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Abstract

Liquid chromatography is a core component of almost all mass spec-

trometric analyses of (bio)molecules. Because of the high-throughput na-

ture of mass spectrometric analyses, the interpretation of these chromato-

graphic data increasingly relies on informatics solutions that attempt to

predict an analyte’s retention time. The key components of such predic-

tive algorithms are the features these are supplies with, and the actual

machine learning algorithm used to fit the model parameters.

We here therefore evaluate the performance of seven machine learning

algorithms on 36 distinct metabolomics data sets, using two distinct fea-

ture sets. Interestingly, the results show that no single learning algorithm

performs optimally for all data sets, with different algorithm types achiev-

ing top performance for different types of analytes or different protocols.

Our results can thus be used to find an optimal retention time predic-

tion algorithm for specific analytes or protocols. Importantly, however,

our results also show that blending different types of models together de-

creases the error on outliers, indicating that the combination of several

1

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2018. ; https://doi.org/10.1101/259168doi: bioRxiv preprint 

https://doi.org/10.1101/259168
http://creativecommons.org/licenses/by-nd/4.0/


approaches holds substantial promise for the development of more generic,

high-performing algorithms.

1 Introduction

Mass Spectrometry (MS) coupled to Liquid Chromatography (LC) is a popular

technique for the high-throughput analysis of the metabolome and lipidome, as

it separates analytes based on their physicochemical properties [22, 4]. This is

important because analytes compete for charges during ionization, leading to a

strong bias against low abundant analytes. [34]. Moreover, LC is also capable

of separating isobaric analytes, which plays a particularly important role in

lipidomics [1].

LC-coupling thus provides analyte information that is complementary to the

mass-over-charge (m/z) measurement of the MS. In many cases, high perfor-

mance LC is used, where a solvent (the mobile phase) is pumped over a column

(the stationary phase) under high pressure. The time an analyte takes to travel

across the column is then determined by the degree of analyte interaction with

the stationary and mobile phases, respectively, and is called the retention time

(tR).

However, this LC retention time is usually not incorporated in the down-

stream analysis, because it is either unknown a priori, or only known a priori

for a very specific experimental setup. To fill this knowledge gap, researches

typically use regression models to predict retention times for known metabo-

lite structures. These tR spredictions are based on a mapping between known

structural, chemical and physical descriptors (or features) of the metabolites

with their experimentally observed retention times (the targets). These pre-

dictions have previously been applied in both targeted and untargeted MS ex-

periments to aid the analysis of lipids [1], metabolites [34, 11, 33] and peptides

[19, 28, 16, 25].

For targeted MS the predicted tR has been applied to reduce the number of

experiments needed to study specific analytes of interest [3], while in untargeted
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MS these predictions have been used to differentiate between isobaric lipids [1],

to filter false identifications for small metabolites (< 400 Da) [11], and to increase

the number of confidently identified peptides [30].

As shown in the literature, retention time prediction can be a useful source

of information for an MS experiment, but due to the many different experi-

mental setups used across labs, the modeling procedure is not trivial [29, 5].

This because differences in setup significantly influence retention times, thus re-

sulting in non-transferable knowledge between setups. To alleviate this lack of

transferability of models, calibration approaches between different setups have

been published, but these are only applicable to a limited set of metabolites

[29] or setups [5]. As a result, researchers generally fit a new model for every

setup, which requires substantial effort and data each time. Moreover, multiple

modelling decisions have to be made for each new model that is trained, which

leads to substantial heterogeneity and possible suboptimal modelling choices.

The regression model used for tR prediction is generally fitted using a ma-

chine learning algorithm, and there is a large variety of algorithms to choose

from [12]. For tR prediction, the support vector regression model is the most

popular option [27, 25, 19, 14, 18, 8, 20, 1], but other types of machine learning

algorithms have been used as well, including linear regression, neural networks

and random forest [34, 21, 7]. The choice of the algorithm is often guided

by existing experience of the researcher with particular machine learning algo-

rithms, which means that suboptimal approaches are often chosen by default.

Indeed, many tR prediction publications do not even justify the choice for their

algorithm.

The field would therefore benefit from a comprehensive overview of the per-

formance of different machine learning algorithms for tR prediction, tested on

a variety of experimental setups. We here therefore evaluate the performance

of seven machine learning algorithms, applied to 36 distinct metabolomics data

sets, using both a comprehensive feature set, as well as a minimal feature set.

Our results show that the choice of one machine learning algorithm over another

can significantly influence the performance, and that this choice is dependent
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on the characteristics of the data set.

2 Experimental section

2.1 Machine learning algorithms

A diverse set of seven machine learning algorithms is evaluated for their ability

to compute accurate tR prediction models from relatively limited amounts of

source data. These algorithms all produce a regression model that relies on

molecular descriptors (features) to predict the tR (target). These algorithms

were selected based on the fundamental differences in their prediction models,

and on their popularity within both the LC and machine learning community.

Of these seven algorithms, two employ linear models, four employ non-linear

models, and one features a hyperparameter that allows it to employ either a

linear or a non-linear model. Linear models assume the relation between features

and target to be linear and as such cannot capture more complex relations.

However these models are typically much more robust towards overfitting of the

data. Two popular linear models were chosen, which differ mainly in the way

the linear model parameters are fitted to the data. These are Bayesian Ridge

Regression (BRR) [15], and Least Absolute Shrinkage and Selection Operator

regression (LASSO) [31].

In contrast, non-linear models are able to model more complex relationships

between features and target, but this flexibility comes at the cost of an increased

risk of overfitting, especially on small data sets with many noisy features. Four

models were chosen here: a feedforward Artificial Neural Network (ANN), and

three decision tree ensemble models that differ in the way the decision trees are

constructed: through Adaptive Boosting (AB) [13], Gradient Boosting (GB)

[23] or bagging in a Random Forest (RF) [6].

The final selected model is a Support Vector Regression (SVR) [10], which

can take either the form of a linear SVR (LSVR) if no kernel is applied, or the

form of a non-linear SVR (SVR) if a Radial Basis Function (RBF) kernel is
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applied.

2.2 Datasets

The machine learning models were fitted on 36 publicly available LC-MS datasets

(Table S-1): 19 were obtained from MoNA (http://mona.fiehnlab.ucdavis.edu/),

16 from PredRet [29], and one from (author?) [1]. Each data set contained

measurements for at least 40 unique analytes. These 36 datasets were acquired

in different labs, using different experimental setups. Across all datasets, 8305

molecules were observed, of which 6759 are unique. These molecules cover a

broad range of masses and chemical compounds: from 59.07 Da to 2406.65 Da

(see Figure S-1 for the mass distribution), and from acetamide to lipids. Du-

plicated molecules in the same dataset were removed based on their SMILES

representation [32].

2.3 Molecular descriptors (features)

RDKIT [17] is used to convert the SMILES representation of the molecules to

196 features (see Table S-2 for a complete list). A selection of 151 features

is made form this list, and these 151 are used for training. Selection of these

151 features is based on a filter for standard deviation of a feature across the

different molecules (stdev ¿ 0.01), and on Pearson correlation between features

(r2 ¡ 0.96).

In addition, a minimal subset of eleven features (obtained from (author?)

[1]) was selected to evaluate the potential for overfitting of the larger feature set.

These eleven features include an estimate of the hydrophobicity using the oc-

tanol/water partition coefficient (MolLogP, slogp VSA1 and slogp VSA2), mo-

lar refractivity (SMR), estimated surface area (LabuteASA and TPSA), average

molecular weight (AMW), polarizability based on molar refractivity (smr VSA1

and smr VSA2) and electrostatic interactions (peoe VSA1 and peoe VSA2).
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2.4 Performance metrics

The generalization performance of a fitted regression model is evaluated us-

ing three different performance metrics: Mean Absolute Error (MAE), Median

Absolute Error (MedAE), and Pearson correlation (r).

Let ŷ be the predictions of the model and y the experimentally observed

retention times for all molecules n in a dataset; then the MAE is calculated

using the following equation:

MAE =

n∑
i=1

|yi − ŷi|

n
(1)

While MAE can give a good indication of performance, it is sensitive to

outliers. For this reason the related but more robust Median Absolute Error is

here used as the main metric:

MedAE = median(|y − ŷ|) (2)

The MAE or MedianAE can be hard to compare between different classes of

problems, especially when the error depends on the range of the elution times.

Therefore, in addition to the previous two metrics, the Pearson correlation is

calculated as well:

r =

n∑
i=1

(yi − ȳ)(ŷi − ¯̂y)√
n∑

i=1

(yi − ȳ)2

√
n∑

i=1

(ŷi − ¯̂y)2

(3)

Even though the MAE, MedianAE, and correlation can be calculated for each

datasets, a direct comparison between these metrics across different datasets is

not possible. For instance, a prediction error of ten seconds will have more

impact when the run time is 129 seconds (as is the case for dataset RIKEN)

as compared to a run time of 4089 seconds (as is the case for dataset Taguchi).

This can be alleviated by normalization; specifically by dividing by the error by

the retention time of the last detected analyte:
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MedAEnormalized =
MedAE(y, ŷ)

max(y)
(4)

2.5 Learning Curves

As tR prediction is specific to an experimental condition, the number of anno-

tated molecules (the training set) available for fitting (or training) a regression

model is typically limited. It therefore is important to investigate how different

regression models perform for different training set sizes.

In order to compute the learning curves (which plot performance versus

data set size), sufficiently large datasets are necessary. We therefore used

datasets that contained at least 320 unique molecules for this specific analysis.

The datasets that meet this requirement are Eawag XBridgeC18, FEM long,

RIKEN, Stravs and Taguchi 12. To investigate the reproducibility of the ob-

tained results, each experiment is repeated ten times with different random

seeds.

For each dataset, 160 unique molecules are selected at random to form the

training set. The remaining molecules in that dataset constitute the test set,

which is used to evaluate model performance. The training set of 160 molecules

is then sampled for molecule sets of increasing sizes. The smallest such training

subset contains 20 molecules, sampled at random without replacement. Re-

gression models are optimized and fitted on this training set and the resulting

models are evaluated on the test set. In the next iteration, another 20 molecules

are sampled at random without replacement from the remaining 140 selected

molecules, these are added to the training set. A model is again optimized

on this larger training set, and evaluated on the same original test set. This

procedure is repeated until the training set contains 160 molecules.

2.6 Algorithm Performance Evaluation

The generalization performance of each algorithms is evaluated using 10-fold

Cross-Validation (10CV), in which all unique molecules are randomly assigned
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to one of ten subsets of equal size, and each subset is in turn assigned as the test

set, while the remaining nine subsets are used as the training set. This process

is repeated ten times, such that each subset is used once for testing.

2.7 Hyperparameter optimization

Learning algorithms have hyperparameters that are used to fit the model pa-

rameters, and these hyperparameters need to be set by the user before fitting

the data. Here, the hyperparameters of the learning algorithms are optimized

using values that are randomly drawn from a prespecified distribution (see Code

Listing S-1 for the definition of these distributions). Random optimization is

generally able to find the optimal parameters significantly faster than a grid

search, because it is hypothesized that it samples more of the parameter space

for the same amount of iterations [2]. For each machine learning algorithm,

a total of 100 randomly selected hyperparameter sets are evaluated using a

10CV. The hyperparameter set with the best mean absolute error using Cross-

Validation (CV) is then used for fitting the complete training set.

2.8 Code and dataset

The code to generate the models implements the following libraries: scikit-learn

V0.18.0 [26], Pandas V0.19.021 [24], RDKIT V2016.03.1 [17] and XGBoost V0.4

[9]. The code used to generate the regression models, to make predictions, and to

produce the figures is available at: https://github.com/RobbinBouwmeester/tRPredictionOverview

3 Results and discussion

SVR models are one of the most frequently applied algorithms for LC tR pre-

diction [27, 25, 19, 14, 18, 8, 20, 1]. Even though a large variety of machine

learning algorithms is available to researchers to train a tR prediction model,

there can be significant performance differences between these. In this section

we therefore evaluate the performance of different machine learning algorithms
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on different tR prediction tasks.

3.1 Prediction performance versus training set size

First, the ability of different learning algorithms to generalize training sets with

different sizes is investigated. Figure 1 shows learning curves for each of the

regression models for the five datasets with more than 320 molecules. As ex-

pected, the learning curves show that all regression models benefit from larger

training sets. For the five datasets used here, the largest generalization perfor-

mance gain is typically observed when doubling the dataset size from 20 to 40

training molecules. Still, most models show optimal performance when trained

on the largest sample size of 160 molecules, with adaptive boosting as the no-

table exception. This because adaptive boosting tends to overfit on the larger

training sets, which is particularly evident for the RIKEN dataset.

Although no clear performance difference between the linear and non-linear

prediction models can be observed for the Eawag XBridgeC18 and Stravs datasets,

there is a large performance increase for non-linear models for the FEM long,

RIKEN and Taguchi datasets as training sets increase in size. For these latter

datasets the GB algorithm clearly performs best overall, except for the Taguchi

dataset where ANN clearly outperforms the other algorithms. This shows that

the optimal algorithm is dataset dependent, and that boosting a decision tree

forest (GB) performs significantly better than bagging a forest (RF) for tR pre-

diction. The same results are seen when plotting the mean absolute error, and

the Pearson correlation (see Figure S-2 and S-3, respectively).

3.2 Prediction performance of the different algorithms on

all datasets

In this section performance differences between the different regression models

are evaluated on all 36 datasets. For each dataset, all unique molecules in that

dataset are used in a 10CV approach to assess the generalization performance.

The detailed CV results for mean absolute error, median absolute error, and
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Figure 1: The learning curves for five datasets that have at least 320 training

examples. The median absolute error (y axis) is plotted against a specific num-

ber of training examples (x axis). Training and testing for the points in the

learning curve is repeated ten times, and the mean is plotted.
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Figure 2: The frequency with which an algorithm scored the lowest (a) and

highest (b) absolute median error on a dataset. Panel (c) shows the mean rank

over all datasets when the performance is sorted on absolute median error.

Pearson correlation can be found in Tables S-3, S-4, and S-5, respectively.

Figure 2(a) shows the number of times an algorithm had the lowest median

absolute error on any of the 36 datasets. GB again clearly stands out here,

as it is the best performing algorithm for thirteen datasets. Linear models

such as BRR and LASSO are the worst performing algorithms, achieving best

performance on only one or two datasets.

Figure 2(b) shows the number of times an algorithm had the highest me-

dian absolute error on a dataset. GB yet again performs significantly better

than the other algorithms, displaying worst performance for just one dataset

(UniToyama Atlantis). The SVR (linear/RBF) model follows closely, having

the worst median error on only three datasets. AB is ranked worst for eight out

of 36 datasets, while achieving best performance for 5 datasets. This indicates

that AB can achieve competitive performance, but is susceptible to overfitting.

Overall, this comparison shows that GB will not always perform the best, but

out of all algorithms it is most likely to show the best generalization perfor-

mance, while being least likely to show the worst performance.

Even though there is a clear difference between algorithms regarding best and

worst performance, the mean rank for the different algorithms is more similar

(Figure 2(c)). This similarity in mean rank indicates that high performing
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algorithms (GB, MLP, SVR) can at times perform poorly (but not the worst)

on some of the datasets. These results show that different algorithms will show

different performance on different datasets, thus illustrating the importance of

evaluating multiple algorithms for individual datasets.

3.3 Pairwise performance comparison of the algorithms

To obtain more insight into the robust performance of GB across the datasets,

we compared its performance against the other learning algorithms for each of

the 36 datasets. Figure 3 shows the difference in median absolute error nor-

malized to the maximum elution times for each dataset (eqn. 4). GB improves

the normalized median error by 0.74 % to 1.51 % on average for all datasets

compared to the other six algorithms. For example, in the case of Taguchi a

1 % improvement would translate to a 40.89 second lower median absolute er-

ror. The datasets Matsuura, Matsuura 15 and Beck are consistently a worst fit

for GB when compared to the other algorithms. For completeness, the pair-

wise comparisons are also made for AB, BRR, ANN, Random Forest and SVR

models (Figure S-4). The differences in normalized median absolute error range

from 0.01 % to 0.77 % and are overall much lower than the differences observed

in Figure 3 for GB.

Figure 4 shows the comparison of choosing the best performing algorithm

compared to GB for each dataset. For the thirteen datasets where the GB

model was best, the performance increase is, of course, zero. For the remaining

datasets, choosing the highest performing model improved the relative median

error with 0.72 % on average (Figure 4(a)). Because of its popularity, the same

comparison was made for SVR, where choosing the best performing algorithm

rather than SVR resulted in an average performance improvement of 1.84 %

(Figure 4(b)). This again shows that evaluating multiple algorithms to select the

best model can significantly lower the prediction error, and that the popularity

of SVR seems unwarranted in light of the overall superior performance of GB.
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Figure 3: Difference in the absolute median error per dataset for the GB models

compared to LASSO, AB, BRR, ANN and SVR. Positive numbers indicate that

the median absolute error was lowered (improved) by the indicated amount

when using GB. Negative numbers indicate a lower median absolute error for

the algorithm GB is compared to.
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Figure 4: Comparison of the normalized median error between the best per-

forming model out of the selected seven per dataset, and the GB (a), and SVR

(b) models. Zero difference in the error indicates that the algorithm under

evaluation performed the best. Non-zero values indicate the lower error when

choosing one of the other algorithms.
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3.4 Combining multiple prediction algorithms

Instead of selecting the best learning algorithm for a dataset one might also

consider combining the predictions of several models to compute what is called

blended predictions. This approach can only achieve better performance than

the best performing model alone if the predictions computed by the different

models are not too correlated. Figure S-6 shows the correlation between the

errors for the different learning algorithms. It shows that this correlation is

high (r ¿ 0.82) between the three algorithms that fit a continuous mathematical

function (SVR, BRR and LASSO), and that it is also high (r ¿ 0.73) between

the three tree-based algorithms (GB, AB and RF). However, the correlation is

much lower between these two classes of three algorithms (r ¡ 0.59). Finally,

the ANN model shows very low correlation with any of the other algorithms (r

¡ 0.58).

A very simple blending strategy was implemented based on these correla-

tions, which averages the predictions of SVR, ANN and GB. While the effect

of blending will be minor for molecules that show similar tR predictions for the

three blended models, the potential effect on molecules that show sufficiently

different tR predictions should be the reduction of outlying predictions (i.e.

predictions with large error).

This was investigated by looking at the percentage of molecules (over all 36

datasets) with prediction error lower than a certain threshold. Figure 5 shows

different values for the threshold on the x-axis with the corresponding percentage

of molecules with prediction error below this threshold on the y-axis.

Figure 5 shows that the averaged (blended) predictions perform better than

the single best model, except for molecules with the smallest prediction errors

(errors ¡ 2.5%). For individual datasets, both the mean and median absolute

error rank is improved when blending, and is better than the GB models (Table

S-6). So, even though the difference between the blended model and GB is

small, these results show that outlying tR predictions can be reduced by even

a simple blending strategy. It is likely that more advanced blending strategies
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Figure 5: Percentage of metabolites with predictions under an error threshold

plotted against that error threshold across all 36 datasets. Blended predictions

are calculated as the average prediction for a metabolite by GB, ANN and SVR.

can further reduce prediction error.

However, Figure 5 also shows that only about half of all metabolites are

predicted with high accuracy (error ¡ 5%). For instance, for GB the threshold

where 50 % of all molecules falls within this threshold occurs at an error thresh-

old of 4.1 %. After this point, higher thresholds provide relatively smaller gains.

For instance, for GB the threshold where 80 % of the metabolites falls within

this threshold only occurs at an error threshold of 17.7 %.
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3.5 Comparison between SVR and gradient boosting mod-

els

The SVR algorithm is one of the most popular algorithms for tR prediction,

but the results presented here show that the GB algorithm is more accurate for

most datasets. The boosting algorithm in GB works by decreasing the bias of an

ensemble of weak learners that have a low variance and high bias.The downside

of this is that there need to be enough training examples to effectively decrease

the bias.

Figure Figure 6 shows a comparison between the performance of both algo-

rithms while taking the size of the dataset into account. The 36 datasets are

split into two equal sized groups: one with low, and one with high number of

training examples. This division was made based on a threshold of at least 100

training examples for the high number of examples. 13 out of the 18 datasets

in the group with a high number of examples have a lower median absolute

error for GB than for SVR (Fisher’s exact test p-value < 0.02), and 9 out of

18 datasets in the group with a low number of examples have a lower median

absolute error for GB than for SVR (Fisher’s exact test p-value = 1).

The mean absolute error shows the same trend, where 15 out of 18 datasets

with high number of examples have a better performance for the GB trained

model (Fisher’s exact test p-value < 0.0002), while 10 out of 18 datasets with

low number of examples have a better performance for GB (Fisher’s exact test

p-value = 0.74).

3.6 Effect of a reduced feature set

In this section we want to investigate the possible overfitting by the machine

learning algorithms. Overfitting is a problem for any machine learning task, but

due to the relatively high amount of features (151) compared to the number of

training examples this becomes a serious concern for some datasets. To detect

overfitting on 151 features, the performance of models trained on all 151 features

is compared with models trained on the minimal subset of eleven features. This
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Figure 6: Comparison of the median and mean absolute error between GB and

SVR for every dataset. The difference in the median and mean absolute error

between GB and SVR is plotted with the number of training examples. The

vertical line indicates the area where there is no performance difference, and the

horizontal line indicates the 100 examples cut-off between low and high number

of examples in the dataset.
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Figure 7: Difference in the absolute median error per dataset for GB trained

with eleven, or with 151 features. Positive numbers mean that the absolute

median error was lowered by the indicated amount when applying GB with 151

features.

because overfitting is less likely to occur in the latter.

Figure 7 shows that the three datasets (Matsuura, Matsuura 15 and Beck)

that were consistently a worse fit for GB in Figure 3 achieve a higher perfor-

mance on the minimal set of eleven features. This higher performance for the

minimal feature set indicates overfitting on the 151 features. However, limiting

the number of features decreased the performance for most datasets (23 out

of 36) with on average a lower median absolute error of 0.42 % for GB mod-

els trained on all 151 features. This shows that the larger feature set is still

preferred over the minimal feature set for most datasets.

The pairwise comparison between the other learning algorithms that are
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fitted on the reduced feature set in Figure S-5 follows the same conclusions as

Figure 3. GB is able to outperform the other algorithms with an improved

median absolute error of 0.94 % to 2.75 % on average. This shows that the

earlier conclusions made with the complete feature set are not due to overfitting

of some of the algorithms on the large set of features.

3.7 Feature relevance

The performance evaluations conducted here have shown that overall, GB mod-

els perform best. The relevance of each feature in all GB models is therefore

investigated in more detail in this section. The F-score provided by GB reflects

this feature relevance, and is computed as the number of times that feature was

selected to split the training examples during decision tree construction.

Figure 8 shows the highest scoring feature based on the F-score. The Mol-

LogP describes the hydrophobicity and is the most important feature across

all datasets. This is the result of the large proportion of datasets based on

reverse-phase LC, which separates analytes based on hydrophobicity. The re-

maining features generally describe structural features of molecules on top of

chemical features (Chi4v, kappa, EState, PEOE and SlogP). The relevance of

these features can be explained by interactions of reactive groups (e.g. cyclic

carbons) with the solid phase of the column, and similarity between molecules.

High structural and chemical similarity between molecules is therefore a good

indicator for molecules to have the same retention time.

Figure 8 also shows that the importance of features is often shared between

datasets, but that a substantial proportion of features used in the models is

nevertheless shared by only a few datasets. These differences in feature impor-

tance underline that knowledge of features cannot be directly transferred from

one experimental setup to another.
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Figure 8: Normalized F-score from GB per dataset. F-scores were normalized

by dividing all features by the maximum F-score per dataset. Every feature

name is followed by the mean F-score of all datasets. Any feature with a mean

F-score below 0.15 is excluded.
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4 Conclusion

When making an LC tR predictor, researchers make multiple decisions that can

influence the performance and interpretability of the final model. The most no-

table such decisions are the number of training examples to include, the machine

learning algorithm to use, and the molecular features to calculate.

For all datasets analysed here, a fairly accurate model could only be ob-

tained when the number of training examples was at least 40. However, differ-

ent datasets and algorithms require a different number of training examples to

achieve the highest performance possible. Generally the GB algorithm delivers

the best performance, given sufficient training examples (¿100). GB models gen-

erally keep improving for increasing number of training instances, where other

algorithms converge in their performance more quickly as training instances

increase.

Cross-validation confirms that GB is the most likely candidate to deliver

the best performance, and is the least likely to give the worst performance.

However, the best performance in 23 out of 36 datasets was obtained using

another algorithm. This shows the importance of testing different algorithms

before choosing the learning algorithm that is used to generate the final model.

GB, ANN and SVR generate complementary models and provide a good starting

point for blending multiple algorithms.

The feature importance analysis of the GB models show that feature rele-

vance is also dataset dependent. Selecting features based on other experimental

setups can therefore result in a suboptimal model. In the initial stages of creat-

ing a model, a researcher should therefore be careful when excluding features.

GB is generally able to select those features that are important to achieve a

high performance without overfitting.

However, the best overall performance can be achieved by blending algo-

rithms, which results in a lower overall prediction error. The blending technique

applied here is very simplistic, but this already indicates that more advanced

blending techniques are worth investigating.
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