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Abstract  

Precise prediction of pathogenicity of missense variants is critical to improve power 
in genetic studies and yield in clinical genetic testing. Here we describe a new 

prediction method, MVP, which uses deep neural networks to leverage large 
training data sets and many correlated predictors. Using cancer mutation hotspots 
and de novo germline mutations from developmental disorders for benchmarking, 

MVP achieved better performance in prioritizing pathogenic missense variants than 

previous methods.  

 

Main Text 

Missense variants are the most abundant type of coding genetic variants and a 

major class of genetic risk in a broad range of common and rare diseases. Previous 
studies have estimated that there is substantial contribution from de novo missense 

mutations to structural birth defects 1-5, and neurodevelopmental disorders 6-8. 
However, only a small fraction of missense de novo mutations are pathogenic 6. As 

a result, the statistical power of detecting individual risk genes based on missense 
variants or mutations is limited 9. In clinical genetic testing, many of missense 

variants in well-established risk genes are classified as variants of uncertain 
significance (“VUS”), unless they are highly recurrent in the patient population. 

Previously published in silico prediction methods have facilitated the interpretation 

of missense variants, such as Polyphen 10, SIFT 11,  CADD12, metaSVM13, M-CAP14, 
and REVEL15. However, based on recent de novo mutation data 2,6, they all have 
limited performance (Table S1).   

 
Here we hypothesize that missense variants pathogenicity prediction can be 

improved in a few directions. First, conventional machine learning approaches have 
limited capacity to leverage large amount of training data comparing to recently 

developed deep learning methods16. Second, databases of pathogenic variants 
curated from literature are known to have substantial rate of false positives17,18,  

which are likely caused by common issues across databases and therefore 
introduce inflation of benchmark performance. Developing new benchmark data 

and methods can further improve real performance. Finally, previous methods do 
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not consider gene dosage sensitivity, which can modulate the pathogenicity of 
deleterious missense variants, as hypomorphic variants are pathogenic only in 

dosage sensitive genes 8. With recently published metrics of mutation intolerance 
19,20, it is now feasible to consider gene dosage sensitivity in predicting 

pathogenicity. Based on these ideas, we describe a new method, MVP, to improve 
Missense Variant Pathogenicity prediction. 

 
MVP uses many correlated predictors, broadly grouped in four categories 

(Supplementary Table S2): (a) variant level; (b) gene mutation intolerance; (c) protein 
structure and modification; (d) published scores from selected previous methods. 

To capture the disruptive effect of key variants on protein structure and 
posttranslational modification, we included features such as protein complex 

formation score (CORUM, BioPlex etc.), protein interaction interface score (prePPI 
etc), phosphorylation scores (see Methods and Table S2 for details). Since the 

variants in constrained genes (based on pLI >= 0.5) and non-constrained genes (pLI 
< 0.5) have different mode of action on pathogenicity and different information gain 

among features, we trained our models separately for the two gene sets. We 
included 38 features for constrained gene model and 21 features for non-

constrained gene model where we removed most published prediction methods 
features (Supplementary Table S2).   
 

MVP uses a deep neural network method, more specifically, the residual neural 
network (Resnet)21. There are 2 layers of residual blocks consisted of convolutional 

filters and 2 fully connected layers (Supplementary Fig S1). The convolutional filters 
can exploit spatial locality by enforcing a local connectivity pattern between 

“neurons” of adjacent layers and identify nonlinear interaction at higher levels of the 
network. To take advantage of this character, we ordered the predictors based on 

their correlation as the local connected observations, highly correlated predictors 
are clustered together (Supplementary Fig S2). Notably new protein predictors are 

weakly correlated with previous scores, suggesting that they may include additional 
information and can help improve the overall prediction accuracy. A random order 

of features as input for MVP cannot learn the pattern effectively.   
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We obtained large curated pathogenic variants datasets as positives and random 

rare missense variants from populations as negatives for training (Supplementary 
Table S3). To evaluate the generalization and predictive power of MVP model, we 

first applied 6-fold cross-validation on the training set (Supplementary Fig S3). We 
achieved mean area under the curve (AUC) of 0.99 in constrained genes and 0.97 in 

non-constrained genes.  
 

To compare with other methods 15,22-25, we then evaluated the performance in 
curated testing dataset, VariBench dataset 13,26 (Table S3). In both datasets, MVP 

outperformed all other scores with an AUC of 0.96 and 0.92 in in constrained and 
non-constrained genes, respectively (Supplementary Fig S4). A few recently 

published methods (REVEL, M-CAP, and meta-SVM) were among the second-best 
predictors and achieved AUC of 0.91. To address potential issue of performance 

inflation due to systematic errors caused by similar factors across training and 
testing data sets, we obtained two additional types of data for further evaluation.  

 
First, we complied cancer somatic mutation data, including missense mutations 

located in hotspots inferred based on statistical evidence from a recent study 27 as 
positives, and randomly selected variants from COSMIC database28 as negatives. In 
this dataset, the performance of all methods decreased in the cancer hotspot 

dataset but MVP still achieved the best performance, AUC of 0.88 and 0.85 in 
constrained and non-constrained genes, respectively (Fig. 1).  
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Second, we compiled germline de novo missense variants (DNMs) from 2645 cases 

in a congenital heart disease (CHD) study 2 and 3953 cases in autism spectrum 
disorder (ASD) studies 2,6,7, and DNMs from 1911 controls (unaffected siblings) in 

Simons Simplex Collection (SSC) 2,6,7. Most of the de novo mutations are not 
recurrent, therefore, we cannot use “ground truth” in the data to directly evaluate 

the performance of prediction methods. Instead, we calculated enrichment of 
missense DNMs in the cases compared to the controls, and then estimated 

precision rate and recall based on enrichment rate and observed number of DNMs 
in cases (Supplementary Notes).   We compared the performance of MVP to other 

prediction methods by estimated precision and recall (Fig 2). Using threshold of 
0.05, we observed an enrichment of 2.1 in CHD versus controls and an enrichment 
of 1.81 in ASD versus controls among constrained gene (Fig 2A, 2D, Supplementary 

Table S4), indicating more than 40% of the variants in the predicted damaging 
variants contribute to the disease. We also observed an enrichment of 1.35 in CHD 

and 1.25 in ASD versus controls among non-constrained genes (Fig 2B, 2E, 
Supplementary Table S5), indicating more than 25% of the variants in the predicted 

Figure 1. ROC curves using cancer somatic mutation data sets. (A) Constrained genes:  
evaluation on 699 cancer mutations located in hotspots from 150 cancer driver genes, 
and the same number of somatic mutations randomly selected from 13152 somatic 
mutations not located in hotspots in COSMIC database. (B) Non-constrained genes:  
evaluation on 177 cancer mutations located in hotspots from 55 cancer driver genes and 
same number of mutations randomly selected from 24343 somatic mutations not located 
in hotspots. The performance of each method is evaluated by the ROC curve and AUC 
score indicated in parenthesis. Higher AUC score indicates better performance. 

A.   Constrained genes (pLI >= 0.5) B. Non-constrained genes (pLI < 0.5)
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damaging variants contribute to the disease. If we assume the estimated number of 
all missense de novo mutations contributing to CHD and autism as “condition true 

positives”, then a MVP score of 0.15 reaches 80% recall rate for both CHD and 
autism with estimated precision at 40% and 30% (Figure 2C and 2F), respectively. 

The second-best methods reached 25% (M-CAP) and 20% (MPC and REVEL) given 
the same recall rate for CHD and autism, respectively. Overall, the results indicate 

that MVP can be used to prioritize the pathogenic variants and genes in birth 
defects and neurodevelopmental disorders.  

 

 

A. Constrained genes (pLI >= 0.5) B. Non-constrained genes (pLI < 0.5) C. All

D. Constrained genes (pLI >= 0.5) E. Non-constrained genes (pLI < 0.5) F. All

Figure 2. Comparison of MVP and published methods using de novo mutilations from 
CHD and ASD studies by precision-recall-like curves. Numbers on each data point 
indicate method thresholds. The size the of points are proportional to –log (p-value). P-
value is calculated by binomial test, only points with p value less than 0.05 are plotted. 
(A) Performance in CHD de novo data in constrained genes.  (B) Performance in CHD de 
novo data in non-constrained genes. (C) Performance in CHD de novo data in all genes. 
(D) Performance in ASD de novo data in constrained genes.  (E) Performance in ASD de 
novo data in non-constrained genes. (F) Performance in ASD de novo data in all genes. 
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Previous studies have estimated that de novo coding mutations, including loss of 
function variants and damaging missense varints, have much smaller contribution to 

isolated CHD than syndromic CHD 2,3. Here, we used MVP to revise the estimated 
fraction of isolated CHD cases attributable to de novo mutations. With damaging 

missense variants defined by metaSVM algorithm, which was used in Jin et al 2017 
2, the estimated DNMs contributes to 4.3% to isolated CHD cases. Using MVP 

score larger than 0.15 to define damaging missense variants, we estimated DMSs 
contributes to 7.4%(95% CI = [6.1%, 8.7%]) of isolated CHD cases, nearly doubling 

the previous estimate 2.   
 

In summary, we developed a new method, MVP, to predict pathogenicity of 
missense variants. MVP is based on deep residual network, a supervised deep 

learning approach, and was trained using large number of reported pathogenic 
variants curated by clinical databases, separately on genes constrained of function 

variants and the ones that not constrained. Using cancer mutation hotspots and de 
novo mutations from congenital heart disease and autism, we showed that MVP 

achieved overall better performance than published methods, and would improve 
power of detecting novel risk genes in genetic studies. Currently, MVP is limited by 

size and potentially high false positive rate in the training data. Systematic efforts 
such as ClinVar29 will eventually produce better training data to improve prediction 
performance.  

 

 

Methods and materials 

 
Training data sets 

 

We compiled 22,390 missense mutations from Human Gene Mutation 
Database Pro version 2013 (HGMD)30 database under the disease mutation 

(DM) category, 12,875 deleterious variants from UniProt13,31 and 4,424 
pathogenic variants from ClinVar database29 as true positive (TP), altogether 

there are 32,074 unique positive training variants. The negative training sets 
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included 5,190 neutral variants from Uniprot13,31, and randomly selected 
42,415 rare variants rom DiscovEHR database32, and 39,593 observed 

human-derived changes12 as true negative, altogether there are 86,620 
unique negative training variants(Supplementary Table S3). 

 
Testing data sets 

 

We have three categories of testing data sets (Supplementary Table S3) in 

which variants overlapping with the training data sets are removed. The three 
categories are Benchmark data sets from VariBench 13,26, cancer somatic 
missense mutations located in hotspots from recent study27 and random 

selected somatic missense mutations from COSMIC database28, and de novo 
missense mutation data sets from recent published exome-sequencing 

studies2,6,7.  
 

To compare the performance of different methods in different mode of action, 
we tested the performance based on gene property and evaluate the metrics 

in constrained genes (ExAC pLI ≥ 0.5) and non-constrained gene (ExAC pLI < 
0.5)19 separately.  

 
To focus on rare variants with large effect, we focused on ultra-rare variants 

and we used a cutoff of MAF <10-4 based on gnomAD database to filter 
variants in both training and testing data sets. We applied additional filter of 

MAF < 10-6 for variants in constrained genes in both cases and controls for 
comparison based on a recent study 33.  

 
 

Features used in MVP model 

 

For each variant, we generated four groups of features in training and 
prediction: 1) variant level features, 2) gene level features 3) biochemical 

annotation features, and 4) published predictors (Supplementary Table S2). 
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Since variants in constrained genes and non-constrained genes have 
different mode of action on pathogenicity and different information gain 

among features, we trained our models on constrained and non-constrained 
variants separately with different sets of features (38 features used in 

constrained model, 21 features used in non-constrained model, 
Supplementary Table S2).   

 
The predicted secondary structure and predicted accessible surface areas 

were obtained from dbPTM34, interfacial residual prediction are the 
combination of three algorithms C-PPISP, PINUP, PredUS from PrePPI 

database35, protein interactions status are from the protein interactions in the 
BioPlex 2.0 Network36, the protein complexes information are from CORUM 

database37, SUMO scores within 7 amino acids of peptide are obtained from 
GPS-SUMO software38, phosphorylation sites predictions within 7 amino 

acids of peptide are from GPS3.0 software39, ubiquitination within 14 amino 
acids of peptide are obtained from UbiProber prediction tools40, regional 

constraint are from ExAC database, other features are obtained through 
dbNSFPv3.3a41. For consistence and to avoid one missense variant 

corresponds to different mutations, we used canonical transcripts in the 
analysis.42 Missing values of features are filled with -1 except for the missing 
values of allele frequency in 1000 Genome or ExAC or gnomAD database, 

which is filled with 0. REVEL scores15 and MPC scores 42 are included for 
method comparison.  

 

Deep neural network model 

 
MVP is a deep neural network based method that integrated features from 

variant level, gene level, protein structure and modification level as well as 
published predictors to predict pathogenicity of a certain variant. It is trained 

on a synthetic training sets including disease mutation in HGMD, Uniprot and 
ClinVar database and putatively neutral variants from Uniprot, DiscovEHR 

and observed human-derived alleles (Supplementary Table S3).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 2, 2018. ; https://doi.org/10.1101/259390doi: bioRxiv preprint 

https://doi.org/10.1101/259390
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

 
Convolution neural network can exploit spatial locality by enforcing a local 

connectivity pattern between neurons of adjacent layers and identify 
nonlinear interaction at higher levels of the network, it has been an important 

breakthrough in pattern recognition in recent years. To preserve the 
structured features in training data, we ordered the features according to 

their correlations (Fig 1).  In training, we randomly partitioned the synthetic 
training data sets into two parts, 80% of the total training sets for training and 

20% for validation.  
 

We built a ResNet structure model21 in this study. First a convolutional layers 
of 3 x1 with 32 convolutional filters, then 2 computational residual units 

consisting of 2 convolutional layers of 3x1convolutions and 32 convolutional 
filters, we summed the out layers and input layer, using ReLU as the 

activation function. After the bottleneck units, 2 fully connected layers of 320 
x 512 and 512 x1 are used (Supplementary Fig S1).  

 
We trained the ResNet model with batch size of 64 of training data, used 

adam optimizer to perform gradient descent and calculated logarithmic loss 
between the predicted value and true value as metrics. After each epoch, we 
applied the latest model weights on validation data to compute validation 

loss.  
 

To avoid over fitting, we used early stopping regularization during training. 
We computed the loss in training data and validation data after each epoch 

and stopped the process when validation loss is comparable to training loss 
and do not decrease after 5 more epochs or the loss starts to increase, and 

then we saved model weights with last lowest validation loss. We applied the 
same model weights on testing data to obtain MVP scores for further analysis.  

 

Previously published methods for comparison 
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We compared MVP score to 12 previously published prediction scores, 
namely, M-CAP14, DANN43, Eigen44, Polyphen245, MutationTaster46, FATHMM, 

Fathmm-MKL47, REVEL15, CADD12, metaSVM13, metaLR13, and MPC42, in the 
following two ways. 

 

ROC curves 

 

We plotted Receiver operating characteristic (ROC) curves and calculated 
Area Under the Curve (AUC) values to compare the performance among 
prediction scores in training data with 6-fold cross validation (Supplementary 

Fig S2), curated benchmark testing datasets (Supplementary Fig S3) and 
cancer hotspot mutation dataset (Fig 2). For each prediction method, we 

varied the threshold for calling pathogenic mutations in a certain range and 
computed the corresponding sensitivity and specificity based on true positive, 

false positive, false negative and true negative predictions. ROC curve was 
therefore generated by plotting sensitivity against 1 – specificity at each 

threshold.  
 

Precision-recall-like curves 

 

We used the excess of predicted pathogenic missense de novo variants in Autism 

Spectrum Disorder (ASD) and congenital heart disease (CHD) cases compared to 
controls as proxies of sensitivity and specificity since the de novo data do not have 

ground truth. For various thresholds of different scores, we can calculate the 
estimated number of risk variants and estimated positive prediction value based on 

enrichment of predicted damaging variants in cases compared to controls. We 
adjusted the number of missense de novo mutation in controls by the synonymous 

rate ratio in cases verses controls as the data sets were sequenced and processed 
separately)(Table S6), which partly reduced the signal but ensures that our results 

were not inflated by the technical difference in data processing. Using number of 
case individuals (M) and number of predicted damaging variants (X) in cases, 

number of control individuals (N) and number of predicted damaging variants (Y) in 
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controls and adjusted rate (𝛼), we can use the formula below to obtain the 

enrichment, predicted positive value as well as estimated number of risk variants.  
 

 

𝛼 =	
number	of	synonymous	variants	in	cases
number	of	synonymous	variants	in	control 

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = 		
𝑋
𝑀

𝑌
𝑁 × 𝛼

 

	𝑃𝑃𝑉 =
𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 − 1
𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =

𝑋
𝑀 − 𝑌

𝑁 × 𝛼
𝑋
𝑀

 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑖𝑠𝑘	𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 = 		𝑋 × 𝑃𝑃𝑉 = 	𝑋 −
𝑀
𝑁 × 𝑌 × 𝛼 
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