bioRxiv preprint doi: https://doi.org/10.1101/259184; this version posted February 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1 Running head

2 THE AGE OF BUTTERFLIES REVISITED (AND TESTED)

- 3 Title
- 4 The Trials and Tribulations of Priors and Posteriors in Bayesian Timing of
- 5 Divergence Analyses: the Age of Butterflies Revisited.
- 6

7 Authors

- 8 NICOLAS CHAZOT^{1*}, NIKLAS WAHLBERG¹, ANDRÉ VICTOR LUCCI FREITAS²,
- 9 CHARLES MITTER³, CONRAD LABANDEIRA^{3,4}, JAE-CHEON SOHN⁵, RANJIT KUMAR
- 10 SAHOO⁶, NOEMY SERAPHIM⁷, RIENK DE JONG⁸, MARIA HEIKKILÄ⁹

11 Affiliations

- ¹Department of Biology, Lunds Universitet, Sölvegatan 37, 223 62, Lund, Sweden.
- 13 ²Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de
- 14 Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Caixa postal 6109,
- 15 Barão Geraldo 13083-970, Campinas, SP, Brazil.
- ³Department of Entomology, University of Maryland, College Park, MD 20742, U.S.A.
- ⁴Department of Paleobiology, National Museum of Natural History, Smithsonian
- 18 Institution, Washington, DC 20013, USA; Department of Entomology and BEES
- 19 Program, University of Maryland, College Park, MD 20741; and Key Lab of Insect
- 20 Evolution and Environmental Change, School of Life Sciences, Capital Normal
- 21 University, Beijing 100048,

- ⁵Institute of Littoral Environment, Mokpo National University, Muan, Jeonnam 58554,
- 23 Republic of Korea
- ⁶IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE),
- 25 School of Biology, Indian Institute of Science Education and Research,
- 26 Thiruvananthapuram, Kerala 695 551, India.
- 27 ⁷Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus
- 28 Campinas, CTI Renato Archer Av. Comendador Aladino Selmi, s/n Amarais,
- 29 Campinas SP, 13069-901, Brazil.
- 30 ⁸ Naturalis Biodiversity Center, Department of Entomology, PO Box 9517, 2300 RA
- 31 Leiden, The Netherlands.
- 32 ⁹ Finnish Museum of Natural History LUOMUS, Zoology Unit, P.O. Box 17, FI-
- 33 00014 University of Helsinki, Finland.
- 34
- 35 **Corresponding author** (*):
- 36 Nicolas Chazot
- 37 Department of Biology, Lunds Universitet, Sölvegatan 37, 223 62, Lund, Sweden.
- 38 email: chazotn@gmail.com
- 39

bioRxiv preprint doi: https://doi.org/10.1101/259184; this version posted February 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

40 Abstract

41	The need for robust estimates of times of divergence is essential for downstream
42	analyses, yet assessing this robustness is still rare. We generated a time-calibrated
43	genus-level phylogeny of butterflies (Papilionoidea), including 994 taxa, up to 10
44	gene fragments and an unprecedented set of 12 fossils and 10 host-plant node
45	calibration points. We compared marginal priors and posterior distributions to assess
46	the relative importance of the former on the latter. This approach revealed a strong
47	influence of the set of priors on the root age but for most calibrated nodes posterior
48	distributions shifted from the marginal prior, indicating significant information in the
49	molecular dataset. We also tested the effects of changing assumptions for fossil
50	calibration priors and the tree prior. Using a very conservative approach we estimated
51	an origin of butterflies at 107.6 Ma, approximately equivalent to the Early
52	Cretaceous–Late Cretaceous boundary, with a credibility interval ranging from 89.5
53	Ma (mid Late Cretaceous) to 129.5 Ma (mid Early Cretaceous). This estimate was
54	robust to alternative analyses changing core assumptions. With 994 genera, this tree
55	provides a comprehensive source of secondary calibrations for studies on butterflies.

56 Keywords

57 Papilionoidea, butterflies, time-calibration, fossils, host plants, marginal prior

58 INTRODUCTION

59	An increasing amount of molecular information is allowing the inference of broad and
60	densely sampled phylogenetic hypotheses for species-rich groups. This effort,
61	combined with the emergence of a great number of methods investigating trait
62	evolution, historical biogeography, and the dynamics of diversification have increased
63	the need for time-calibrated trees. Estimating divergence times in molecular
64	phylogenetic work depends primarily on fossils to constrain models of heterogeneous
65	rates of substitutions. Consequently, the robustness of such estimates relies on the
66	quality of fossil information, involving age and taxonomic assignment (Parham et al
67	2012), the priors assigned to nodes that are calibrated in a Bayesian analysis
68	(Warnock et al 2012, Brown & Smith 2017), and the amount of information inherent
69	in the molecular dataset (Yang & Rannala 2006, Rannala & Yang 2007, dos Reis &
70	Yang 2013).
71	Fossils inform us of the minimum age of a divergence, imposing a temporal constraint

72 that is widely accepted. However, the constraint of a simple hard minimum age is 73 insufficient information for a proper analysis of times of divergence, particularly as 74 there is an absence of information about maximum ages for divergences, including the 75 root node. Often fossil information is modeled as a probability distribution, such as a 76 lognormal or exponential distribution, indicating our beliefs regarding how 77 informative a fossil is about the age of a divergence (Drummond et al 2006, Warnock 78 et al. 2015). The distributional shapes of these priors are often established without 79 justification (Warnock et al. 2012). Ideally, in node-based dating, fossil information is 80 used only as a minimum age constraint for a given divergence in the form of a 81 uniform prior with a minimum age equaling the fossil age and a maximum age

extending beyond the age of the clade in question. In such cases at least one
maximum constraint is needed, often also based on fossil information. Another
approach is use of extraneous additional information, such as using ages of host plant
families as maximum constraints for highly specialized phytophagous insect clades
(Wahlberg et al. 2009). In such cases, a uniform prior also can be used, with the
maximum set to the age of the divergence of the host plant family from its sister
group and the minimum set to the present time.

89 Brown & Smith (2017) recently have pointed out the importance of assessing the 90 relative influence of priors over the actual amount of information contained in the 91 molecular dataset. As noted above, users specify fossil calibrations using prior 92 distributions by modeling the prior expectation about the age of the node constrained. 93 However, the broader set of fossil constraints can interact with each other and with 94 the tree prior, leading to marginal prior distributions at nodes that usually differ from 95 the user's first intention (Warnock et al 2012). If relevant information were contained 96 within the molecular dataset, one would expect the posterior distribution to shift from 97 the marginal prior distribution. In the case of angiospermous plants, Brown & Smith 98 (2017) showed that the marginal prior resulting from the interaction of all priors 99 (fossils and the tree) excluded an Early Cretaceous origin, in effect giving such an 100 origin zero probability. In addition, many calibrated internal nodes showed nearly 101 complete overlap of marginal prior and posterior distributions, suggesting little 102 information in the molecular dataset but a potentially strong influence of the set of 103 priors.

With more than 18,000 species described and extraordinary efforts made to infer
phylogenetic hypotheses based on molecular data, butterflies (Lepidoptera:

106 Papilionoidea) have become a model system for insect diversification studies.

107	Nevertheless, the paucity of information available to infer times of divergence in
108	butterflies questions the reliability of the various estimates (e.g. Garzón-Orduña et al.
109	2015). Heikkilä et al. (2012) for example, used only three fossils to calibrate a higher-
110	level phylogeny of the superfamily Papilionoidea. The shortage of fossil information
111	for calibrating large-scale phylogenies also means that, most of the time, species-level
112	phylogenies at a smaller scale rely on secondary calibration points extracted from the
113	higher-level time-trees (e.g. Peña et al. 2011, Matos-Maravi et al. 2013, Kozak et al.
114	2015, Chazot et al. 2016, Toussaint & Balke 2016).
115	In a recent paper, de Jong (2017) revisited the butterfly fossil record, providing a
115	discussion about the quality of the different fossil specimens as well as their
117	taxonomic placement. Using this information, we established an unprecedented set of
118	12 fossil calibration points across all butterflies, which we use in this study to revisit
119	the timescale of butterfly evolution in a comprehensive phylogenetic framework, and
120	investigate the robustness of this new estimate. We complement the minimum age
121	constraints of clades based on fossils with maximum age constraints based on the ages
122	of host plant families. Some clades of butterflies have specialized on specific groups
123	of angiosperm hosts for larval development, such that one may assume that
124	diversification of the associated butterfly clade only occurred after the appearance of
125	the host plant clade. We use this assumption as additional information to calibrate the
126	molecular clock by setting the age of specific clades of butterflies to be younger than
127	the estimated age of their host plant lineage. We restrained these calibrations to
128	higher-level host plant clades.

129 The most recent estimates of divergence times using representatives of all butterfly 130 families inferred a crown clade age of butterflies of 110 Ma (Heikkilä et al. 2012) and 131 104 Ma (Wahlberg et al. 2013). These two dates yield to a large discrepancy when 132 taking the fossil record into account, as the oldest known fossil butterfly is estimated 133 to be 55.6 Ma and can be confidently assigned to the extant family Hesperiidae (de 134 Jong 2016, 2017). Such discrepancy has been extensively debated for a similar case, 135 the origin of angiosperms, often estimated to have originated during the Triassic (252-136 -201 Ma ago), while the oldest undisputed fossil is pollen dated at 136 Ma. Despite a 137 much more fragmentary fossil record for butterflies, the same questions remain. First, 138 are the previous estimates robust to a more comprehensive assemblage of fossils and 139 taxon sampling? Second, is the 50 million-year discrepancy between molecular clock 140 estimates and the fossil record accurate or the result of a lack of information 141 contained in the molecular dataset? In other words, how much does the set of priors 142 influence the results?

143 Here, we generated a genus-level phylogeny of Papilionoidea, including 994 taxa, in 144 order to maximize the number and position of fossil calibration points and increase 145 the potential amount of molecular information. By establishing the set of 12 fossils 146 and 10 host-plant calibration points, we time-calibrated the tree in order to provide a 147 revised estimate of the timing in diversification of butterflies. We then assessed the 148 robustness of these results to the assumptions made throughout the analysis, including 149 (i) different subsets of fossil constraints, (ii) the prior distributions of fossil constraints, 150 (iii) a different estimate for host plant ages, (iv) a Yule tree prior, (v) a reduced taxon 151 sampling and (vi) the addition of a mitochondrial gene fragment to the nine nuclear 152 gene regions.

- 153 Finally, we compared the user specified priors, marginal prior and posterior
- distributions of different analyses, to assess the influence of our set of constraints on
- the estimated timing of divergence.

157 MATERIALS AND METHODS

158 Molecular Dataset

- 159 When designing our dataset, we aimed at building a genus-level tree of Papilionoidea.
- 160 We assembled a dataset of 994 taxa from the database VoSeq
- 161 (http://www.nymphalidae.net/db.php, Peña & Malm 2012), with each taxon
- 162 representing a genus. We chose to include gene fragments that were available across
- 163 the whole tree in order to avoid large clade-specific gaps in the molecular dataset. In
- addition, Sahoo et al. (2016) pointed out a conflicting signal in the family Hesperiidae
- 165 between nuclear and mitochondrial markers. Thus, we chose to primarily focus on
- 166 nuclear markers. Our final dataset included nine gene fragments: ArgKin (596bp),
- 167 CAD (850bp), EFI- (1240 bp), GAPDH (691bp), IDH (710 bp), MDH (733 bp),
- 168 RPS2 (411 bp), RPS5 (617 bp) and wingless (412 bp) for a total length of 6260 base
- 169 pairs. The list of taxa and Genbank accession codes are available in the
- 170 Supplementary Material S1.
- 171 Set of Time-Calibrations for Timing Analyses
- 172 Fossil calibrations Previous studies estimating times of divergence of butterfly
- 173 lineages have largely relied on unverified fossil calibrations. The identifications of
- these calibrations were often based on overall similarity with extant taxa, not
- apomorphies. In the present study, we initially chose 14 fossil butterflies that were

176	recently critically reviewed by de Jong (2017) and displayed apomorphic characters
177	or character combinations diagnostic of extant clades, thereby allowing reliable
178	allocation of fossils on the phylogenetic tree to provide minimum ages to the
179	corresponding nodes. These fossils included three inclusions in Dominican Amber
180	and 11 compression/impression fossils. For the age of these fossils we have relied on
181	the most recent dates established from recent advances in Cenozoic
182	chronostragigraphy, geochronology, chemostratigraphy and the geomagnetic polarity
183	time scale (Walker et al., 2013). These improvements by geologists and specialists in
184	allied disciplines have provided an increased precision in age dates of stratigraphic
185	record (International Commission on Stratigraphy, 2012). The list of fossils and their
186	positions in the tree is given in Table 1 and Figure 1. For more detailed information
187	on the identification of these fossils, localities, preservation type and current
188	depositories, see de Jong (2017).
189	When a fossil was assigned to a clade, we calibrated the stem age of this clade,
189	When a fossil was assigned to a clade, we calibrated the stem age of this clade,
189 190	When a fossil was assigned to a clade, we calibrated the stem age of this clade, specifically the time of divergence from its sister clade, instead of the crown age or
189 190 191	When a fossil was assigned to a clade, we calibrated the stem age of this clade, specifically the time of divergence from its sister clade, instead of the crown age or the first divergence event recorded in the phylogeny. As a consequence of this choice,
189 190 191 192	When a fossil was assigned to a clade, we calibrated the stem age of this clade, specifically the time of divergence from its sister clade, instead of the crown age or the first divergence event recorded in the phylogeny. As a consequence of this choice, we removed two of the 14 fossils. We did not use <i>Praepapilio colorado</i> Durden &
189 190 191 192 193	When a fossil was assigned to a clade, we calibrated the stem age of this clade, specifically the time of divergence from its sister clade, instead of the crown age or the first divergence event recorded in the phylogeny. As a consequence of this choice, we removed two of the 14 fossils. We did not use <i>Praepapilio colorado</i> Durden & Rose, 1978 (Papilionidae, 48.4 Ma) nor the less well-preserved <i>Praepapilio gracilis</i>
189 190 191 192 193 194	When a fossil was assigned to a clade, we calibrated the stem age of this clade, specifically the time of divergence from its sister clade, instead of the crown age or the first divergence event recorded in the phylogeny. As a consequence of this choice, we removed two of the 14 fossils. We did not use <i>Praepapilio colorado</i> Durden & Rose, 1978 (Papilionidae, 48.4 Ma) nor the less well-preserved <i>Praepapilio gracilis</i> Durden & Rose, 1978 (Papilionidae) of the same age because its position at the root
189 190 191 192 193 194 195	When a fossil was assigned to a clade, we calibrated the stem age of this clade, specifically the time of divergence from its sister clade, instead of the crown age or the first divergence event recorded in the phylogeny. As a consequence of this choice, we removed two of the 14 fossils. We did not use <i>Praepapilio colorado</i> Durden & Rose, 1978 (Papilionidae, 48.4 Ma) nor the less well-preserved <i>Praepapilio gracilis</i> Durden & Rose, 1978 (Papilionidae) of the same age because its position at the root of the tree was uninformative given the presence of the 55.6 million years old
189 190 191 192 193 194 195 196	When a fossil was assigned to a clade, we calibrated the stem age of this clade, specifically the time of divergence from its sister clade, instead of the crown age or the first divergence event recorded in the phylogeny. As a consequence of this choice, we removed two of the 14 fossils. We did not use <i>Praepapilio colorado</i> Durden & Rose, 1978 (Papilionidae, 48.4 Ma) nor the less well-preserved <i>Praepapilio gracilis</i> Durden & Rose, 1978 (Papilionidae) of the same age because its position at the root of the tree was uninformative given the presence of the 55.6 million years old <i>Protocoeliades kristenseni</i> de Jong, 2016 placed at the crown of the Hesperiidae. For
189 190 191 192 193 194 195 196 197	When a fossil was assigned to a clade, we calibrated the stem age of this clade, specifically the time of divergence from its sister clade, instead of the crown age or the first divergence event recorded in the phylogeny. As a consequence of this choice, we removed two of the 14 fossils. We did not use <i>Praepapilio colorado</i> Durden & Rose, 1978 (Papilionidae, 48.4 Ma) nor the less well-preserved <i>Praepapilio gracilis</i> Durden & Rose, 1978 (Papilionidae) of the same age because its position at the root of the tree was uninformative given the presence of the 55.6 million years old <i>Protocoeliades kristenseni</i> de Jong, 2016 placed at the crown of the Hesperiidae. For similar reasons, we did not use <i>Doxocopa wilmattae</i> Cockerell, 1907
189 190 191 192 193 194 195 196 197 198	When a fossil was assigned to a clade, we calibrated the stem age of this clade, specifically the time of divergence from its sister clade, instead of the crown age or the first divergence event recorded in the phylogeny. As a consequence of this choice, we removed two of the 14 fossils. We did not use <i>Praepapilio colorado</i> Durden & Rose, 1978 (Papilionidae, 48.4 Ma) nor the less well-preserved <i>Praepapilio gracilis</i> Durden & Rose, 1978 (Papilionidae) of the same age because its position at the root of the tree was uninformative given the presence of the 55.6 million years old <i>Protocoeliades kristenseni</i> de Jong, 2016 placed at the crown of the Hesperiidae. For similar reasons, we did not use <i>Doxocopa wilmattae</i> Cockerell, 1907 (Nymphalinae+Biblidinae+Limenitidinae+Apaturinae, 33.8 Ma) because its position

201	Host plant calibrations – Butterflies are well known for their strict relationships with
202	specific groups of plants used by their larvae. Such associations have previously been
203	suggested as evidence for coevolution (Ehrlich & Raven, 1964, Janz & Nylin 1998,
204	Nylin & Janz 1999). In the present study, we selected nine calibration points based on
205	known information of host plant specificity by butterflies since the large revision of
206	Ackery (1988) (see also Beccalloni et al. 2008 for Neotropical species), and revised
207	for those host plant records listed as having spurious or occasional records (AVLF
208	unpublished data). Host plant clades used by single genera or a small group of
209	recently-derived genera were discarded, such as the use of Aristolochiaceae by
210	Troidini. In these cases the butterflies clearly are much more recent than their
211	associated plant clades, and consequently do not contribute relevant time information
212	to the tree. The ages of each plant group were defined as maximum ages for the
213	respective nodes (Table 1). For all host plant maximum constraints we used the
214	estimate from Magallón et al. (2015) using the upper boundary of the 95% credibility
215	interval of the stem age of the host plant clade. We also constrained the root of the
216	Papilionoidea with a maximum age corresponding to the crown age of angiosperms
217	from Magallón et al. (2015). The host plant calibrations were placed at the crown of
218	the butterfly clades as a conservative approach since we do not know when the host
219	plant shift occurred on the stem branch. However, we assume that the diversification
220	of the clade could not have begun earlier than the origin of the host plant family.

222 Analyses Overview

Given computational limitations for such a large dataset, we adopted the followingprocedure (details given below). We ran PartitionFinder v. 1.1 (Lanfear et al. 2012) to

225	identify the best partition scheme. Using this result we performed a maximum
226	likelihood analysis to obtain a tree topology. This tree topology was transformed into
227	a time-calibrated ultrametric tree and used thereafter as a fixed topology and starting
228	tree in all our dating analyses. Branch lengths were estimated using BEAST v. 1.8.3
229	(Drummond et al. 2012) with a simpler partitioning scheme, a birth-death tree prior,
230	lognormal relaxed molecular clocks, and a combination of minimum (fossils) and
231	maximum (host plants) constraints for which all were set with uniform priors. This
232	constituted the core analysis. We then performed additional analyses to test the
233	robustness of our results to (i) different subsets of fossil constraints, (ii) the prior
234	distribution of fossil constraints, (iii) a different estimate for host-plant ages, (iv) a
235	Yule tree prior, (v) a reduced taxon sampling, and (vi) the addition of a mitochondrial
236	gene fragment.

238 Core Analysis

239	Tree topology – We started by running PartitionFinder v. 1.1 (Lanfear et al. 2012) on
240	the concatenated dataset, allowing all possible combinations of codon positions of all
241	genes. Substitution models were restricted to a GTR+G model and branch lengths
242	were linked. We then performed a maximum likelihood analysis using RAxML v8
243	(Stamatakis 2006) using the best partitioning scheme identified by PartitionFinder and
244	1000 ultrafast bootstraps. The resulting tree was set as a fixed topology for the dating
245	analyses. To do so, the tree was transformed into a time-calibrated ultrametric tree
246	using the package ape (Paradis et al. 2004) and all minimum and maximum
247	constraints in order to obtain a starting tree suitable for BEAST analyses.

248	Time tree – We used BEAST v. 1.8.3 (Drummond et al. 2012) to perform our time-
249	calibration analysis. Given the size of our dataset, we reduced the number of
250	partitions in our dating analysis to three partitions, each partition being one codon
251	position of all genes pooled together. Substitution rate for each partition was modeled
252	by GTR+G and an uncorrelated lognormal relaxed molecular clock. We used a Birth-
253	Death process as branching process prior. In order to have a fixed topology we turned
254	off the topology operators in BEAUTi and we specified the topology obtained with
255	RAxML made ultrametric with the ape package.
256	Setting the priors for calibration points is always an important matter of discussion.
257	Non-uniform priors are often used, yet in the majority of studies the choice of
258	parameters defining the shape of the prior distribution is not justified (Warnock et al.
259	2012). For the core analysis we followed a conservative approach – considering that
260	fossils only provide a minimum age, while host plant calibrations only provide a
261	maximum age for the nodes they were assigned to – and we used uniform prior
262	distributions for all calibration points (Table 1). When a node was calibrated with
263	fossil information, the distribution ranged from the estimated age of the fossil to the
264	age of angiosperm origin (extracted from Magallón et al. 2015). When a node was
265	calibrated using host-plant age, the prior distribution ranged from 0 (present) to the
266	age of the host plant clade origin. When a node was calibrated with both types of
267	information, the distribution ranged for the age of the fossil to the age of host plant
268	clade origin. We also used a uniform prior for the tree root height, ranging between
269	the oldest fossil used in the analysis and the age of angiosperm origin. Host plant
270	calibrations, as well as the origin of angiosperms were extracted from Magallón et al.
271	(2015), using the upper boundary of the 95% credibility interval of the stem age of the
272	host plant clade. Our choice of combining (1) uniform prior distributions, (2) fossil

273	calibration of stem nodes, (3) the oldest stem age of the host plant clades and (4) host
274	plant calibration of crown nodes has important implications. On the one hand these
275	choices are the most conservative options, cautiously using the information given by
276	each type of calibration point and taking into account uncertainty surrounding the
277	information used. On the other hand, they are also the least informative.
278	We performed four independent runs of 30 million generations, sampling every 30
279	000 generations. We checked for a satisfactory convergence of the different runs
280	using Tracer v. 1.6.0 (Rambaut et al. 2014) and the effective sample size values in
281	combination. Using LogCombiner v. 1.8.3 (Drummond et al. 2012), we combined the
282	posterior distributions of trees from the three runs, discarding the first 100 trees (10%
283	burn-in) of each run. Using TreeAnnotator v. 1.8.3 (Drummond et al. 2012) we
284	extracted the median and the 95% credibility interval of the posterior distribution of
285	node ages.

288

287 Alternative Analyses

estimates of divergence times. Unless stated otherwise, we made only one
modification at a time; all other parameters remained identical to that described for
the core analysis. We performed at least two independent runs of 30 million
generations per alternative parameter set and more if convergence was not reached.
Different subset of fossils – We aimed at testing whether using only a fraction
of the fossil information affected the estimation of divergence times and whether the
position of calibrations (close to the root or close to the tips) also changed the results.

We tested the effect of making alternative choices along the core analysis on our

296 Thus, we divided our set of fossil constraints into two subsets depending on their 297 position in the tree. One subset included fossil calibration points assigned at a deep 298 level in tree (hereafter: higher-level fossils): Lethe, Mylothrites, Neorinella, 299 Pamphilites, Prolibythea, Protocoeliades and Vanessa (Table 1). The other subset 300 included fossil calibration points close to the tips of our phylogeny (hereafter: lower-301 level fossils): Doritites, Thaites, Dynamine, Theope and Voltinia (Table 1). In both 302 cases the full set of maximum constraints was used. We performed one analysis for 303 each subset. 304 Exponential fossil priors – In the core analysis we used uniform distributions 305 for calibration points, which is a conservative option but also the least informative. As 306 an alternative, we designed exponential priors for fossil calibration points. 307 Exponential priors use the age of a fossil as minimum age for the node it has been 308 assigned to, but also assume that the probability for the age of the node decreases 309 exponentially as time increases. In BEAUTi, we set the offset of exponential 310 distributions with the age of the fossil. The distribution was truncated at the maximum 311 age used in the uniform priors. The shape of the exponential distribution is controlled

by a mean parameter, which has to be arbitrarily chosen by the users. The choice of

mean parameter can be found in Table 1. Priors for host plant calibration points were

314 not changed (i.e., uniform priors).

Alternative host plant ages –The origin and timing of diversification of angiosperms is controversial. While the oldest undisputed fossil of Angiospermae is from the early Cretaceous (136 Ma, Brenner 1996), most divergence time estimations based on molecular clocks have inferred a much older origin. In the core analysis, we chose to use host plant ages derived from the tree of angiosperms time-calibrated by

320	Magallón et al. (2015), who imposed a constraint on the origin of angiosperms based
321	on this fossil information. They found a crown age for angiosperms of \sim 140 Ma. As
322	an alternative consistent with an older origin of angiosperms we used ages recently
323	inferred by Foster et al. (2017), who recovered a crown age of angiosperms of ~ 209
324	Ma. All maximum constraints were replaced by those inferred by Foster et al. (2017).
325	The origin of angiosperms was used as a maximum constraint was set to the upper
326	boundary of the 95% credibility interval of the crown age of the angiosperms i.e.,
327	252.8 Ma. Because the posterior distributions of node ages for this analysis were very
328	skewed, we extracted the median of the distribution, the 95 % credibility interval and
329	the mode of the kernel density estimate of nodes using the R package hdrcde. For
330	comparison, we also estimated the mode of posterior distributions for the core
331	analysis and all alternative tests.
332	Yule branching process prior – Condamine et al. (2015) showed that the prior
333	for the tree growth can a have a great impact on the estimated divergence times. In the
334	core analysis we used a Birth–Death prior, which models the tree formation with a
335	constant rate of lineage speciation and a constant rate of lineage extinction. As an

alternative, we used a Yule prior, which involved a constant rate of speciation and no

337 extinction to assess whether age estimates changed or not.

Reduced dataset – In our core analysis, we chose to maximize the taxon sampling – increasing the number of lineages – which increased the fraction of missing data in the molecular dataset. We tested whether increasing the molecular dataset completion to the detriment of taxon sampling changed the results. In this reduced dataset, we included all the genera for which a specific minimum number of genes were available. The missing data in the molecular dataset are not uniformly

344	distributed across the tree; for example, Lycaenidae have more missing data than the
345	Nymphalidae. Therefore, a different cut-off value was chosen for each family in order
346	to keep a good representation of the major groups (Papilionidae: 5 genes, Hedylidae:
347	8 genes, Hesperiidae: 9 genes, Pieridae: 8 genes, Lycaenidae: 4 genes, Riodinidae: 8
348	genes, Nymphalidae: 9 genes). In order to allow assignment of all fossils to the same
349	place as in the core analysis, nine taxa having a number of genes below the cut-off
350	value had to be added. We ended up with a dataset reduced to only 364 taxa instead of
351	994 in the core analysis. Accordingly, the fraction of missing data decreased from
352	39.5% in the core analysis to 21.4%. Given this important modification of the dataset
353	we generated a new topology with RAxML, which was then calibrated identically to
354	the core analysis.

355 Mitochondrial gene fragment – We tested whether adding mitochondrial 356 information in the dataset would affect our results. To do so, we added the 357 cytochrome-oxydase-subunit 1 gene to the molecular dataset. Given the conflicting 358 signal in Hesperiidae between nuclear and mitochondrial information (Sahoo et al. 359 2016), the COI was not added to the Hesperiidae. We performed a new RAxML 360 analysis in order to obtain a new topology. This new tree was calibrated with BEAST 361 identically to the core analysis, with one difference. The mitochondrial gene was 362 added as two partitions separated from the nuclear partitions: the first and second 363 positions of COI were pulled together and the third position had its own partition. 364 Therefore this analysis had five partitions.

365

366 Comparing Prior and Posterior Distributions

367	When performing a Bayesian analysis, comparing prior and posterior parameter
368	distributions can be informative about the amount of information contained by our
369	data compared to the influence of prior information. As exemplified by Brown &
370	Smith (2017), such a comparison can shed light on the discrepancies observed in the
371	fossil record and the divergence times estimated from a time-calibrated molecular
372	clock. It may also help to disentangle the effect of interaction among calibration
373	points. For each calibrated node we can compare the user-designed prior distribution
374	(e.g., uniform distributions in the case of the core analysis), the marginal prior
375	distribution that is the result of the interaction between the user priors and the tree
376	prior, and the posterior distribution that is the distribution after observing the data.
377	For the core analysis, the two different subsets of fossils and the alternative host plant
377 378	For the core analysis, the two different subsets of fossils and the alternative host plant ages analyses were re-run without any data to sample from the marginal prior. In each
378	ages analyses were re-run without any data to sample from the marginal prior. In each
378 379	ages analyses were re-run without any data to sample from the marginal prior. In each case we performed two independent runs of 50 million generations, sampling every
378 379 380	ages analyses were re-run without any data to sample from the marginal prior. In each case we performed two independent runs of 50 million generations, sampling every 50 000 generations. The results were visualized with Tracer. When necessary, we
378 379 380 381	ages analyses were re-run without any data to sample from the marginal prior. In each case we performed two independent runs of 50 million generations, sampling every 50 000 generations. The results were visualized with Tracer. When necessary, we performed an additional run. Using LogCombiner, the runs were combined after
378 379 380 381 382	ages analyses were re-run without any data to sample from the marginal prior. In each case we performed two independent runs of 50 million generations, sampling every 50 000 generations. The results were visualized with Tracer. When necessary, we performed an additional run. Using LogCombiner, the runs were combined after deleting the first 10% as burn-in. The results of the analyses with and without the
378 379 380 381 382 383	ages analyses were re-run without any data to sample from the marginal prior. In each case we performed two independent runs of 50 million generations, sampling every 50 000 generations. The results were visualized with Tracer. When necessary, we performed an additional run. Using LogCombiner, the runs were combined after deleting the first 10% as burn-in. The results of the analyses with and without the molecular dataset were imported into R (R Development Core Team 2008) and for

386 *Comparison with Previous Studies*

For the root of all Papilionoidea and the seven families we compared the estimatesobtained in the core analysis to previous studies that also used fossil information.

389

390 **RESULTS**

391 Core Analysis

- 392 The core analysis performed with BEAST used the full set of fossils and host plant
- 393 constraints from Magallón et al. (2015) on the topology found with RAxML. This
- analysis resulted in a root estimate for all Papilionoidea of 107.6 Ma (Fig.1,
- 395 Supplementary Material S2). The 95% credibility interval of the posterior distribution
- ranged from 88.5 to 129.5 Ma. The lineage leading to Papilionidae diverged first at
- the root of Papilionoidea and the crown age of Papilionidae was inferred to be 68.4
- 398 Ma (95%CI=53.5–84.3). Hedylidae and Hesperiidae diverged from Pieridae–
- 399 Lycaenidae–Riodinidae–Nymphalidae at 106.5 Ma (95%CI=88.0–127.2) and
- 400 diverged from each other at 99.2 Ma (95%CI=80.7–119.2). The crown age of the
- 401 sampled Hedylidae was 32.8 Ma (95%CI=23.4–43.6) and crown age of Hesperiidae
- 402 was 65.2 Ma (95%CI=55.8–78.1). Pieridae diverged from Lycaenidae–Riodinidae–
- 403 Nymphalidae at 101.1 Ma (95%CI=83.0–120.3) and extant lineages started
- 404 diversifying around 76.9 Ma (95%CI=63.1–92.4). Lycaenidae and Riodinidae
- 405 diverged from Nymphalidae at 97.4 Ma (95%CI=80.4–116.5) and diverged from each
- 406 other at 87.8 Ma (95% CI=73.2–106.1). The crown age of Lycaenidae was 71.0 Ma
- 407 (95%CI=57.2–85.2) and crown age of Riodinidae was 73.4 Ma (95%CI=60.3–88.1).
- 408 Finally, the crown age of Nymphalidae was inferred to be 82.0 Ma (95%CI=68.1–
- 409 98.3).

410

411 Alternative Analyses

412	In most cases the seven alternative parameters tested yielded very similar results (Fig.
413	2, Supplementary Material S3-S8). Reducing the number of taxa in order to decrease
414	the fraction of missing data, using higher-level calibration points only, or using a Yule
415	process tree prior (instead of a Birth-Death prior), gave virtually identical results as
416	the core analysis above. Using only lower-level fossil constraints (close to the tips of
417	the phylogeny) resulted in the youngest estimates of all alternative runs, with a crown
418	age of Papilionoidea of 94.5 Ma (mode=83.8, 95%CI=67.8–126.6). Using exponential
419	fossil priors mainly resulted in a narrower credibility interval, while the mode and
420	median age estimates were only 7-8 million years younger than the core analysis
421	mode estimate (Fig. 2, Supplementary Material S6). Adding mitochondrial
422	information also lead to a 7-8 million-year younger estimate for the crown age of
423	Papilionoidea, but the credibility interval remained comparable to the core analysis
424	(Supplementary Material S7). Finally, using a hypothesis of older host plant ages
425	extracted from Foster et al. (2017), we obtained the greatest difference. The upper
426	boundary of the credibility interval largely shifted toward much older ages (95%C
427	I=88.5–167.2) as well as the median (119.5 Ma). The posterior distribution was,
428	however, very skewed, with a mode of 101.0 Ma, and converged to the same age as
429	the core analysis (Fig. 2, Supplementary Material S8).
430	These variations for the root age among different alternative analyses were recovered
431	for the ages of the different subfamilies. For example, all lower-level fossils always
432	led to younger estimates while older ages from Foster et al. (2017) always led to older

433 estimates (Fig. 2).

434 Comparing Prior and Posterior Distributions

435	We compared the posterior distributions to the marginal prior distributions for the
436	different calibrated nodes in the core analysis. We set all fossil and host plant
437	constraints with uniform prior distributions as we considered this as the most
438	conservative approach. However, it is important to note that the marginal prior
439	distributions at these nodes, which result from the interactions between all calibration
440	priors and tree prior, are not uniform (Fig. 3).
441	Across all calibrated node points, many of them showed shifts of posterior
442	distributions from the marginal priors, indicating that the results of the core analysis
443	was not a simple outcome of our set of priors (Fig. 3). Interestingly, the nodes
444	calibrated by Doritites, Dynamine, Thaites, Theope and Voltinia, which are all the
445	fossils placed close to the tips of our phylogeny, tended to shift away from the
446	minimum boundary, toward older ages than the marginal prior distribution.
447	Alternative analyses performed with only these lower-level fossils yielded the
448	youngest tree for butterflies. This suggests that higher-level fossils bring important
449	additional information, leading posterior distributions of lower-level nodes to shift
450	away from the prior distributions in the core analysis.
451	The nodes calibrated with the higher-level fossils <i>Mylothrites</i> , <i>Prolibythea</i> , <i>Neorinella</i>
452	and Vanessa showed posterior distributions largely overlapping with their marginal
453	prior distributions. Many host plant calibrated points showed a shift from the marginal
454	prior distribution (Fig. 3). In all cases, except the node also calibrated with the fossil
455	Lethe the crown age of the butterfly clade inferred was much younger than the age of
156	the corresponding best plant slade

456 the corresponding host plant clade.

457 For the root of Papilionoidea, the marginal prior and posterior distributions largely458 overlapped in the core analysis, therefore not indicating whether our molecular

459	dataset contained significant information about the root age or not. We also compared
460	the posterior and the marginal prior distributions for alternative analyses performed
461	with different subsets of fossil calibrations (Fig. 4). When using only higher-level
462	fossils, the posterior distribution was almost identical to the core analysis, but the
463	marginal prior slightly shifted from the marginal prior of the core analysis toward a
464	younger age. The use of only lower-level fossils had more profound effects. In such a
465	case, prior distributions of the core analysis and the lower-level fossils alternative
466	completely overlapped. The posterior distribution, however, shifted toward younger
467	ages, yielding the most recent estimate for the root age among all analyses
468	(mean=94.5, mode=83.8, 95%CI=67.8-126.5). We also looked at the effect of using
469	relaxed maximum ages (based on Foster et al. 2017). In this case, marginal prior
470	distribution for the root age shifted to a mean of ~148 Ma (Fig. 4) and a credibility
471	interval spanning 100 Ma (95%CI=99.9-205.8). The posterior distribution was very
472	skewed, retaining a wider credibility interval than the core analysis (95%CI=88.5-
473	167.5), but significantly shifted from the prior distribution toward the posterior
474	distribution of the core analysis (median=119.5, mode=101.0).

475 Comparison with Previous Studies

476 For the root of Papilionoidea, our estimate in the core analysis using the mode age of

the distribution was very similar to Wahlberg et al. (2013) and Heikkilä et al. (2012),

478 with a mean age estimate of 104.6 and 110.8 Ma, respectively (107.6 Ma in the core

- analysis, Fig. 5). For the crown age of families our estimates were often consistent
- 480 with most of previous studies. For Papilionidae, our crown age estimate (68.4,
- 481 95%CI=53.5–84.3) was very similar to Wahlberg et al. (2013) and Heikkilä et al.
- 482 (2012), while Condamine et al. (2012) in a study focusing primarily on this family

483	found younger ages of about 15 million years. For Hedylidae, only the study by
484	Heikkilä et al. (2012) had an estimate for the crown age, whose mean age was 45.3
485	Ma, which is older than our result (32.8, 95%CI=23.4–43.6). The age of Hesperiidae
486	(65.2, 95%CI=55.8–78.1) was similar to Wahlberg et al. (2013) and Heikkilä et al.
487	(2012), but much younger than Sahoo et al. (2017) with an estimate of 82 Ma.
488	Pieridae is the family that showed highest variation in age estimates among different
489	studies. Our estimate (76.9 Ma, 95%CI=63.1–92.4 Ma) falls in between the youngest
490	estimate from Wahlberg et al. (2013), in which the credibility interval goes down to
491	39 Ma, and the oldest estimate from Braby et al. (2006), in which the oldest boundary
492	of the credibility interval was 111.6 Ma. For Lycaenidae, which contain no fossils
493	calibrations, the results between our core analysis (73.4, 95%CI=60.3-88.1),
494	Wahlberg et al. (2013) and Heikkilä et al. (2012) were virtually identical. For the
495	crown age of Riodinidae, our core analysis (70.9, 95%CI=57.2-85.2) gave identical
496	results to Heikkilä et al. (2012). Espeland et al. (2015), in a study focusing
497	specifically on this family found about 10 million-year older ages. Wahlberg et al.
498	(2013), however, found a much younger estimate, about 20 Ma younger. For
499	Nymphalidae, we have the greatest number of time calibrations, but they all tend to
500	find very similar results. Our estimation (82.0, 95%CI=68.1-98.3) was very close to
501	Wahlberg et al. (2013) and Heikkilä et al. (2012). This estimation was about 12
502	million years younger than the study by Wahlberg et al. (2009) focusing on
503	Nymphalidae.

504 **DISCUSSION**

We generated a genus-level phylogeny of the superfamily Papilionoidea, including994 taxa. Taking advantage of a recent revision of the lepidopteran fossil record we

507 established a new set of 12 fossil calibration points, which were combined to 10

secondary calibrations from host plant ages.

509 Fossils and Minimum Ages

510 In the core analysis we adopted a very conservative approach. This choice involves 511 taking into account the uncertainty surrounding the information available for each 512 calibration point, although at the expense of the amount of useful information 513 available. For fossil constraints, this had two consequences. First, we calibrated the 514 stem of the focal clade a fossil was assigned to, by calibrating the divergence from its 515 sister group instead of the first divergence recorded in the phylogeny within the focal 516 clade itself. Calibrating the crown age of the focal clade – meaning that we assume 517 that the fossil is "nested" within the clade – may lead to an overestimation of the 518 crown age. Such would be the case if lineages are undersampled at the root, or if 519 extinction occurred, or if the fossil belongs to a lineage that actually diverges 520 somewhere along the stem. Calibrating a higher node with the age of the fossil, which 521 involves loss of some information, is considered to be the best way to avoid these 522 problems. Second, we used uniform prior distributions bounded by the age of the 523 fossil and the age of angiosperms. We considered that fossils provide only a minimum 524 age for a node, a condition that is especially exacerbated by the exceptionally poor 525 fossil record of Lepidoptera in general (Labandeira and Sepkoski, 1993) and 526 Papilionoidea in particular (Sohn et al. 2015) when compared to the four other major 527 hyperdiverse insect lineages (Coleoptera, Hymenoptera, Diptera and Hemiptera). 528 Prior expectation on the age of the node cannot be modeled more accurately without 529 additional information. However, the marginal priors resulting from the interactions 530 among the different priors actually strongly differ from this assumption.

532 Higher- versus Lower-Level Calibrations

533	Generally, favoring multiple calibrations placed at various positions in a tree instead
534	of a single or few calibrations, seem to produce more reliable estimates of molecular
535	clocks (Conroy & Van Tuinen 2003, Smith & Peterson 2002, Soltis et al. 2002,
536	Duchêne et al. 2014). Calibrations distributed across a tree may allow a better
537	estimation of substitution rates and their pattern of variation among lineages
538	(Duchêne et al. 2014), and improve age estimates in cases of taxon undersampling
539	(Linder et al. 2005).
540	Calibrations placed at deep levels in the tree are usually favored (Sauquet 2012, Hug
541	& Roger 2007) over calibrations at lower levels for better capturing the overall
542	genetic variation (Duchêne et al. 2014). Yet, deep calibrations also tend to
543	underestimate the mean substitution rate and lead to an overestimation of shallow
544	nodes, referred to as "tree extension" by Phillips (2009). For the butterflies, we
545	investigated the consequences of using different subsets of fossil calibrations
546	according to their positions in the tree (higher versus lower-level calibrations),
547	compared to the full set of fossil constraints. With a subset of fossils placed only at
548	higher levels in the phylogeny we obtained results similar to the full set of fossils in
549	the core analysis, either at the deep nodes or shallow nodes, indicating no tree
550	extension effect. This effect may also indicate that the lower level calibration points
551	that are close to the tips are uninformative, and when included in the core analysis, do
552	not affect the timescale but clearly affected the priors (see below).
553	Alternatively, lower-level calibrations can lead to an overestimation of the mean

substitution rate across the tree, thereby underestimating the timescale (Phillips 2009).

555	Interestingly, when only a subset of fossils were used and placed close to the tips, it
556	led to the youngest estimates, including the credibility intervals. This potentially
557	indicates an effect of mean substitution rate overestimation. Also, we noticed in the
558	core analysis that the nodes calibrated by Protocoeliades and Vanessa (two deep node
559	constraints) showed posterior distributions abutting against the minimum boundaries
560	defined by the age of the fossils, therefore preventing the tree (or at least these nodes)
561	to be younger.

563 Host Plants and Maximum Ages

564 For calibration points constrained by the age of the host plant group, we considered 565 that only the crown of the focal clade could be assigned confidently to the host plant 566 group, as the stem or part of the stem could be older than the host plant (the host plant 567 shift would be happening somewhere along the stem). Support arises from molecular 568 biological and paleobiological evidence that the establishment of specialized insect-569 herbivore associations can considerably postdate the origins of their hosts, as in a 570 Bayesian analysis of 100 species of leaf-mining *Phyllonorycter* moths (Lepidoptera: 571 Gracillariidae) and their dicot angiosperm hosts (Lopez-Vaamonde et al. 2006). 572 Relying on host plant ages for calibrating a butterfly tree is questionable while the 573 timing of the divergence of angiosperms is still highly controversial (e.g. Magallón et 574 al. 2015, Foster et al. 2017). As a result, first we calibrated our tree using the oldest 575 boundary of 95% CI of the stem age of a host plant clade. This allowed us to take into 576 account the uncertainty surrounding the timing of the first appearance of the host 577 plant but consequently, it also relaxed the prior hypothesis for the calibrations. 578 Secondly, we compared two alternative timescales for the angiosperms: a

579	paleontological estimate, which infers an Early Cretaceous origin of angiosperms
580	(Magallón et al. 2015), and a molecular clock estimate that we extracted from Foster
581	et al. (2017), which infers a stem age for angiosperms during the Early Triassic about
582	100 million years older. These two alternative scenarios affected the size of the
583	credibility intervals and the shape of the posterior distributions. For the crown of
584	Papilionoidea, the upper boundary of the 95%CI was ~37 million years older when
585	using the molecular clock estimate. However, the shape of the distribution was very
586	asymmetrical, with a mode of the distribution very close to the core analysis (101.0
587	Ma), suggesting that the estimation for the age of the root still concentrated around
588	the same ages. Using the hypothesis of an Early Triassic origin of angiosperms
589	implied very permissive priors toward old ages, which are most likely responsible for
590	the very wide credibility intervals and asymmetrical posterior distributions recovered
591	in the alternative analysis of using ages from Foster et al. (2017). Therefore, it is
592	tempting to use the time-scale inferred using Magallón et al. (2015)'s ages of
593	angiosperms, as it greatly narrows down the uncertainty surrounding butterfly ages,
594	and aligns more realistically with the fossil angiosperm record. However, as long as
595	there is no consensus on the timing of angiosperm diversification there is no reason to
596	favor one or the other.

598 *Priors and Posterior Distributions*

We compared the marginal priors to the posterior distributions for different analyses for the root of Papilionoidea and for the different calibration points in the core analysis. We found several calibration points showing a substantial shift of posterior distribution. This indicates that our age estimates are not entirely driven by the set of

603	constraints, but instead that the molecular dataset brings additional information about
604	the age of the calibrated nodes. An interesting pattern we found in the core analysis is
605	the consistent trend of posterior distributions of the lower-level calibrated nodes to
606	shift toward older ages than the priors. Meanwhile, some higher-level node
607	calibrations shifted toward younger ages than the prior but most of them largely
608	overlapped with their prior distribution. Consequently, posterior estimates tend to
609	contract the middle part of tree compared to the prior estimates.
610	There are at least three reasons for the anomalous gap between the earliest fossil
611	papilionoid occurring at 55.6 Ma and its corresponding Bayesian median age of 110
612	Ma, that represents a doubling of the lineage duration. First, it long has been known
613	that the lepidopteran fossil record is extremely poor when compared to the far more
614	densely and abundantly occurring fossils of the four other hyperdiverse, major insect
615	lineages of Hemiptera, Coleoptera, Diptera and Hymenoptera (Labandeira and
616	Sepkoski, 1993). Second, particularly large-bodied apoditrysians such as
617	Papilionoidea, have even a poorer fossil record than other Lepidoptera in general,
618	particularly as they bear a fragile body habitus not amenable to preservation.
619	Additionally, as external feeders papilionoids lack a distinctive, identifiable trace
620	fossil record such as leaf mines, galls and cases (Sohn et al. 2015). Third, there are
621	very few productive terrestrial compression or amber deposits spanning the Upper
622	Cretaceous, from 100 Ma to the Cretaceous-Paleogene boundary of 66.0 Ma, and the
623	part of the Paleogene Period from 66.0 Ma to the earliest papilionoid fossil of 55.6
624	Ma (Labandeira, 2014; Sohn et al., 2015). Some of these deposits have recorded very
625	rare small moth fossils, but to date no papilionoid, or for that matter, other large
626	lepidopteran taxa such as saturniids or pyraloids have been found.

627	The root of the tree was only calibrated with the oldest fossil in our dataset, a 55.6
628	million-year-old papilionoid, and the crown age of the angiosperms. However, the
629	prior distribution for the root in the core analysis clearly excluded an origin of
630	butterflies close to 55.6 Ma, but rather a distribution centered on a median of 110 and
631	ranging between 86.4 and 136.2 Ma. The posterior distribution for the root in the core
632	analysis largely overlapped with the prior. However, when we used alternative ages
633	for the angiosperms (older ages), the marginal prior for the root shifted to
634	substantially older ages. Nevertheless, the posterior distribution showed a significant
635	shift toward younger ages, albeit highly skewed, toward ages similar to the core
636	analysis. This suggests that our estimate of the root age in the core analysis is not
637	simply driven by our set of priors, even if we do not actually observe a shift between
638	marginal prior and posterior distributions.
639	We observed some differences in prior and posterior distributions at the root when
640	considering only subsets of fossils. When using only the subset of higher-level fossils,
641	the marginal prior for the root showed very little difference from the core analysis

642 prior and the posterior distributions completely overlapped. When using the subset of

643 lower-level fossils the marginal prior remained similar to the core analysis but the

644 posterior distribution showed a substantial shift toward younger ages, yielding the

645 youngest estimation of the age of Papilionoidea among all our analyses. As such, it

646 seems that the choice of fossils did not change the prior estimation of the root, but the

647 posterior distribution was largely influenced by higher-level fossils. As we suggested

648 earlier, lower-level fossils only may be overestimating the mean substitution rate

across the tree, and therefore underestimating the time scale, while the

650 implementation of higher-level fossils seems to be correcting for this.

651 Timescale of Butterflies Revisited

652	We propose a new estimate for the timing of diversification of butterflies, based on an
653	unprecedented set of fossil and host-plant calibrations. We estimated the origin of
654	butterflies between 89.5 and 129.5 Ma, the median of this posterior distribution being
655	107.6 Ma, which corresponds to the Early Cretaceous–Late Cretaceous boundary
656	interval. The result of our core analysis for the root is very close to previous estimates
657	by Wahlberg et al. (2013) and Heikkilä et al. (2012). The comparisons of alternative
658	analyses, the prior and posterior distributions showed that this result is robust to
659	almost all the choices made throughout the core analysis and that our molecular
660	dataset contains significant information in addition to the time constraints. This
661	estimation means that there is a 45 million-year-long gap between the oldest known
662	butterfly fossil and the molecular clock estimate. Accordingly, as Brown & Smith
663	(2017) stated for the case of angiosperms, we do not know whether a larger molecular
664	dataset - implying potentially more information for estimating the molecular clock-
665	would allow the root to become younger. Alternatively, the fossil record for
666	butterflies is so sparse that an intervening fossil gap is very likely. Besides, the fossil
667	Protocoeliades kristenseni, which is 55.6 Ma can be assigned confidently to the
668	crown of the family Hesperiidae and the stem of Coeliadinae well within the
669	Papilionoidea. For angiosperms, a very rich fossil record is available compared to
670	butterflies (e.g., Magallón et al. (2015), which used 137 fossils to calibrate a
671	phylogeny of angiosperms), rendering the absence of angiosperms, either as pollen or
672	macrofossils, that are older than 136 Ma much more puzzling.

673

674 ACKNOWLEDGMENTS

- 675 This is contribution 366 of the Evolution of Terrestrial Ecosystems consortium at the
- 676 National Museum of Natural History, in Washington D.C. NW acknowledges funding
- 677 form the Swedish Research Council (Grant No. 2015-04441) and from the
- 678 Department of Biology, Lund University. AVLF thanks CNPq (grant 303834/2015-3),
- 679 National Science Foundation (DEB-1256742) and FAPESP (grant 2011/50225-3).
- 680 This publication is part of the RedeLep (Rede Nacional de Pesquisa e Conservação de
- 681 Lepidópteros) SISBIOTABrasil/CNPq (563332/2010-7). MH gratefully
- acknowledges funding from a Peter Buck Postdoctoral Stipend, Smithsonian
- 683 Institution National Museum of Natural History.

685 SUPPORTING INFORMATION

- 686 S1. List of taxa and Genbank accession codes.
- 687 S2. Tree obtained from the core analysis. Node ages are the median of node age
- 688 posterior distributions.
- 689 S3. Tree obtained from the reduced dataset. Node ages are the median of node age
- 690 posterior distributions.
- 691 S4. Tree obtained when using only higher-level fossil calibrations. Node ages are the
- 692 median of node age posterior distributions.
- 693 S5. Tree obtained when using only lower-level fossil calibrations. Node ages are the
- 694 median of node age posterior distributions.
- 695 S6. Tree obtained when using exponential fossil calibration priors. Node ages are the
- 696 median of node age posterior distributions.

- 697 S7. Tree obtained when adding a mitochondrial gene fragment. Node ages are the
- 698 median of node age posterior distributions.
- 699 S8. Tree obtained when using the host-plant ages obtained from Foster et al. (2017).
- In S8a node ages are the median of node age posterior distributions, while in S8b the
- node ages are the mode the mode of the kernel density estimate of the posterior
- 702 distribution.

704 LITERATURE CITED

- 705 Braby, M.F., Vila, R., Pierce, N.E. 2006. Molecular phylogeny and systematics of the
- 706 Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zool. J.
- 707 Linn. Soc. 147:239–275.
- 708 Brenner, G.J. 1996. Evidence for the earliest stage of angiosperm pollen evolution: a
- paleoequatorial section from Israel. In: Taylor, D.W., Hickey, L.J., editors, Flowering
- plant origin, evolution & phylogeny. Boston, MA: Springer. P. 91–115.
- 711 Brown, F.M. 1976. *†Oligodonta florissantensis*, gen. n., sp. nov. (Lepidoptera:
- 712 Pieridae). Bull. Allyn Mus., 37:1–4.
- 713 Brown, J.W., and Smith, S.A. 2017. The past sure is tense: On interpreting
- phylogenetic divergence time estimates. Syst. Biol., 66, doi: 10.1093/sysbio/syx074
- 715 Chazot, N., Wilmott, K.R., Freitas, A.V.L., de Silva, D.L., Pellens, R., Elias, M. 2016.
- 716 Patterns of species, phylogenetic and mimicry diversity of clearwing butterflies in the
- 717 Neotropics. In: Pellens, R., Grandcolas, P., editors, Biodiversity conservation and
- 718 phylogenetic systematics. Topics in Biodiversity and Conservation, 14:333–353

- 719 Cockerell, T.D.A. 1907. A fossil butterfly of the genus *Chlorippe*. Canad. Entomol.,
- 720 39:361–363,
- 721 Condamine, F.L., Toussaint, E.F.A., Clamens, A.L., Genson, G., Sperling, F.A.,
- 722 Kergoat, G.J. 2015. Deciphering the evolution of birdwing butterflies 150 years after
- 723 Alfred Russel Wallace. Sci. Rept., 5:11860.
- 724 Conroy, C.J., and van Tuinen, M. 2003. Extracting time from phylogenies: positive
- interplay between fossil and genetic data. J. Mammal. 84:444–455.
- de Jong, R. 2016. Reconstructing a 55-million-year-old butterfly (Lepidoptera:
- 727 Hesperiidae). Eur. J. Entomol. 113:423–428.
- de Jong, R. 2017. Fossil butterflies, calibration points and the molecular clock
- 729 (Lepidoptera: Papilionoidea). Zootaxa 4270:1–63.
- dos Reis, M. and Yang, Z., 2013. The unbearable uncertainity of Bayesian divergence
- time estimation. J. Syst. Evol. 51:30–43.
- 732 Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A. 2012. Bayesian phylogenetics
- 733 with BEAUTi and BEAST 1.7. Mol. Biol. Evol. 29:1969–1973.
- 734 Duchêne, S., Lanfear, Ho, S.Y.W., 2014. The impact of calibration and clock-model
- choice on molecular estimates of divergence times. Mol. Phylogen. Evol., 78:277–289.
- 736 Durden, C.J., and Rose, H. 1978. Butterflies from the Middle Eocene: the earliest
- 737 occurrence of fossil Papilionoidea (Lepidoptera). Pearce-Sellards Ser. 29:1–25,

- 738 Foster, C.S.P., Sauquet H., van der Merwe, M., McPherson, H., Rosette, M., Ho,
- 739 S.Y.W. 2017. Evaluating the impact of genomic data and priors on Bayesian
- estimates of the angiosperm evolutionary timescale. Syst. Biol., 66:338–351.
- 741 Garzón-Orduña, I.J., Silva-Brandão, K.L., Wilmott, K.R., Freitas, A.V.L., Brower,
- A.V.Z. 2015. Incompatible ages for clearwing butterflies based on alternative
- secondary calibrations. Syst. Biol., 64:752–767.
- Hall, J.P.W., Robins, R.K., Harvey, D.J. 2004. Extinction and biogeography in the
- 745 Caribbean: new evidence from a fossil riodinid butterfly in Dominican amber. Proc. R.
- 746 Soc. Lond. B, 271:797–801.
- 747 Heer, O. 1849. Die Insektenfauna der Tertiärgebilde von Oeningen und von Radoboj
- in Croatien. Vol. 2. Wilhelm Engelsmann, Leipzig, 264 pp.
- Heikkilä, M., Kaila, L., Mutanen, M., Peña, C., Wahlberg, N. 2012, Cretaceous origin
- and repeated Tertiary diversification of the redefined butterflies. Proc. R. Soc. Lond.
- 751 B, 279:1093–1099.
- Ho, S.Y., and Phillips, M.J. 2009. Accounting for calibration uncertainty in
- phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58: 367–380.
- Hug, L.A., and Roger, A.J. 2007. The impact of fossils and taxon sampling on ancient
- molecular dating analyses. Mol. Biol. Evol. 24:1889–1897.
- 756 International Commission on Stratigraphy. 2012. International Chronostratigraphic
- 757 Chart: http://www.stratigraphy.org/ICSchart/ChronostratChart2012.pdf

- 758 Kozak, K.M., Wahlberg, N., Neild, A.F.E., Dasmahapatra, K.J.K., Jiggins, C.D. 2015.
- 759 Multilocus species trees show the recent adaptive radiation of the mimetic *Heliconius*
- 760 butterflies. Syst. Biol., 64:505–524,
- 761 Labandeira, C.C. 2014. Amber. In: Laflamme, M., Schiffbauer, J.D., Darroch, S.A.F.,
- record: Preservational pathways to
- respective to the second secon
- Labandeira, C.C. and Sepkoski, J.J., Jr. 1993. Insect diversity in the fossil record.
- 765 Science, 261:310–315.
- 766 Lanfear, R., Calcott, B., Ho, S.Y.W., Guindon, S. 2012. PartitionFinder: combined
- 767 selection of partitioning schemes and substitution models for phylogenetic analysis.
- 768 Mol. Biol. Evol. 29:1695–1701.
- 769 Linder, H.P., Hardy, C.R., Rutschmann, F. 2005. Taxon sampling effects in molecular
- clock dating: An example from the African Restionaceae. Mol. Phylogen. Evol.
- 771 35:569–582.
- 772 Lopez-Vaamonde, C., Wikström, N., Labandeira, C., Godfray, H.C.J., Goodman, S.J.,
- 773 Cook, J.M. 2006. Fossil-calibrated molecular phylogenies reveal that leaf-mining
- moths radiated millions of years after their host plants. J. Evol. Biol., 19:1314–1326,
- 775 Magallón, S. Gómez-Acevedo, S., Sánchez-Reyes, L.L., Hernández-Hernández, T.
- 2015. A metacalibrated time-tree documents the early rise of flowering plant
- phylogenetic diversity. New Phytol., 207:437–453.

- 778 Martins-Neto, R.G., Kucera-Santos, J.C., Vieira, F.R. de M., Fragoso, L.M. de C.
- 1993. Nova espécie de borboleta (Lepidoptera: Nymphalidae: Satyrinae) da Formação
- 780 Tremembé, Oligoceno do Estado de São Paulo. Acta Geol. Leopold., 37:5–16.
- 781 Matos-Maravi, P.F., Peña, c., Wilmott, K.R., Freitas, A.V.L., Whalberg, N. 2013.
- 782 Systematics and evolutionary history of butterflies in the "Taygetis clade"
- 783 (Nymphalidae: Satyrinae: Euptychiina): towards a better understanding of
- 784 Neotropical biogeography. Mol. Phylogenet. Evol. 66:54–68.
- 785 Miller, J.Y. and Brown, F.M. 1989. A new Oligocene fossil butterfly, Vanessa
- 786 *†amerindica* (Lepidoptera: Nymphalidae), from the Florissant Formation, Colorado.
- 787 Bull. Allyn Mus., 126:1–9.
- 788 Nel, A. and Descimon, H. 1984. Une nouvelle espèce de Lépidoptère fossile du
- 789 Stampien de Cereste (Lepidoptera Satyridae). Géol. Méditerran. 11:287–293.
- 790 Nel, A., Nel, J, Balme, C. 1993. Un nouveau Lépidoptère Satiyrinae fossile de
- 1'Oligocene du Sud-Est de la France (Insecta, Lepidoptera, Nymphalidae). Linn. Belg.,
 14:20–36.
- 793 Paradis, E., Claude, J., & Strimmer, K. 2004. APE: analyses of phylogenetics and
- evolution in R language. *Bioinformatics*, 20(2), 289-290.
- Parham, J.F., Donoghue, P., Bell, C.J., Calway, T.D., Head, J.J., Holroyd, P.A., Inoue,
- J.G., Irmis, R.B., Joyce, W.G., Ksepka, D.T., Patané, J.S.L., Smith, N.D., Tarver, J.E.,
- van Tuinen, M., Yang, Z., Angielczyk, K.D., Greenwood, J.M., Hipsley, C.A., Jacobs,
- L., Mackovicky, P.J., Miller, J., Smith, K.T., Theodor, J.M., Warnock, R.C.M.,
- 799 Benton, M.J. 2012. Best practices for justifying fossil calibrations. Syst. Biol.,
- 800 <u>61:346–359</u>.

- 801 Peña, C., and Malm, T. 2012. VoSeq: A voucher and DNA sequence web application.
- 802 PLoS ONE, 7(6):e39071.
- 803 Peñalver, E., and Grimaldi, D.A. 2006. New data on Miiocene butterflies in
- 804 Dominican Amber (Lepidoptera: Riodinidae and Nymphalidae) with the description
- of a new nymphalid. Am. Mus. Novit. 3591:1–17.
- 806 Phillips, M.J. 2009. Branch-length estimation bias misleads molecular dating for a
- 807 vertebrate mitochondrial phylogeny. Gene, 441:132–140.
- 808 R Development Core Team (2008). R: A language and environment for statistical
- 809 computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
- 810 900051-07-0, URL http://www.R-project.org.
- 811 Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. 2014. Tracer v1.6,
- 812 Available from http://tree.bio.ed.ac.uk/software/tracer/.
- 813 Rannala, B. and Yang, Z. 2007. Inferring speciation times under an episodic
- 814 molecular clock. Syst. Biol., 56:453–466.
- 815 Rebel, H. 1898. Fossile Lepidopteren aus der Miocän-Formation von Gabbro.
- 816 Sitzungsber. Akad. Wiss. Wien, 107:731–745.
- 817 Sahoo, R. K., Warren, A. D., Collins, S. C., & Kodandaramaiah, U. 2017. Hostplant
- 818 change and paleoclimatic events explain diversification shifts in skipper butterflies
- 819 (Family: Hesperiidae). BMC Evolutionary Biology, 17: 174. Doi: 10.1186/s12862-
- 820 017-1016-x
- 821 Sahoo, R.K., Warren, A.D., Wahlberg, N., Brower, A.V.Z., Lukhtanov, V.A.,
- 822 Kodandaramaiah, U. 2016. Ten genes and two topologies: an exploration of higher

- 823 relationships in skipper butterflies (Hesperiidae). Peer J, 4:e2653, doi:
- 824 10.7717/peerj.2653
- 825 Sauquet, H., Ho, S.Y.W., Gandolfo, M.A., Jordan, G.I., Wilf, P., Cantrill, D.J., Bayly,
- 826 M.J., Bromham, L., Brown, G.K., Carpenter, R.J., Lee, D.M., Murphy, D.J.,
- 827 Sniderman, J.M.K., Udovice, F. 2012. Testing the impact of calibration on molecular
- 828 divergence times using a fossil-rich group: The case of *Nothofagus* (Fagales). Syst.
- Biol., 61:289–313.
- 830 Scudder, S.H. 1875. Fossil butterflies. Mem. Am. Assoc. Adv. Sci. 1:1–99.
- 831 Scudder, S.H. 1889. The fossil butterflies of Florissant. United States Geological
- 832 Survey, 8th Annual Report, pp. 439–472.
- 833 Scudder, S.H. 1892. Some insects of special interest from Florissant, Colorado, and
- other points in the Tertiaries of Colorado and Utah. Bull. U.S. Geol. Surv., 93:1–35.
- 835 Smith, A.B., and Peterson, K.J. 2002. Dating the time of origin of major clades:
- 836 Molecular clocks and the fossil record. Annu. Rev. Earth Planet. Sci. 30:65–88.
- 837 Sohn, J.C., Labandeira, C., Davis, D., Mitter, C. 2012. An annotated catalog of fossil
- and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 3286:1–132.
- 839 Sohn, J.C., Labandeira, C.C., Davis, D.R. 2015. The fossil record and taphonomy of
- 840 butterflies and moths (Insecta, Lepidoptera) and implications for evolutionary
- diversity and divergence-time estimates. BMC Evol. Biol. 15:12.
- 842 Soltis, D.E., Soltis, P.S., Zanis, M.J. 2002. Phylogeny of seed plants based on
- evidence from eight genes. Am. J. Bot. 89:1670–1681.

- 844 Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic
- analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690.
- 846 Toussaint, E.F.A. and Balke, M. 2016. Historical biogeography of *Polyura* butterflies
- 847 in the oriental Palaeotropics: trans-archipelagic routes and South Pacific island
- 848 hopping. J. Biogeogr. 43:1560–1572.
- 849 Wahlberg, N., Leneveu, J., Kodandaramaiah, U., Peña, C., Nylin, S., Freitas, A.V.L.,
- 850 Brower, A.V.Z. 2009. Nymphalid butterflies diversify following near demise at the
- 851 Cretaceous/Tertiary boundary. Proc. R. Soc. Lond. B, 276:4295–4302.
- 852 Wahlberg, N., Wheat, C.W., Peña, C. 2013. Timing and patterns in the taxonomic
- diversification of Lepidoptera (butterflies and moths). PLoS ONE, 8(11):e80875.
- 854 Walker, J.D., Geissman, J.W., Bowring, S.A., Babcock, L.E. 2013. The Geological
- 855 Society of America geologic time scale. GSA Bull., 125:259–272.
- 856 Warnock, R.C.M., Yang, Z., Donoghue, P.C.J. 2012. Exploring uncertainty in the
- 857 calibration of the molecular clock. Biol. Lett., 9:156–159.
- 858 Warnock, R.C.M., Parham, J.F., Joyce, W.G., Lyson, T.R., Donoghue, P.C.J. 2015.
- 859 Calibration uncertainty in molecular dating analyses: there is no substitute for the
- prior evaluation of time priors. Proc. R. Soc. Lond. B, 282:20141013.
- 861 Yang, Z, and Rannala, B. 2006. Bayesian estimation of species divergence times
- under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol.
- 863 Evol., 23:212–226.

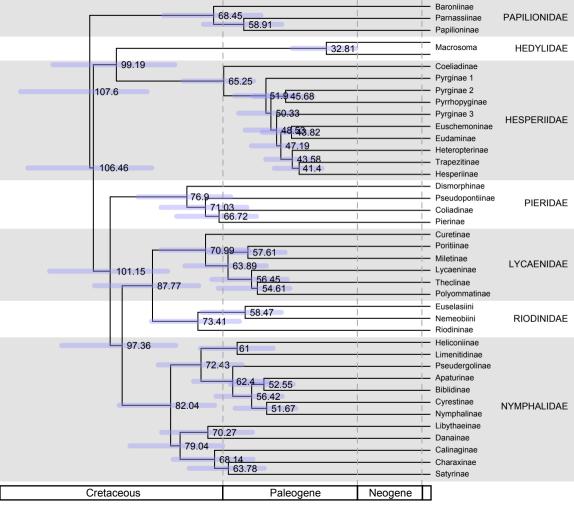
864

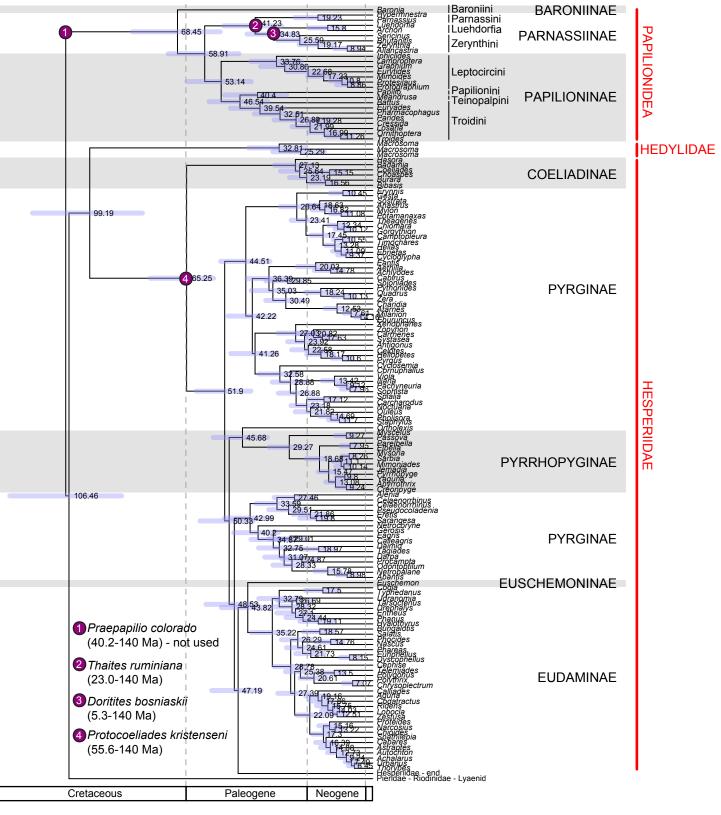
865	TABLE 1. (a) Fossil calibration points used to calibrate the tree as a minimum age for
866	the Clade calibrated. Unless stated otherwise, the fossil calibrations were placed at
867	the stem of the clade calibrated. Lower and upper values indicate the prior truncation
868	for both the uniform and exponential priors. The 140 Ma year upper truncation
869	corresponds to the age of Angiosperms from Magallón et al. 2015. A different upper
870	truncation value results from a fossil prior interacting with a host plant prior placed at
871	the same node or a lower node. Mean and offset are parameter values for the
872	exponential prior distribution. (b) Host-plant clades used to calibrate the tree as a
873	maximum age for the Calibrated node. Host plant calibrations were placed at the
874	crown of the clade calibrated. Ages from both Magallón et al. (2015) and Foster et al.
875	(2017) are indicated.

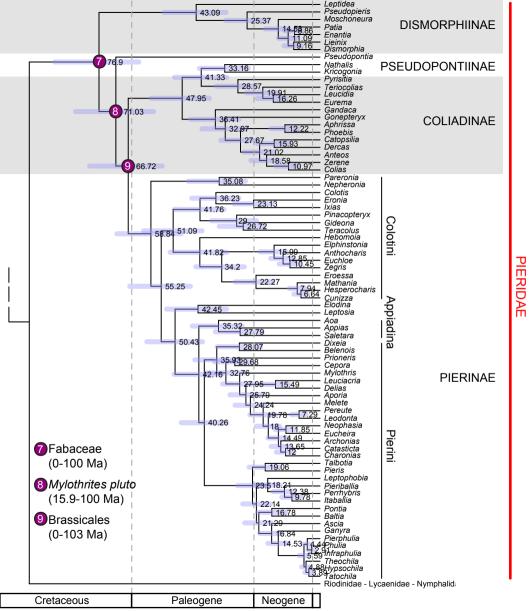
bioRxiv preprint doi: https://doi.org/10.1101/259184; this version posted February 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

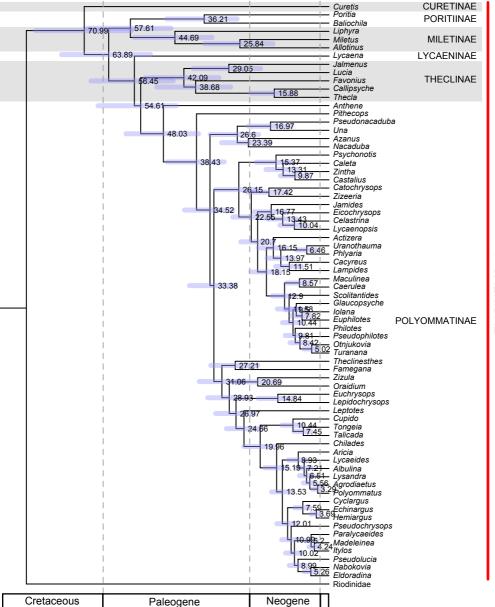
876 a)

Fossils	Clade calibrated	lower	upper	mean	offset
Doritites bosniaskii Rebel, 1898	Papilionidae: Parnassiinae: Luehdorfiini	5.3	140	25	5.3
Dynamine alexae Peñalver & Grimaldi, 2006	Nymphalidae: Biblidinae: <i>Dynamine</i>	15.9	89	20	15.9
Lethe corbieri Nel, Nel & Balme, 1993	Nymphalidae: Satyrinae: Satyrini	28.3	65	25	28.3
<i>Mylothrites pluto</i> Heer, 1849	Pieridae: Coliadinae+Pierinae	15.9	100	50	15.9
<i>Neorinella garciae</i> Martins-Neto et al., 1993	Crown of Amathusiini	23.0	65	20	23.0
Pamphilites abdita Scudder, 1875	Hesperiidae: Hesperiinae	23.0	140	30	23.0
Prolibythea vagabunda Scudder, 1889	Nymphalidae: Libytheinae	33.8	140	40.0	33.8
Protocoeliades kristenseni de Jong, 2016	Hesperiidae: Coeliadinae	55.6	140	35	55.6
<i>Thaites ruminiana</i> Scudder, 1875	Papilionidae: Parnassiinae: Parnassiini	23.0	140	25	23.0
<i>Theope</i> sp	Riodinidae: Riodininae: Nymphidiini: <i>Theope</i>	15.9	140	25	15.9
<i>Voltinia dramba</i> Hall, Robinson & Harvey, 2004	Riodinidae: Riodininae: Mesosemiini: Voltinea	15.9	140	30	15.9
<i>Vanessa amerindica</i> Miller & Brown, 1989	Nymphalidae: Nymphalinae: Nymphalini	33.8	140	30	33.8
Doxocopa wilmattae Cockerell, 1907	Nymphalidae: Nymphalinae+Biblidinae+ Limenitidinae+Apaturinae		Not use	d	
Praepapilio colorado Durden & Rose, 1978	Papilionidae		Not use	d	

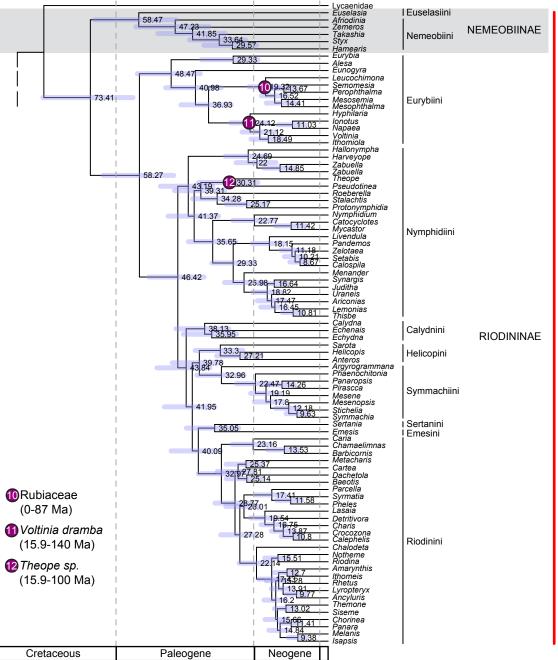


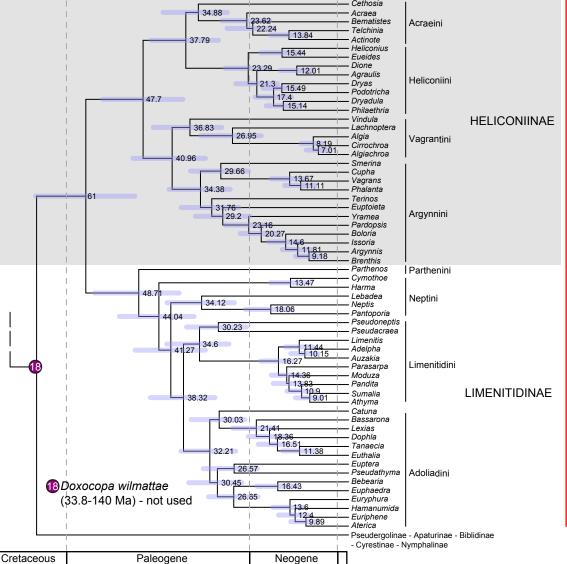


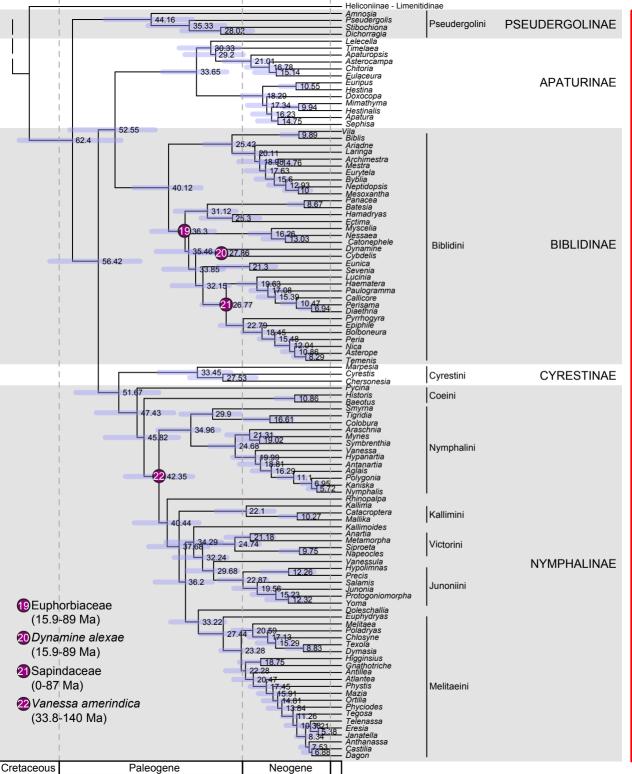

879 b)

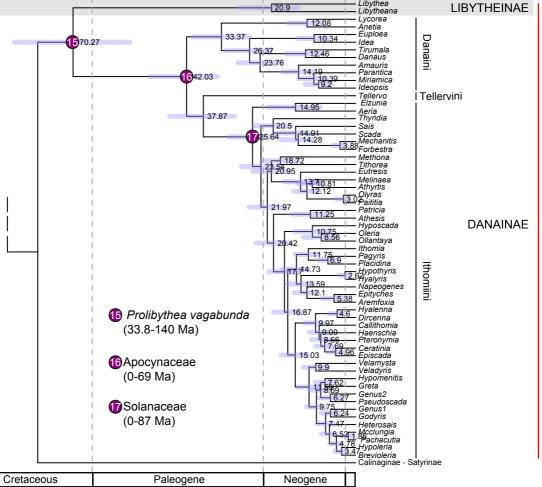

Host plant clade	Clade calibrated	Magallón et al. 2015	Foster et al. 2017
Angiospermae	root	140	252
Poaceae	Hesperiidae: Hesperiinae	65	112
Poaceae	Nymphalidae: Satyrinae	65	112
Fabaceae	Pieridae	100	123
Brassicaeae	Pieridae: Pierinae	103	97
	Riodinidae: Leucochimona+Mesophtalma+		
Rubiaceae	Mesosemia+Perophthalma	87	85
	+Semomesia		
Apocynaceae	Nymphalidae: Danainae	69	85
Solanaceae	Nymphalidae: Ithomiini	87	68
Euphorbiaceae	Nymphalidae: Biblidinae	89	104
Comindoacea	Nymphalidae: Biblidinae: Epiphilini+	87	91
Sapindaceae	Callicorini	07	91

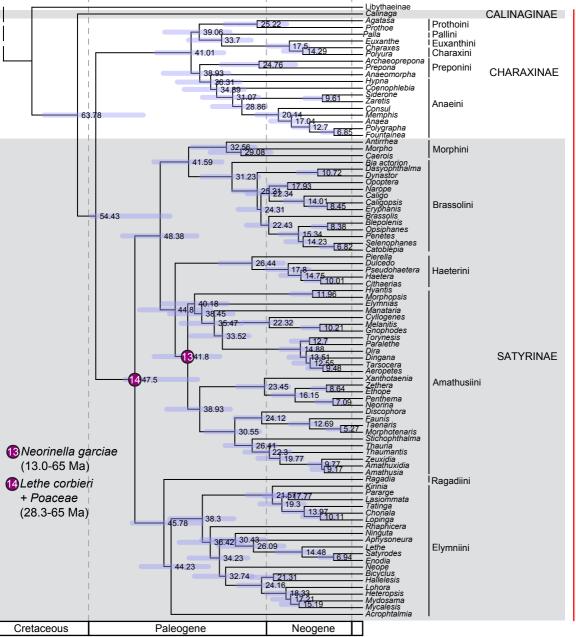
883	FIGURE 1. Time-calibrated tree obtained from the core analysis. a) The relationships
884	and age estimates among the subfamilies of Papilionoidea. b) The relationships and
885	age estimates among the genera across the different families. Age estimates are
886	indicated at the nodes (Ma). Node bars represent the 95% credibility intervals.
887	
888	FIGURE 2. Comparison of node age estimates for the root of Papilionoidea and the
889	seven families between the core analysis and the seven alternative analyses. Mode,
890	median and 95% credibility interval are presented.
891	
892	FIGURE 3. Marginal prior (grey) and posterior distributions (orange) for the nodes
893	calibrated in the core analysis. Blue dashed lines represent minimum boundaries;
894	green dashed lines represent maximum boundaries.
895	
896	FIGURE 4. Marginal prior and posterior distributions for the root age in the core
897	analysis using either a) alternative host-plant ages or b) alternative subsets of fossil
898	calibrations.
899	
900	FIGURE 5. Comparison of node age estimates for the root of Papilionoidea and the
901	seven families between this study (core analysis) and estimates from previous studies.
902	Mode and 95%CI for the core analysis are presented. For the other studies the values
903	reported in the original study are used.

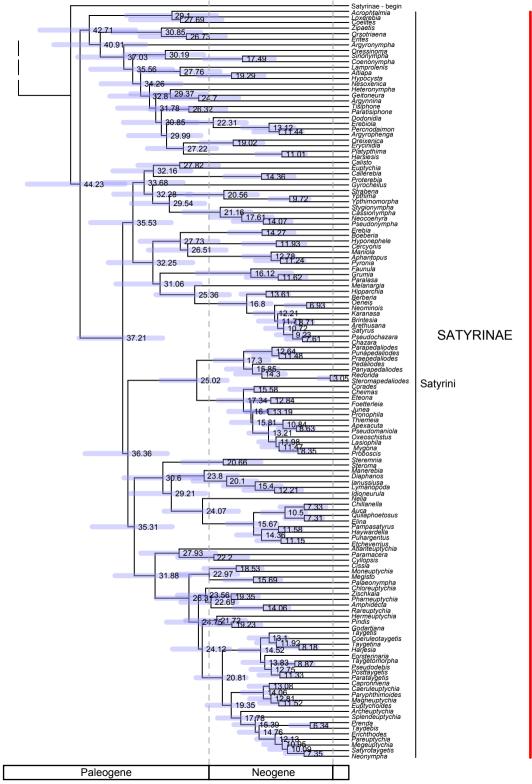


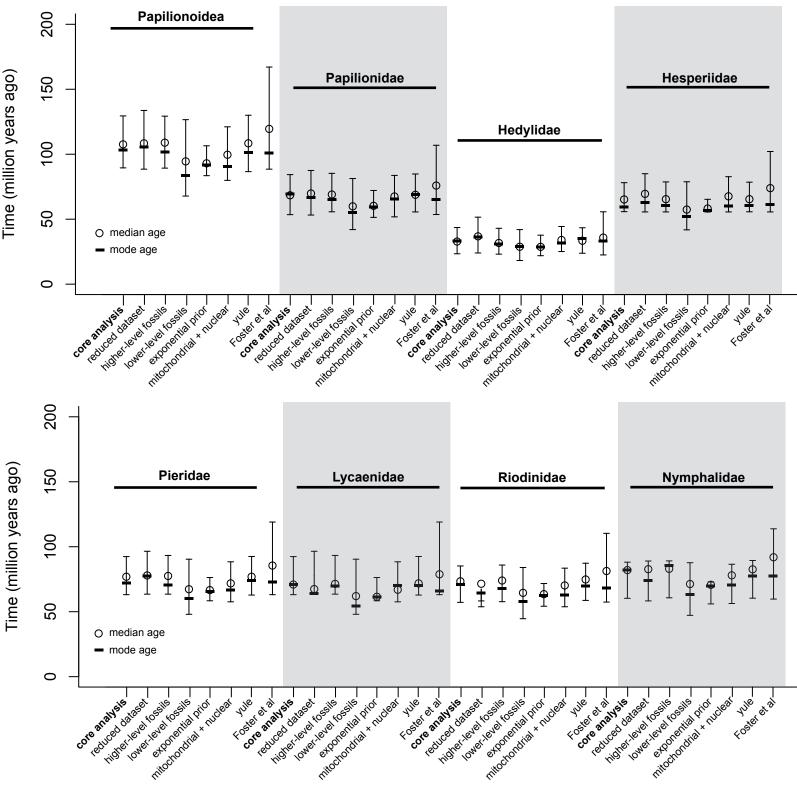


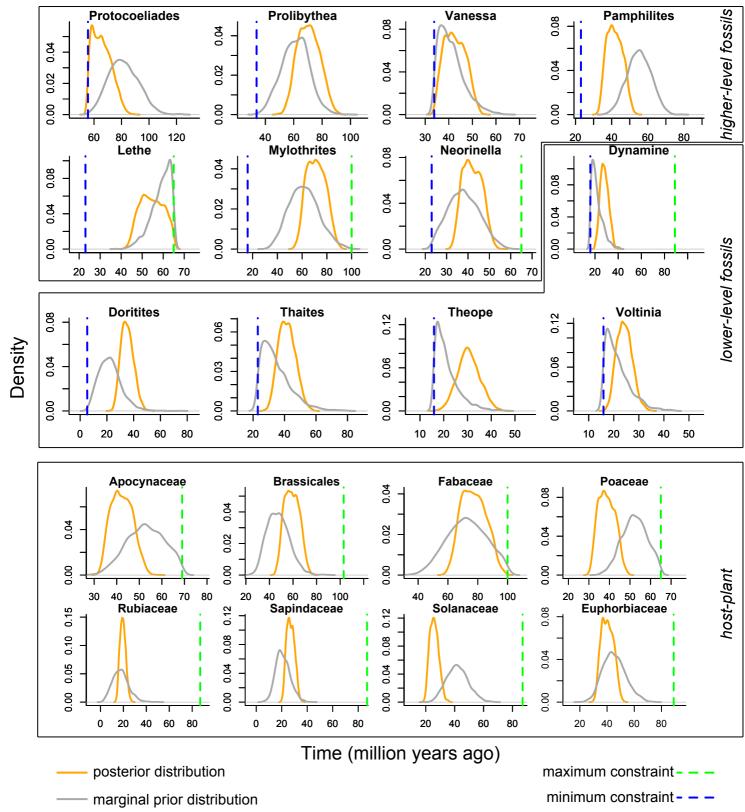


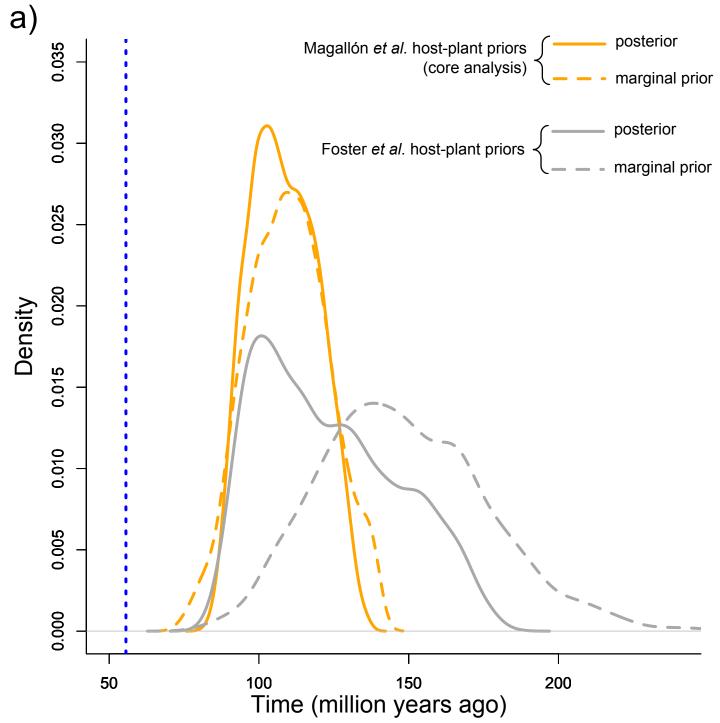

LYCAENIDAE


RIODINIDAE








DANAIDAE

