al., 2012; Kravitz et al., 2013), alongside conceptual 

properties of objects that are sufficient to distinguish between different superordinate 

categories (Tyler et al., 2013). In contrast, object-specific semantic representations are seen 

in the perirhinal cortex, at the most anterior part of the VVP, which is hypothesised to form 

complex conjunctions of properties from more posterior regions to enable fine-grained 

distinctions between conceptually similar objects (Barense et al., 2012; Bussey and Saksida, 

2002; Clarke and Tyler, 2014; Cowell et al., 2010; Kivisaari et al., 2012; Tyler et al., 2004, 

2013). Yet this view of recognition - where both activity and the complexity of object 

information progresses along the posterior to anterior axis in the VVP - is fundamentally 

incomplete as it does not take into account the temporal dynamics of feedforward and 

feedback processes and their interactions.  

 

The brain’s anatomical structure suggests that complex interactions between bottom-up and 

top-down processes must be a key part of object processing, as demonstrated by the 

abundance of lateral and feedback anatomical connections within the VVP and beyond 

(Bullier, 2001; Lamme and Roelfsema, 2000). Research using time-resolved imaging 

methods have shown that both feedforward and recurrent dynamics in the VVP underpin 

object representations, where visual inputs activate semantic information within the first 150 

ms, and object-specific semantic representations emerge beyond 200 ms supported by 

recurrent activity between the ATL and posterior VVP (Chan et al., 2011; Clarke et al., 2011, 

2013, 2015; Poch et al., 2015; Schendan and Maher, 2009).  

 

While this research provides spatial and temporal signatures of the fundamental aspects of 

recognition – namely visual and semantic processing - two important limitations remain. 

First, research tends to focus on three aspects of objects – low-level visual properties, 

superordinate category information (e.g. animals, tools, animate/inanimate) and object-

specific semantics (e.g. tiger, hammer). This paints a compartmentalised picture that fails to 

capture the incremental transitions whereby vision seamlessly activates meaning. Second, 

while there is increasing knowledge of the oscillatory mechanisms underpinning basic visual 

processing (Jensen et al., 2014; Tallon-Baudry and Bertrand, 1999), models of how visual 

inputs activate meaning lack such detail. Here, we overcome these limitations by combining 

current computational models of vision with a model of semantics, to obtain quantifiable 

estimates of the incremental representations from low-level visual inputs to complex 

semantic representations. This model is then tested against neural activity using 

Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008; Nili et al., 2014) to 

reveal how oscillatory activity along the VVP codes for visual and semantic object properties. 

 

Deep neural networks (DNNs) have proved highly successful for vision, both to provide an 

engineering solution to labelling objects (Krizhevsky et al., 2012) and to map the outputs 
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from the DNN to brain representations of objects in space and time (Cichy et al., 2014, 2016; 

Devereux et al., under review; Güçlü and Gerven, 2015; Seeliger et al., 2017). DNNs for 

vision are composed of multiple layers, and as the layers progress, the nodes become 

sensitive to more complex, higher-level visual image features in a similar progression to the 

human ventral visual pathway (Cichy et al., 2014, 2016; Devereux et al., under review; Güçlü 

and Gerven, 2015). However, current DNNs tell us little about an object’s semantic 

representation. While visual DNNs can provide accurate labels for images, the output layers 

do not capture how different objects are related in meaning. This is revealed by recent fMRI 

research, showing that while DNNs explain visual processes in the posterior vemtral 

temporal cortex (pVTC), additional semantic computational models are required to capture 

the semantic  information about object representations in the pVTC and PRC (Devereux et 

al., under review). This work used a recurrent attractor network (AN) for object semantics, as 

ANs have been shown to capture how objects semantically relate to one another (Cree et 

al., 1999, 2006; Devereux et al., 2015). This occurs because the activation across the nodes 

in the model capture the activation of different semantic features (such as ‘is round’, ‘has a 

handle’, ‘is thrown’, etc). Further, the dynamics of how these nodes become activated 

mirrors both behavioural responses and MEG time-courses during object recognition (Clarke 

et al., 2013; Devereux et al., 2015; Randall et al., 2004). Together, the DNN and AN provide 

complementary aspects of object recognition. As in Devereux et al (under review), by using 

the output of the visual DNN as input into the semantic AN, we further provide a potential 

route by which visual representations can directly activate semantic knowledge. Most 

importantly, however, combining the DNN and AN gives us a quantifiable computational 

approach that models the incremental visual and semantic properties of objects, from low-

level vision to high level semantics. This approach can be combined with RSA for dynamic 

measures of brain activity to show how different types of visual and semantic information are 

coded in dynamic patterns of brain activity along the VVP. 

 

The brain activity we focus on here are neural oscillations. Oscillations are a ubiquitous 

property of the brain, and are known to be modulated by various aspects of vision and 

memory in humans (Fell and Axmacher, 2011; Hanslmayr et al., 2012; Helfrich and Knight, 

2016; Jensen et al., 2014; Watrous et al., 2015a). Recent studies have begun to show how 

the ongoing phase of an oscillation can be used to decode specific stimuli (Lopour et al., 

2013; Ng et al., 2013; Schyns et al., 2011; Turesson et al., 2012; Watrous et al., 2015b). 

These studies have shown that frequency-specific activity can be used to decode the 

specific features of visual objects, or object categories, suggesting that oscillatory phase 

could provide a mechanism for encoding stimulus information within a region. Further, 

oscillations may help to coordinate the activity between regions in the VVP enabling object 

information to be transformed over space and time as meaning is accessed from vision.  

 

Here, we combine RSA with neural oscillations and computational models, that could 

provide an important advance in determining the dynamic flow of different types of object 

information during recognition – both in terms of how different regions represent visual and 

semantic information and how information is transformed across regions. To achieve this, we 

recorded MEG while participants viewed a large set of common objects from diverse 

superordinate categories. The combined DNN and AN models provided predictions for how 

objects should be similar to one another, and these predictions were tested against the MEG 

data using RSA (Figure 1). The MEG signals were source localized, and single object 

oscillatory phase patterns were extracted from 5 regions of interest in the VVP. Based on 
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these phase patterns across objects, we could determine how similar objects were to each 

other within each ROI, and track this over time and frequency. RSA then allows us to test the 

degree to which the object similarity according to the computational model is reflected in 

oscillatory phase signals over space, time and frequency. We predict both a spatial and 

temporal hierarchy in the VVP between visual object information and semantics. Crucially, 

recurrent activity will be associated with the activation of semantic object information that will 

also depend on the coordinated activity within the VVP. Whilst visual object properties are 

predicted in alpha (VanRullen et al., 2014), semantic information may be more associated 

with theta activity (Halgren et al., 2015) and gamma activity (Mollo et al., 2017; Supp et al., 

2007). 

 

 
Figure 1. Representational similarity analysis (RSA) using computational models and 

oscillations. (A). The combined visual DNN and semantic AN models the low-level visual 

properties of the input, and higher-level image properties that increase in complexity across 

layers c1 to fc7. The visual properties in fc7 then map onto a recurrent AN that activates the 

semantic features associated with the input. In our analyses, we combined layers of the 

DNN into three visual model RDMs, and combined the AN into two semantic model RDMs 

capturing increasingly specific visual and semantic information. (B). Correlations between 

the different visual and semantic model RDMs. (C). RSA analysis of time-frequency data. 

Spatio-temporal activity patterns are extracted from an ROI for each object. Time-frequency 

phase is calculated for each ROI, and RDMs are created for each point in time and for each 

frequency. Each RDM is then correlated with each RDM from the computational model to 

test when and at what frequency different object properties are represented in oscillatory 

phase patterns. The procedure is then repeated for all ROIs. 
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Methods 
We re-analysed MEG data reported in Clarke et al., (2015), and thus only summarise the 

main aspects of study design here. 

 

Participants & procedure 

Fourteen participants took part in the study. Two participants were excluded from the 

analysis due to poor source reconstruction results (failure to show occipital activity ~100 ms 

after onset of object) leaving twelve participants in the analysis. Participants performed a 

basic-level naming task (e.g. ‘tiger’) with 302 common objects from a diverse range of 

superordinate categories including animals, clothing, food, musical instruments, tools and 

vehicles. All objects were presented in color as single objects on a white background. Each 

trial began with a black fixation cross on a white background for 500 ms before the object 

was shown for 500 ms, and followed by a blank screen lasting between 2400 and 2700 ms. 

The order of stimuli was pseudo-randomized. 

 

MEG/MRI recording 

Continuous MEG data were recorded using a whole-head 306 channel (102 magnetometers, 

204 planar gradiometers) Vector-view system (Elekta Neuromag, Helsinki, Finland) located 

at the MRC Cognition and Brain Sciences Unit, Cambridge, UK. Eye movements and blinks 

were monitored with electro-oculogram (EOG) electrodes placed around the eyes, and five 

Head-Position Indicator (HPI) coils were used to record the head position (every 200 ms) 

within the MEG helmet. The participants’ head shape was digitally recorded using a 3D 

digitizer (Fastrak Polhemus Inc., Colchester, VA), along with the positions of the EOG 

electrodes, HPI coils, and fiducial points. MEG signals were recorded at a sampling rate of 

1000 Hz, with a band-pass filter from 0.03 to 125 Hz. To facilitate source reconstruction, 1 

mm3 T1-weighted MPRAGE scans were acquired during a separate session with a Siemens 

3T Tim Trio scanner (Siemens Medical Solutions, Camberley, UK) located at the MRC 

Cognition and Brain Sciences Unit, Cambridge, UK. 

 

MEG preprocessing 

Initial processing of the raw data used MaxFilter version 2.0 (Elektra-Neuromag) to detect 

bad channels that were subsequently reconstructed by interpolating neighboring channels. 

The temporal extension of the signal-space separation technique was applied to the data 

every 10 seconds in order to segregate the signals originating from within the participants’ 

head from those generated by external sources of noise. A correlation limit of 0.6 was used 

as this has been shown to additionally remove noise from close to the head, as produced 

during speech (Medvedovsky et al., 2009), and head movement compensation was applied. 

The resulting MEG data were low-pass filtered at 200 Hz in forward and reverse directions 

using a 5th order Butterworth digital filter, high-pass filtered at 0.1 Hz using a 4th order 

butterworth filter and residual line noise was removed with a 5th order butterworth stop-band 

filter between 48 and 52 Hz. Data were epoched from -1.5 to 2 seconds, and downsampled 

to 500 Hz using SPM12 (Wellcome Institute of Imaging Neuroscience, London, UK). 

 

Independent components analysis (ICA) was used to remove artefactual signals, using 

runica implemented in EEGLab (Delorme and Makeig, 2004) and SASICA (Chaumon et al., 

2015). Components of the data that showed a Pearson’s correlation greater 0.4 with either 

EOG channel were removed from the data, as were components correlated with the ECG 
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recording. SASICA and FASTER were additionally used to identify components related to 

muscle and high-frequency artefacts, and components that showed a rising profile of evoked 

activity between 200 ms and 1 second were removed (these characterise speech artefacts). 

All components were visually inspected to confirm removal, as recommended (Chaumon et 

al., 2015). ICA was applied to the magnetometers and gradiometers separately. After ICA, a 

baseline correction was applied to all trials using data from -500 to 0 ms. Items that were 

incorrectly named were excluded, where an incorrect name was defined as a response that 

did not match the correct concept. 

 

Source localisation 

Source localisation of MEG signals used a minimum-norm procedure applied in SPM12.  

First, the participants MRI images were segmented and spatially normalized to an MNI 

template brain. A template cortical mesh with 8,196 vertices was inverse normalized to the 

individual’s specific MRI space. MEG sensor locations were coregistered to MRI space using 

the fiducial points and digitized head-points obtained during acquisition. The forward model 

was created using the single shell option to calculate the lead-fields for the sources oriented 

normal to the cortical surface. The data from both magnetometers and gradiometers were 

inverted together using the group inversion approach to estimate activity at each cortical 

vertex using a minimum norm solution (IID). A frequency window of 0 to 150 Hz was 

specified and no hanning window was applied. 

 

Representational Similarity Analysis (RSA) 

RSA was used to compare the similarity/distances between objects based on computational 

models, and the similarity derived from oscillatory patterns. This requires we calculate 

representational dissimilarity matrices (RDMs) from both the computational model layers, 

and from source localised MEG signals. 

 

RDMs from computational models 

The computational models used here are those that have been successfully used to 

describe the gradient of visual to semantic object representations along the VVP in fMRI 

(Devereux et al., under review).  

 

Visual Deep Neural Network 

We used the deep neural network (DNN) model of Krievhesky et al. (2012), as implemented 

in the Caffe deep learning framework (Jia et al., 2014), and trained on the ILSVRC12 

classification dataset from ImageNet. We used the first 7 layers of the DNN, consisting of 

five convolutional layers (conv1-conv5) followed by two fully-connected layers (fc6 & fc7). 

The convolutional kernels learned in each convolutional layer correspond to filters receptive 

to particular kinds of visual input. In the first convolutional layer, the filters reflect low-level 

properties of stimuli, and include one sensitive to edges of particular spatial frequency and 

orientation, as well as filters selective for particular colour patches and colour gradients 

(Krizhevsky et al., 2012; Zeiler and Fergus, 2014). Later DNN layers are sensitive to more 

complex visual information, such as the presence of specific visual objects or object 

parts(e.g. faces of dogs, legs of dogs, eyes of birds & reptiles; see Zeiler and Fergus, 2014), 

irrespective of spatial scale, angle of view etc. We presented 627 images to the pre-trained 

network (including the 302 images presented to participants), where each image 

represented a concept listed in a large property norm corpus (Devereux et al., 2014). This 

produced activation values for all nodes in each layer of the network for each image. 
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To create RDMs for each layer of the DNN, we first applied PCA to reduce the 

dimensionality of each layer while keeping the components that explained 100% of the 

variance. For example, fc6 has 4096 nodes, and after PCA each of the 627 object images 

was represented by a 626 length vector. This was found to dramatically improve the 

relationship between MEG signals and the DNN, which may be because the white space 

surrounding images was reduced from being represented across a large number of nodes to 

a few components, meaning the similarity between objects was focussed on the areas of the 

images where the objects appeared. While the PCA improved the relationship between MEG 

signals and the DNN for objects isolated from backgrounds, this would not be expected for 

naturalistic images. Following PCA, we excluded all object activations that were not in the 

present study, leaving 302. 

 

As many of the layers were highly correlated, and to reduce the number of RDMs tested, 

subsets of the 7 layers were combined. The object activation matrices were concatenated 

across layers, and the dissimilarity between network activity for different object images was 

calculated as 1 - Pearson’s correlation. This was applied to conv1, concatenated activations 

from conv2-5, and concatenated activations from fc6 and 7, which are referred to as visual-

layer 1, 2 and 3 respectively. A model RDM was also created based on concatenated data 

from all layers of the DNN. 

 

Semantic Attractor Network 

DNNs have proven effective in labelling object images in complex contexts. However visual 

DNNs do not capture object semantics, because although they can find the correct labels for 

images, they do not capture how different objects are semantically related to one another 

(e.g. that a dog and cat are related in meaning), and only takes into account the similarity of 

their visual properties, rather than also taking into account non-visual and functional 

information (Devereux et al., under review). To provide one potential route for the 

relationship between higher-level visual properties and semantic properties, we use the 

output from the DNN as input to an attractor network (AN) model of semantics. 

 

Our semantic knowledge of concrete concepts can be captured by distributed semantic 

feature models (Cree and McRae, 2003; Rogers and McClelland, 2004; Taylor et al., 2011; 

Tyler and Moss, 2001), where each concept is represented by a set of features – e.g. is 

shiny, has a handle, used for chopping are features of a knife from the property norming 

corpus of Devereux et al., (2014). Based on semantic features, the similarity between 

concepts is accounted for on the basis of the features they share, while distinctive features 

allow for differentiation between items (Taylor et al., 2011). The semantics of the 627 object 

concepts from the property norms can be represented across 2,469 semantic features, and 

in the AN these correspond to the 2,469 nodes. The AN was based on Cree et al. (2006), 

and was trained to activate the correct pattern of semantic features from the inputs from the 

DNN (full details in Devereux et al., under review). The network was trained using 

continuous recurrent back-propagation through time over 20 processing time-ticks. As input 

to the AN, we took the activation over the 4,096 nodes of fc7, and reduced this to 60 

dimensions using SVD (Note, RDMs calculated on the full-dimensional fc7 and the SVD-

reduced layer were highly correlated (Spearman’s rho = 0.98) indicating no substantial 

information loss). After training, over the 20 time-ticks, the semantic features associated with 

the concept are gradually activated, with the speed of activation depending on the 
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relationship to the visual features and the statistical regularities between features (i.e. 

whether a certain combination of features predicts the occurrence of another feature). Thus, 

early features to activate are shared features and visual features, followed by non-visual and 

distinctive features. For further implementation details see Cree et al (2006) and Devereux et 

al., (under review). 

 

Like with the visual DNN, many of the 19 layers of the AN (discounting the input layer) are 

highly correlated and so were combined. Using k-means clustering, the 19 layers could be 

described well by 2 principal groups, as shown by positive silhouette values. Clustering 

solutions with 1,3,4 or 5 groups all contained negative silhouette values showing that 2 

provided the most optimal number of clusters. After PCA, layers 1-5 were concatenated and 

layers 6-19 were concatenated. The dissimilarity between AN activity for different object 

images was calculated as 1 - Pearson’s correlation, giving an early semantic RDM and a late 

semantic RDM. An additional semantic RDM was created based on the concatenation of all 

19 layers. 

 

RDMs from time-frequency signals 

Object dissimilarity from MEG signals was based on oscillatory phase patterns from source-

localised data. Five regions of interest were specified covering locations known to be 

sensitive to visual and semantic object properties. Each ROI was specified by a coordinate 

and radius of 20 mm. The occipital pole (MNI: -10, -94, -16), left pVTC (MNI: -50, -52, -20), 

right pVTC (52, -56, -16), left ATL (MNI: -30, -6, -40) and right ATL (MNI: 30, -4, -42). 

Coordinates were defined based on local maxima of source localised activity to all objects. 

Within each ROI (defined by the center coordinate and radius), single trial activity was 

extracted for each vertex. Instantaneous phase was calculated for each trial and for every 

vertex using Morlet Wavelets using the timefreq function in EEGLAB. Phase was extracted 

between -700 ms and 1000 ms in 20 ms time steps, and between 4 and 95 Hz in 50 

logarhythmically spaced frequency steps. A 5-cycle wavelet was used at the lowest 

frequency, increasing to a 15 cycle wavelet at the highest. This produced a time-frequency 

representation (TFR) for every trial at every vertex location in the ROI. RDMs between object 

TFRs were calculated at each time/frequency point, using the circular distance (Berens, 

2009) between vectors of phase information over space (vertices) and over 60 ms. 

 

For analyses at distinct frequency bands rather than at every frequency, the oscillatory 

RDMs were averaged across frequencies. The frequencies within each band were defined 

using hierarchical clustering in sensor space. TFRs were computed for each MEG sensor 

which were averaged across all trials and participants to produce a grand-average for each 

sensor. A vector was created for each frequency that included all time-points and sensors 

concatenated, before hierarchical clustering of frequencies using correlation as the distance 

measure. The resulting distances were visualised as a dendrogram to define the boundaries 

of the different bands. This resulted in theta (4-9 Hz), alpha (9-15 Hz), beta (16-30 Hz) and 

gamma (30-95 Hz). 

 

RSA statistics 

Each RDM based on oscillatory phase signals was correlated with the RDMs from the 

computational models using Spearman’s correlation. This resulted in TFRs that captured the 

relationship between phase information and the visual and semantic network models. RSA 

TFRs were calculated for each layer, ROI and participant. Random effects analysis testing 
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for positive RSA effects was conducted for each time-frequency point using one-sample t-

tests against zero (alpha 0.01). Cluster-mass permutation testing was used to assign p-

values to clusters of significant tests (Maris and Oostenveld, 2007), and a maximum cluster 

approach was used to control for multiple comparisons across time, frequency, ROI and 

model RDM (Nichols and Holmes, 2002). For each permutation, the sign of the TFR 

correlations was randomly flipped for each participant before one-sample t-tests of the 

permuted data. The same permutation was applied to all ROIs and model RDMs, and the 

cluster with the largest mass across all analyses (sum of t-values) was retained. The p-value 

for each cluster in the original data was defined as the proportion of the 10,000 permutation 

cluster-masses (plus the observed cluster-mass) that is greater than or equal to the 

observed cluster-mass. 

 

Peak RSA effects 

To determine when different kinds of information were present relative to one another, we 

determined when the peak effects occurred across different regions for different visual and 

semantic RDMs. This analysis was performed for RSA effects within each frequency band, 

in addition to peak effects collapsing across frequencies. The latency of the peak was 

defined as the maximum Spearman’s correlation value between 50 and 500 ms. A latency 

was found for each frequency band, model RDM and ROI. Linear mixed effects (LME) 

models were used to test the relationship between the peak latency, and ROI and 

computational model layer. The peak frequency analysis was based on RSA effects 

determined across the full frequency spectrum. The peak was defined as the frequency of 

the maximal RSA effect between 50 and 500 ms. In both latency and frequency analyses, 

linear mixed effects (LME) models (using fitlme) were used to test the relationship between 

the peaks, and ROI and computational model layer. For visualisation, peaks are plotted as 

probability density functions, and using gramm (https://doi.org/10.5281/zenodo.59786). 

 

Granger Causality 

Finally, we tested the causal relationships between RSA effects seen for visual and semantic 

properties and across different ROIs. Specifically, we used Granger Causality (GC) analysis 

to test if RSA time-courses in one region have a subsequent impact on RSA time-courses in 

other regions. To aid interpretability, GC analysis was applied to the RSA time-courses 

averaged across frequency bands and for the concatenated visual and concatenated 

semantic model RDMs. GC was calculated between the five ROIs and the two RSA time-

courses (10 time-series in total). Each time-series was the RSA effect between 50 and 500 

ms concatenated across participants. Time domain GC used the multivariate granger 

causality toolbox (Barnett and Seth, 2014), with a model order of 2 (40 ms) as indicated by 

the AIC for model order estimation. Multiple comparisons correction used FDR and an alpha 

of 0.05. 

 

Results 
Our primary goal was to test how the VVP represents increasingly complex visual and 

semantic information over time. To achieve this, we used RSA to test if the visual and 

semantic information, extracted from the computational models, was represented in spatio-

temporal patterns of oscillatory phase from source localised MEG signals. We analysed data 

from five ROIs covering occipital, posterior ventral temporal cortex and the anterior temporal 
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lobe (ATL), that are known to be primarily implicated in the processing of visual and 

semantic object properties. 

 

Time-frequency RSA (TF RSA) showed that neural patterns based on oscillatory phase had 

a significant relationship to both the visual and semantic models. The effects were 

concentrated in the first 500 ms, and seen across theta, alpha and beta frequencies (Table 

1). We first present a brief overview of visual and semantic effects, before a more detailed 

follow-up analysis of the timing and frequencies of the effects. 

 

Visual models 

TF RSA effects were seen for all three visual models in each ROI across theta, alpha and 

beta frequencies (Figure 2). The strongest effects were in the occipital ROI, and were 

significantly greater for visual-layer 2 and visual-layer 3 models compared to visual-layer 1 

(layer 2 vs. layer 1: t = 4.56, p < 0.001; layer 3 vs. layer 1: t = 3.69, p = 0.004) with no 

difference between visual-layer 2 and 3. In higher regions along the ventral stream, visual-

layer 3 had a significantly greater fit than both layer 2 (LpVTC: t = 4.05, p = 0.002; RpVTC: t 

= 4.30, p = 0.001; LATL: t = 3.35, p = 0.006; RATL: t = 3.64, p = 0.004), and layer 1 (LpVTC: 

t = 4.90, p < 0.001; RpVTC: t = 7.00, p < 0.0001; RATL: t = 7.35, p < 0.0001) except in the 

LATL. These results are in line with predictions that later regions along the ventral stream 

represent more complex visual object information, that is in turn better captured by later 

layers of the visual DNN. 

 

 

 
Figure 2. Time-frequency RSA effects of the visual DNN. Each plot shows the Spearman’s 

correlation values between an RDM from the visual DNN and each ROI. Significant clusters 

are shown outlined in black, using a threshold of p < 0.01 at the pixel level, and p < 0.05 at 

the cluster level (corrected for all ROIs and model RDMs tested). Non-significant time-

frequency points are displayed in the background. 

 

 

Semantic models 

TF RSA analysis of phase showed significant effects for both semantic models (Figure 3). 

Both the early-semantic and late-semantic models were significantly related to spatio-
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temporal phase patterns in the LATL in theta frequencies during the first 400 ms. Further, 

the early-semantic model had a significantly better fit compared to the late-semantic model 

in LATL (t = 2.96, p = 0.013). The early-semantic model was also significantly related to 

occipital phase patterns in theta and alpha frequencies. Finally, the late-semantic model was 

significantly related to the LpVTC in theta frequencies. These results show that semantic 

information about objects is captured through oscillatory phase patterns in the ventral 

stream, with the most prominent effects in theta in the pVTC and ATL – key regions 

supporting object semantic information over time (Clarke and Tyler, 2014; Clarke et al., 

2011, 2015). 

 

 
Figure 3. Time-frequency RSA effects of the semantic AN. Plots shows the Spearman’s 

correlation values between a semantic AN RDM and each ROI. Significant clusters are 

shown outlined in black, using a threshold of p < 0.01 at the pixel level, and p < 0.05 at the 

cluster level (corrected for all ROIs and model RDMs tested). Non-significant time-frequency 

points are displayed in the background. 

 

 

Representational changes over time 

Our analysis so far shows that the combined visual DNN and semantic attractor network 

model are capturing neural processes along the VVP. We next sought to determine the 

relative changes in object information over time and region. However, it is difficult to 

establish when different forms of information are present based on the onsets of significant 

effects, due to the temporal smearing wavelet convolution creates - especially at lower 

frequencies - and the use of a spatio-temporal sliding window that further contributes to a 

smoother pattern. Further, onsets can not be easily compared across different frequencies 

as the temporal smearing is greater at lower compared to higher frequencies. Therefore, to 

determine when different kinds of information are present relative to one another, we 

analysed when the peak effects occurred across different regions for different visual and 

semantic models. We used linear mixed effects (LME) models to test the relationship 

between the peak time of RSA effects, and the layer of the computational model (modelled 

from visual layer-1, layer-2, layer-3, early-semantics, late-semantics) and hierarchical 

cortical level of the VVP (occipital, pVTC, ATL; where left and right hemispheres are 

combined). 

 

We found a significant effect of cortical level, in that later levels of the VVP had later peak 

RSA effects (Beta coefficient: 26 ms (SE = 6.7 ms), t = 3.90, p = 0.0001; Figure 4A), and a 

significant effect of computational model layer in that later layers had significantly later peaks 
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(Beta coefficient: 30 ms (SE = 3.6 ms), t = 8.34, p < 0.0001; Figure 4B). Further, as shown in 

Figure 4B, there was a prominent separation in the timing of visual and semantic peak 

effects. A subsequent LME model combined the data within visual and semantic models, 

and showed that semantic effects lagged visual effects by an estimated 88 ms (t = 8.12, p < 

0.0001). 

 

 
Figure 4. Temporal peaks for the visual DNN and semantic AN RSA effects. (A). Probability 

density plot showing that the latencies of the peak RSA effects follow the hierarchical levels 

of the VVP (data combined across hemispheres and model RDMs). (B). Probability density 

plot showing that the latencies of the peak RSA effects for different model RDMs have a 

clear distinction between visual DNN and semantic AN latencies, while later model layers 

tend to have later peaks. (C-E). Mean peak latencies for different model RDMs at each 

hierarchical level for three frequency bands where significant RSA effects were present. 

Plots show a general increase in latency across the models from visual to semantic (colours 

match those in panel b). Horizontal lines indicate a significant linear relationship between 

latency and model layer. 

 

 

After establishing this broad pattern where effects are later in time for higher regions of the 

VVP and for later layers of the visual-to-semantic model, we next tested for region-specific 

changes in the latency of peak RSA effects within three frequency bands that showed 

significant effects – theta, alpha and beta. Separate LME models were run for each cortical 

level of the VVP for each frequency band. Significant positive effects of model layer were 

seen in the occipital and pVTC for theta, alpha and beta, while the ATL showed significant 

positive effects in theta and alpha (Figure 4C-E). This establishes that later layers of the 

combined computational model showed later peak RSA effects in theta, alpha and beta 

frequencies across all levels of the VVP, supporting our broad results of a temporal transition 

from visual to semantics over time in accordance with the changes seen over the successive 

layers of the computational model. 
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Representational changes over frequency 

We next tested how the peak frequency of the RSA effects changed. Using a LME model, 

we found a marginal effect of hierarchical cortical level (Beta coefficient = 2.2 Hz (SE = 1.1), 

t = 1.89, p = 0.06), but not of model layer (p = 0.21). The interaction between level and 

model was trending towards significance (t = 1.95, p = 0.053). To explore the interaction, 

separate LME models were run for each hierarchical level testing for an effect of model 

layer. Only the ATL showed a significant effect of model layer, where later layers of the 

visual-to-semantic model had lower peak frequencies (Beta coefficient: -0.74 Hz, t = 2.02, p 

= 0.046; Figure 5). As shown in Figure 5, plotting the probability density across frequencies 

suggests semantic models have median peak frequency around 5-6 Hz, while visual models 

have peaks closer to 10 Hz showing an alpha-theta distinction between vision and 

semantics. 

 

 
Figure 5. Spectral peaks for the visual DNN and semantic AN RSA effects in the anterior 

temporal lobe. Probability density plot showing that the peak frequency of RSA effects 

shows a clear distinction between visual and semantic model RDMs, where visual effects 

peak near 10 Hz and semantic effects peak near 5 Hz. 

 

 

Direction of information flow 

The results presented so far show a visual to semantic trajectory through time and space, 

where effects are later in time for higher regions of the VVP, and for later layers of the visual-

to-semantic model. However, focussing solely on peak effects will not fully capture the 

ongoing dynamics, and critically, does not tell us about the causal relationships between 

regions or information types. To address this, we used Granger Causality (GC) analysis to 

test if representations in one region have a subsequent impact on representations in other 

regions. For example, GC with RSA time-courses allows us to test if visual information in 

one region has a causal impact on subsequent visual representations in a different region, or 

whether visual representations have a causal impact on subsequent semantic 

representations. GC analysis was applied to the RSA time-courses averaged across theta 

and alpha bands (where effects were concentrated) to test for causal relationships between 

visual representations across regions, semantic representations across regions, and 

critically, the causal relationship between visual and semantic representations both within 
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and across regions. For this analysis, we focus on RSA effects from the combined visual and 

combined semantic RDMs (Figure 6). 

 

 
Figure 6. Granger causality (GC) of RSA time-courses. Images show significant GC of the 

RSA time-courses between regions. Each image shows how RSA effects in one region 

impact future RSA effects in another region. The analysis was conducted both for RSA 

effects across regions within the visual DNN or semantic AN model RDMs (left two images), 

and when the RSA effects of the visual DNN could show GC with RSA effects with the 

semantic AN (and vice versa; right two images). Significant connections shown using p < 

0.05, FDR corrected. 

 

 

We first tested how visual RSA effects impact visual effects in other regions. Significant 

feedforward GC was seen between the occipital region and all other regions. This suggests 

that visual representations in the occipital lobe have an impact on subsequent visual 

representations further along the the VVP in accordance with feedforward models of visual 

processing. Semantic RSA effects showed significant feedforward, cross-hemispheric and 

feedback connectivity, with both the left and right ATL playing prominent roles. Semantic 

effects in the LATL significantly influenced later semantic effects in more posterior regions, 

while the RATL showed significant connectivity from bilateral pVTC. In addition, bidirectional 

connectivity was seen between the ATL regions. This shows that, in contrast to visual RSA 

connectivity, the spread of semantic effects were associated with more complex 

feedforward, feedback and cross-hemispheric connectivity. 

 

Crucially, we tested the relationships between visual and semantic RSA effects, by testing if 

visual RSA effects in one region influenced later semantic effects in other regions (or the 

same region) and vice versa. Visual RSA effects emanating from the occipital and RpVTC 

significantly influenced semantic effects through feedforward connectivity with the ATL, while 

visual RSA effects from the occipital region also influenced later semantic effects in the 

RpVTC. The occipital visual RSA effects influenced later semantics in the occipital, while 

visual effects in the LpVTC also influenced later semantic effects in the LpVTC. Finally, 

visual RSA effects in the ATL influenced later semantic effects in the pVTC through 

feedback connectivity, an effect that was present in both hemispheres. This shows a pattern 

where feedforward visual-to-semantic transformations occur from the occipital to LATL, and 

along the right VVP. Feedback visual-to-semantic transformations occurred from the ATL to 

pVTC bilaterally, in addition to a shifting visual-to-semantic representation within LpVTC. 

Lastly, semantic RSA effects had a significant effect on visual representations in the RpVTC, 

nd from RpVTC to LpVTC. Overall, the GC results show that feedforward processing in the 
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VVP supports the dynamic processing of visual information, while combinations of 

feedforward and feedback is more central for semantics. We also highlight that visual to 

semantic information transitions engage feedforward and feedback connectivity, with the 

ATL appearing a vital region. 

 

Discussion 
In this study, we successfully combined RSA for time-frequency phase information with a 

computational architecture for visual to semantic processing. Utilising a combined visual 

DNN and semantic AN, we were able to demonstrate how the incremental aspects of visual 

to semantic processes occur in the ventral stream over time, and the underlying dynamics 

supporting this transition. TF RSA revealed visual and semantic object properties were 

primarily reflected in alpha and theta activity. Spatial and temporal hierarchies were also 

apparent, where later layers of the computational model showed peak effects later in time, 

and in later regions along the posterior to anterior axis. Moreover, we also revealed more 

subtle dynamics underlying recognition, where feedforward connectivity supported the 

transfer of visual information in the VVP, and combined feedforward, feedback and intra-

region dynamics supported the transition between visual and semantic information 

processing states. These results present the first detailed account of how oscillatory 

dynamics can support the emergence of meaning from visual inputs. 

 

Here we used TF RSA with oscillatory phase information, showing that low-frequency phase 

carries stimulus-specific information related to visual and semantic object properties. The 

analysis was based on phase patterns from MEG source localised data, with our results 

showing that objects with more similar properties have more similar spatio-temporal phase 

patterns in the mass signals recorded through MEG. It is believed that the phase of low-

frequency activity is suited for decoding stimulus properties for MEG, EEG and ECOG 

(Panzeri et al., 2015; Watrous et al., 2015a), supported by a number of studies showing that 

oscillatory phase carries more information about the stimulus than power (Lopour et al., 

2013; Ng et al., 2013; Schyns et al., 2011). While not presented here, we also see a similar 

pattern with our data. While neural mass activity can be difficult to relate to the underlying 

neural activity, there is some suggestion that low-frequency phase of mass signals might 

index the timing of the underlying neural activity and its firing (Panzeri et al., 2015; Watrous 

et al., 2015a). As such, our effects based on spatiotemporal phase patterns may be driven 

by spatiotemporal activity patterns of the mass neural populations, and further suggests that 

cognitively relevant properties are coded in distributed neural activity patterns in space and 

time. However, the relative importance of a spatial or temporal activity patterns for object 

properties was not be determined in this study. 

 

Previous studies in both humans and nonhuman primates have identified category-specific 

phase coding of objects, where different object categories have different preferred phases 

associated with neural activity (Turesson et al., 2012; Watrous et al., 2015b). Here, we go 

beyond phase dissociations between different categories, by showing that the variability in 

phase information relates to variability in the stimulus properties, and is the case for both 

visual and semantic properties. We see that phase patterns in alpha most strongly relate to 

visual properties from the DNN and phase patterns in theta relate to semantics. Alpha 

oscillations over posterior regions are linked to the sampling of the visual environment 

(VanRullen et al., 2014). Alpha activity is claimed to reflect a pulsed inhibition of cortical 
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activity, where increases in alpha power result in the inhibition of a region and decreased 

alpha power relates to the active engagement of a region (Jensen and Mazaheri, 2010; 

Klimesch et al., 2007). Reductions in alpha power occur in occipital regions following visual 

presentation, and so our RSA effects will coincide with reductions in alpha power. Research 

using combined EEG and fMRI has further shown that occipital alpha power reductions 

correlated with increased BOLD in downstream object processing regions (Zumer et al., 

2014), and so alpha activity could organise the flow of information through the VVP, as 

supported through our connectivity analysis (see below). However, it is also worth noting that 

effects of the DNN, while peaking in alpha, were seen across theta, alpha and beta 

frequencies. 

 

Both alpha and theta activity are sometimes considered to have similar roles in organising 

neural activity (Jensen et al., 2014; Lisman and Jensen, 2013). Both alpha and theta activity 

are modulated by memory, but often with opposing effects (Hanslmayr et al., 2012), and our 

clustering of frequencies to generate the different bands revealed separate clusters for theta 

and alpha. Together, this suggests a functional dissociation between theta and alpha in 

cortex. Theta activity in the hippocampus and medial temporal lobes is tightly linked to long 

term memory (Fell and Axmacher, 2011; Fell et al., 2001; Halgren et al., 2015; Sederberg et 

al., 2003; Staresina et al., 2012). Our theta effects for semantic object properties in the 

pVTC and ATL are consistent with intracranial recordings in humans from anterior IT and the 

PRC which show a modulation of theta activity according to the semantic category of words 

(Halgren et al., 2015), where it is further hypothesised that ATL structures aid the encoding 

of attributes in coordination with theta in the hippocampus (Fell et al., 2001; Halgren et al., 

2015; Staresina et al., 2012). 

 

One implication from our study is that different primary rhythms may encode visual and 

semantic properties, particularly in the ATL. The concept that different frequencies code 

complementary aspects of a stimulus is known as multiplexing. Using EEG, Schyns and 

colleagues (2011) showed that posterior electrodes coded for the eyes of a face in the beta 

band, and the mouth in theta, showing that different features of a face are coded in different 

frequencies. In our study, different object features relating to vision and semantics were 

represented by different frequencies in the ATL - alpha and theta. Recently, the PRC within 

the ATL, was shown to represent both high-level visual properties and conceptual properties 

of objects (Martin et al., 2018). Our evidence of visual and semantic effects in the ATL may 

indicate that the conjoint coding of visual and conceptual properties in the PRC could be 

aided through a multiplexed coding scheme, that may also be useful for integrating distinct 

visual information within a forming semantic representation. We can speculate that given the 

visual environment is sampled at an alpha rate (VanRullen et al., 2014), the slower theta 

dynamics for semantics could be useful to integrate semantic information from the 

environment over multiple alpha cycles. Further ECOG investigations will be important to 

highlight the specific spatio-temporal-spectral signatures for vision and semantics in the ATL, 

and how the alpha and theta cycles are related. These studies would also offer the 

opportunity to test how low-frequency phase information and high frequency activity (>100 

Hz) might jointly represent object information through phase-amplitude coupling (Canolty 

and Knight, 2010; Jensen and Mazaheri, 2010; Jensen et al., 2014). This is supported by 

recent work showing that high frequency activity to different object categories occurs at 

different phases of a low-frequency oscillation, showing how phase-amplitude coupling could 

relate to phase coding (Watrous et al., 2015b). 
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One clear step forward provided by our study, is determining how object information across 

different brain areas was related (also see Goddard et al., 2016 and ; Ince et al., 2015 for 

related approaches). This is an important step, because, although our main analyses 

highlight parallel hierarchies of vision to semantics and posterior to anterior regions, this is 

likely an over simplification of the underlying activity dynamics. By combining the RSA time-

courses with Granger Causality, we were able to show how information in one region 

changes the state of information in another region, characterising how information flows in 

the VVP. 

 

As predicted by most models of visual processing, our analysis showed visual object 

information was associated with feedforward connectivity, in that visual representations 

coded in occipital alpha phase predicted future visual representations in more anterior 

regions in the VVP. In contrast, the flow of semantic representation effects was feedback 

and cross-hemispheric, similar to previous reports of feedback activity in the VVP supporting 

semantic processing (Campo et al., 2013; Chan et al., 2011; Clarke et al., 2011; Poch et al., 

2015; Schendan and Ganis, 2012). Crucially, this analysis enabled us to test how visual 

representations impact future semantic representations. This analysis showed two prominent 

motifs. First, visual effects in the occipital region related to subsequent semantic effects in 

the ATL and pVTC (feedforward), and second visual effects in the ATL related to subsequent 

semantic effects in the pVTC (feedback). This analysis revealed more complex dynamics 

than suggested when only looking at peak effects, whilst also emphasising the importance of 

the ATL through receiving feedforward inputs, and sending top-down signals to posterior 

regions. 

  

The ATL plays a central role in many theories of semantics, with differential emphasis of 

lateral, polar and medial aspects of the region, which may depend on stimulus modality or 

task (Clarke and Tyler, 2015; Damasio et al., 2004; Grabowski et al., 2001; Mehta et al., 

2016; Patterson et al., 2007; Ralph, 2014). Given the spatial specificity of MEG source 

localisation, we did not look to test between these positions, and focus on the general role of 

the extended region. However, recent fMRI work using the same DNN and semantic AN 

approach shows that semantic effects for visual objects are represented in the PRC 

(Devereux et al., under review), which is consistent with a variety of other neuroimaging and 

neuropsychology studies showing the semantics of visual objects is dependent on the PRC 

(Clarke and Tyler, 2014; Kivisaari et al., 2012; Taylor et al., 2006; Tyler et al., 2013; Wright 

et al., 2015). Although we do not make claims about exact localisation of ATL effects from 

this study, our results do provide critical new evidence that can further refine these accounts. 

One speculative prediction we can make regarding the ATLs role, is that it initially integrates 

visual signals during a feedforward alpha drive whilst activating semantic object properties. 

The properties, represented by theta activity, then communicated through feedback activity 

to the pVTC (Chan et al., 2011; Clarke, 2015), with coherent activity between the posterior 

and anterior regions in the VVP supporting the object-specific semantics (Clarke et al., 2011) 

based on top-down semantic and bottom up visual signals. Theta activity may further 

structure alternating modes of feedforward and feedback activity (Halgren et al., 2015), with 

increased recurrent activity necessary under ambiguous perceptual conditions (Schendan 

and Ganis, 2012). Future studies utilising ECOG or depth electrodes could begin to test 

these predictions. 
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Whilst research with time-sensitive approaches converge towards a model where the initial 

feedforward activation activates the visual aspects of objects, before recurrent dynamics 

process the specific semantics (Chan et al., 2011; Clarke, 2015; Clarke and Tyler, 2015; 

Halgren et al., 2015; Poch et al., 2015; Schendan and Ganis, 2012), we lack an 

understanding of the neuro-computational principles of how vision activates meaning. Here, 

we tested whether oscillatory activity could represents stimulus-specific visual and semantic 

object properties, and showed that visual properties were most associated with alpha phase, 

and semantic properties were associated with theta phase information. Further, distinct 

modes of connectivity underpinned the flow of information, where visual information flowed 

in a feedforward direction, semantics in feedback, whilst the transfer between vision and 

semantics relied on feedforward, feedback and intra-regional flow. Our results highlight the 

ATL as an important region, both in representing visual and semantic information through a 

multiplexed code, and for the transformation of information from visual to semantic. By 

combining oscillations, connectivity, RSA and computational models, we show how visual 

signals activate meaning taking us towards a more detailed model of object recognition. 
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Table 1. TF RSA results 

Models ROI Freqs Times Mass max cluster p 

Visual-layer 1 Occip 4-50 Hz 0-730 ms 4857 0.0002 

Visual-layer 1 LpVTC 4-15 Hz 0-610 ms 1392 0.0073 

Visual-layer 1 RpVTC 4-15 Hz 0-350 ms 1364 0.0077 

Visual-layer 1 LATL 4-14 Hz 0-410 ms 1379 0.0077 

Visual-layer 1 RATL 7-15 Hz 10-370 ms 369 0.0365 

Visual-layer 1 RATL 4-6 Hz 70-350 ms 233 0.1001 

Visual-layer 2 Occip 4-34 Hz 0-750 ms 5343 0.0002 

Visual-layer 2 LpVTC 4-16 Hz 0-630 ms 1522 0.0051 

Visual-layer 2 RpVTC 4-21 Hz 0-770 ms 2093 0.0035 

Visual-layer 2 LATL 4-14 Hz 0-390 ms 1378 0.0077 

Visual-layer 2 RATL 4-15 Hz 0-750 ms 1298 0.0079 

Visual-layer 3 Occip 4-32 Hz 0-910 ms 5599 0.0001 

Visual-layer 3 LpVTC 4-23 Hz 0-690 ms 2301 0.0030 

Visual-layer 3 RpVTC 4-23 Hz 0-730 ms 3033 0.0018 

Visual-layer 3 LATL 4-18 Hz 0-590 ms 1955 0.0036 

Visual-layer 3 RATL 4-17 Hz 0-690 ms 1943 0.0036 

Early-semantic Occip 5-14 Hz 0-690 ms 701 0.0145 

Early-semantic LpVTC 4-6 Hz 170-450 ms 251 0.0843 

Early-semantic RpVTC 12-21 Hz 110-390 ms 231 0.1014 

Early-semantic LATL 4-8 Hz 0-450 ms 584 0.0181 

Late-semantic LpVTC 4-8 Hz 0-630 ms 585 0.0181 

Late-semantic LATL 4-7 Hz 0-390 ms 447 0.0262 
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