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Abstract

The magnitude of influenza epidemics is largely determined by the number of susceptible individuals

at the start of the influenza season. Susceptibility, in turn, is influenced by antigenic drift. The

evolution of influenza’s B-cell epitopes has been charted thoroughly, and only recently evidence

for T-cell driven evolution is accumulating. We investigate the relation between susceptibility to

influenza, and antigenic drift at CD8+ T-cell epitopes over a 45-year timespan. We estimate age-

specific susceptibility with data reported by general practitioners, using a disease-transmission model

in a Bayesian framework. We find large variation in susceptibility, both between seasons and age

classes. Although it is often assumed that antigenic drift drives the variation in susceptibility, we

do not find evidence for a relation between drift and susceptibility in our data. This suggests that

other factors determining the variation in susceptibility play a dominating role, or that complex

influenza-infection histories obscure any direct effects.

Preface to this bioRχiv pre-print

We are currently in the process of making this manuscript ready for re-submission, and are resolving

some issues brought forward by our referees. Most importantly, we aim to better incorporate the co-

circulation of the various influenza A and B subtypes during the different seasons, both in the estimation

of susceptibility and antigenic drift.

Introduction

Since the year 1970, the Dutch research institute NIVEL has been using a network of general practitioners

(GPs) to estimate the weekly incidence of influenza-like illness (ILI) in the Dutch population (Donker,

2016). This has resulted in one of the longest ILI-consultation time series available worldwide. The

time series contains information about influenza epidemiology, and has enabled analysis of, among other
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things, the effect of humidity, school holidays (Te Beest et al., 2013), waning immunity (Xia et al., 2005),

the impact of vaccination (McDonald et al., 2016), and the validity of models of antigenic evolution

(Ratmann et al., 2012). For many of these studies it is presumed that the time series contains implicit

information on the immune status of the population.

Immunity to influenza is of humoral (B cells) and cellular (T cells) nature, where the B cells and the

antibodies they produce have received most attention. IgA antibodies against epitopes on hemagglutinin

(HA) and neuraminidase (NA) provide neutralizing immunity, from which influenza is escaping by means

of antigenic drift and shift, as visualized by antigenic cartography (Lapedes and Farber, 2001; Smith et al.,

2004; Bedford et al., 2014; Neher et al., 2016). Well-matching vaccines can be efficient in preventing

infection (Shubin et al., 2016), but require frequent updates, and vaccine mismatches are not unusual

(Berlanda Scorza et al., 2016; Teirlinck et al., 2015). Cytotoxic T-lymphocyte (CTL) responses against

peptidic epitopes of influenza’s internal proteins can provide long-term protection (Van De Sandt et al.,

2015) because these epitopes are highly conserved. Conserved T-cell epitopes are believed to be the cause

of the relatively low illness severity in adults during the 2009 H1N1 pandemic (Sridhar et al., 2013), and

the 1957 H2N2 pandemic (Epstein, 2006), although in both cases antibodies against the more conserved

stem of HA could also have played a role. Not surprisingly, these T-cell epitopes are considered to be

good targets for a long-lasting, universal vaccine (Berlanda Scorza et al., 2016; Sridhar, 2016).

By cleverly comparing substitution rates within and outside epitope regions in human and swine influenza

A virus (IAV), Machkovech et al. (2015) recently demonstrated positive selection inside CTL epitopes of

the nucleoprotein (NP). We also studied the evolution of IAV on the level of CTL epitopes, and found

that from 1968 onwards, the number of epitopes in H3N2 has been decreasing (Woolthuis et al., 2016).

Both results support the idea that IAV is not only adapting to the human population by escaping from

humoral immunity, but also—albeit more slowly—from cellular immunity.

On the clinical level, T-cell mediated immunity is receiving increasingly more attention. Using animal

models and human cohort studies, it has become clear that cellular immunity can be responsible for

reduced viremia, or even asymptomatic infection (Hayward et al., 2015; La Gruta and Turner, 2014). T-

cell memory does not provide neutralizing immunity. However, the role of T-cell memory in asymptomatic

infection, which in turn reduces infectiousness, leads us to suspect that cellular immunity can have a

profound effect on the epidemiology of IAV. Furthermore, since CTL responses provide long lasting

protection (Van De Sandt et al., 2015), the effects of CTL escape can act on a longer time-scale than

antibody-antigenic drift.

In this paper, we study the effect of CTL and antibody (Ab) immune escapes of influenza on its epidemi-

ology. We need two types of data for this study: the fraction of susceptible individuals, and the rate of

Ab- and CTL-antigenic drift. In order to find the fraction of susceptible individuals, we fit a determin-

istic ordinary differential equation (ODE) model for transmission to ILI-consultation data. Since this

model is quite complex, as the parameters to be estimated can be age- and season-specific, we employ a

Bayesian framework, using Markov chain Monte Carlo (MCMC) for parameter estimation. For the other

type of data, the antigenic drift, we use the average between-season Ab-antigenic drift as measured by

Bedford et al. (2014). As a measure of CTL-antigenic drift, we use the disappearance of epitopes, or

“epitope loss”, as defined recently (Woolthuis et al., 2016). The measure “epitope loss” can roughly be

seen as the number of epitopes that disappear from the virus from one year to the next.
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Since we expect any relation between susceptibility and antigenic drift to be confounded by age, we

stratify the data and model by age class. Incidentally, this allows us to normalize the susceptibilities of

the older age classes with the susceptibility of the youngest children, who are likely to be immunologically

naive (cf. Epstein, 2006). In this manner, we correct for external factors shaping epidemic size, that differ

between seasons, but have the same effect on the age classes. Such effects include virulence and weather.

Contrary to expectations, we find no significant relation between either measure of antigenic drift, and

susceptibility. We discuss explanations for the lack of this relation. This seems to contradict some of the

findings presented by Bedford et al. (2014), who do find some evidence for a relation between antibody-

antigenic drift, and the size of the epidemic in a period of two decades in the USA. We find that in

the computation of antigenic drift, correct timing of epidemic seasons is essential, and ignoring this may

easily lead to false conclusions. Furthermore, we argue that complex individual infection histories may

impair our ability to use antigenic drift as a predictor for epidemic hazard.

Results

We first discuss the details of the data and our model. Then we validate some of our estimates against

independent data, and subsequently our estimates are interpreted. Finally, we compare susceptibility

with CTL- and Ab-antigenic drift.

Data and model selection

An overview of the (aggregated) ILI data and the fitted model is given in Figure 1. From the first season

(1969/70) to the last (2013/14), the fraction of reported ILI is gradually decreasing. This holds for both

the epidemic peaks in the winters, and for the lower off-season weeks. There is a variety of potential

explanations for this trend (Dijkstra et al., 2009). First, the circulation of ILI causing pathogens could be

slowly decreasing. For the elderly, this could be partially due to changes in vaccination policy (McDonald

et al., 2016). Second, it could be that people have become healthier, or the virus less virulent (Fleming

and Elliot, 2008). Finally, it could be that the reporting tendency has decreased over the last 45 years,

because people less frequently visit their GP when experiencing mild symptoms. The latter explanation

is most simple, seems biologically plausible, and is incorporated in the current model. The probability

that a person with ILI consults their GP is denoted q, and we model the downward trend in reporting

by allowing the probability q to depend on time (see Methods).

An ILI data point consists of the number of reported ILI cases (f), and the catchment population size

during that week (g, see Figure S1). The catchment population is a small sample from the entire Dutch

population, and we assume that the total population is large enough so that the influenza epidemic

can be modeled with a deterministic model of ODEs. ILI can be caused by a range of pathogens other

than influenza (A and B), such as respiratory syncytial virus, rhinovirus, parainfluenza, and Mycoplasma

pneumoniae. We refer to ILI that is not caused by influenza as background ILI.

The characteristic epidemic peaks are mostly caused by influenza, and are modeled with a transmission

model (see below). Concerning the background ILI, a clear seasonal effect is visible (Figure 1), even

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/259614doi: bioRxiv preprint 

https://doi.org/10.1101/259614


Figure 1: ILI data and model fit. Shown is the aggregated weekly ILI incidence (i.e., summed

over the age classes), calculated by dividing the weekly number of reported cases (f) by the catchment

population size (g) (black line), and the model fit (red line and pink band). The model fit is based

on simulations using 200 samples from the posterior distribution of the baseline model. The red

line represents the median incidence of the simulated data, and the pink band indicates the 2.5 to

97.5 percentile. The gray background color highlights weeks for which the age stratification and the

catchment population size had to be imputed. Notice that the scale on the vertical axis is different for

the three panels, as the reported incidence is declining.
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scenario relation k ∆WAIC ∆WBIC

baseline r1 349 - -
trended susceptibility - 355 0.4 10.4
single prior for susceptibility r1, r3 339 8.9 304
susceptibility independent of age r1, r3, r4 114 7285 5820
constant background ILI r1, r2 347 21 642 21 356

Table 1: Model selection. Models are compared with WAIC and WBIC (see Methods). The number

of parameters used in each model is denoted by k. Each one of the models is defined by relations between

the parameters (see Methods), defined by: r1 = {αsusc,1 = 0, . . . , αsusc,6 = 0}, r2 = {bamp = bphase = 0},
r3 = {µsusc,1 = · · · = µsusc,6 , αsusc,1 = · · · = αsusc,6 , σ

2
susc,1 = · · · = σ2

susc,6}, r4 = {S0,1 = · · · = S0,6}.
The best model (baseline) assumes relation r1, meaning that S0 is stationary. The baseline model

has WAIC = 95 926 and WBIC = 97 073. For the model with constant background ILI we assume

relation r2 in addition to r1, meaning that the background ILI is the same throughout the year. The

model that only incorporates a single prior distribution for susceptibility (i.e. no age effect) assumes

relation r3 in addition to r1. The model with age-independent susceptibility incorporates relation r4

in addition to r1, and (trivially) r3.

during the ‘off-season’ weeks. For this reason, we use a descriptive model that takes seasonality into

account. This approach is similar to the one taken by Van Noort et al. (2012). Furthermore, McDonald

et al. (2016, 2017) used weekly laboratory surveillance data to discriminate between background ILI and

influenza. The ILI in the ‘shoulder’ of the epidemics, turns out to be mainly caused by pathogens other

than influenza.

Throughout, we stratify the ILI data into 6 age classes (Methods). The contacts between these groups are

modeled using an age-specific contact structure that was derived with data from a human contact study

(Mossong et al. (2008); see Data). The ODE model for influenza therefore consists of 4×6 compartments.

For each age class, we have susceptible individuals (S), early and late stage infected individuals (I1, I2),

and recovered individuals (R; not explicitly modeled). The two infection stages ensure a more realistic

(Erlang) distribution of the length of the infectious period, and we assume no difference in infectiousness

between the stages. The mean duration of the infection (1/γ) is not estimated; rather, we take 1/γ = 3.0

days, which is within the plausible range (Carrat et al., 2008).

For the initial conditions of the model, we need the fractions of susceptible individuals (S0) at the

beginning of the seasons. In our model the parameter S0 is the probability that an uninfected individual

is infected upon contact with an infectious person, and becomes sufficiently ill to have a probability

q to visit a GP. Individuals that do become infected, but experience mild disease (e.g. due to T-cell

memory (Sridhar et al., 2013; Epstein, 2006)), are therefore not considered to be susceptible, and are

assumed to be hardly infectious, due to limited viral shedding (Laurie et al., 2010). Notice that there

is a slight mismatch between our interpretation of S0, and the usage of this parameter in the model.

This discrepancy comes from the fact that it is hard to distinguish susceptibility from infectiousness in

ODE models. For our purpose, both susceptibility and infectiousness are of interest. Hence, the current

parameterization is suitable for our goal. This issue is discussed in more detail in the Supplementary

material.
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Figure 2: Reporting estimated from ILI data compares well to GIS reporting frequencies.

The gray violin plots show the marginal posterior distribution of the reporting probabilities (q), which

are used to scale reported ILI to influenza and background incidence. The black diamonds show the

reporting frequency from the GIS data obtained from 2003 to 2008. The black whiskers indicate 95%

confidence intervals (obtained using Jeffreys method).

We use a mixed effects model for the susceptibility parameter S0. That is, a priori, the S0 are assumed

to be sampled from Logit-Normal distributions, with unknown mean (µsusc) and standard deviation

(σsusc). We consider versions of the model where µsusc and σsusc are dependent on the age class, and also

a version where µsusc is a linear function of the season s (see Estimation of the parameters).

Several models are compared with information criteria WAIC and WBIC (Table 1 and see Methods).

Our analyses show that age-dependent susceptibility and periodic background ILI are essential elements

of the model. The model that incorporates an age effect for S0 is favored over a model where every S0

has the same prior distribution. The model incorporating a time effect for S0 fits the data well, but has

too many (effective) parameters.

Estimated reporting matches independent observations

In our analyses the reporting probability (q) is mainly a nuisance parameter that ties the observed number

of ILI cases to the underlying circulation of influenza and background ILI. It is important, however, that

estimates of the reporting do not systematically skew parameters that are truly of interest in this study.

To provide external validation of our reporting rate estimation, we have used data from an independent

study on influenza incidence (GIS, Friesema et al., 2009, and see Data). Reassuringly, our estimates

and those from GIS correspond well (Figure 2). Even the U-shape of the age-stratified reporting is

captured by our estimates. Naturally, we can not use the results from this small number of consecutive

years to extrapolate the validity of our reporting estimates to the entire time series (Figure S3), but the

correspondence between the estimate of q and this independent data demonstrates our ability to extract

this information from the ILI data.
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Susceptibility differs between and within age classes

The main outcome of the fitted Bayesian model is a set of estimates of the susceptibility to influenza

of individuals in the 6 age classes at the beginning of 45 influenza seasons. Figure 3 shows an overview

of these 6 × 45 estimates. Clear differences exist between the age classes (Figure 3B). The highest

susceptibilities can be found among the elderly ([65,∞) years), but this age class also shows the most

variation and uncertainty. The elderly are followed by the youngest age class ([0, 5) years) and the age

class [45, 65) years. Children in the age class [5, 10) years are least susceptible. On the other hand, age is

not a perfect predictor for susceptibility, as the posterior predictive densities of the susceptibilities show

a large overlap (Figure 3C). Summarizing, susceptibility is determined by both age and calendar time

(epidemic season). The cause of the effect of age on susceptibility must be sought in individual health

states and immunological history, and that of the epidemic season in antigenic drift, viral fitness, and

environmental factors.

We observe considerable variation of susceptibility both within and between age classes. As we will argue

now, this variation is not entirely random. By performing pair-wise comparisons between age classes over

all seasons (Figure 4A), we make the following observations: (i) The susceptibility of closely related age

classes is correlated significantly, or has a tendency to be correlated, except for the age classes [10, 20)

and [20, 45) years. (ii) Susceptibility of children in the age class [0, 5) years is only somewhat correlated

with age class [5, 10) years. (iii) Susceptibility of adults and elderly is not, or negatively correlated with

the susceptibility of the age classes [5, 10) and [10, 20) years.

These observations are understandable in light of immunological history. Individuals in closely related

age classes are more likely to share a common infection history than individuals with a greater age

difference, which would explain observation (i). Since children in the age class [0, 5) years are more likely

to be immunologically naive, their susceptibility does not resemble that of older individuals, although a

certain overlap is again to be expected with the age class [5, 10) years, hence observation (ii). Observation

(iii) is more difficult to explain, and might be related to “original antigenic sin” (OAS), or the related

“antigenic seniority” (Lessler et al., 2012). Recently, it was shown that antigenic seniority is likely to

generate negative correlations between young and old birth cohorts with respect to susceptibility to

severe avian influenza infection (Gostic et al., 2016). Such a mechanism could work more generally. If

an influenza antigen resembles another recent antigen, then individuals in the age class [10, 20) years

mount an effective immune response, and their susceptibility is low. Although older individuals also

encountered the recent antigen, they may have failed to create memory against it (due to OAS), and

suffer the consequence: increased susceptibility for currently circulating viruses. Vice versa, when older

individuals respond well, this may be due to similarity to an old antigen (cf. the antigenic thrift model

(Wikramaratna et al., 2013)), which individuals in the age class [10, 20) years never encountered. Again,

the fact that we find intuitive correlations between the estimated susceptibilities of the various age classes

illustrates that we are obtaining meaningful estimates of S0 from the MCMC procedure.

An alternative measure for the immune status of the population is the attack rate (S0 − S∞, see Fig-

ure 4B). Arguably, it is more straight-forward to extract attack rates from ILI data than susceptibility.

In fact, the attack rate (or average incidence) has been used in similar studies before (Bedford et al.,

2014). In the standard SIR model, the relation between susceptibility and attack rate is quite simple,
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Figure 3: Susceptibility estimates stratified by season and age class. (A) The violin plots show

the marginal distribution of the susceptibility parameters S0,a for a = 1, . . . , 6. The color coding for

age classes is as follows: green: [0, 5) years, blue: [5, 10) years, cyan: [10, 20) years, red: [20, 45) years,

brown: [45, 65) years, black: [65,∞) years. The gray background indicates missing age stratification

during a season, with brightness proportional to the number of non-missing weeks (cf. Figure 1).

(B) The samples from the posterior distribution are aggregated by age class. (C) Posterior predictive

distributions of age-specific susceptibilities, i.e. the Logit-Normal distributions of the parameters S0,a

are shown (a = 1, . . . , 6), with hyper parameters taken from the posterior distribution. The lines

indicate the median densities, and the bands represent the interquartile range. The posterior modes

and 95% CrIs of all susceptibilities are listed in Supplementary Table 1.
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Figure 4: Correlations between estimated age-specific susceptibilities. (A) Every square

is colored according to the expectation of the Spearman rank correlation between S0,a1 and S0,a2

(with 1 ≤ a1 < a2 ≤ 6). For instance, in seasons where individuals in the age class [45, 65) are

highly susceptible, the elderly (age class [65,∞)) tend to be susceptible as well. The stars indicate the

expectation of the significance level: ‘·’: 0.1 ≥ p > 0.05, ‘∗’: 0.05 ≥ p > 0.01, ‘∗∗’: 0.01 ≥ p > 0.001,

‘∗ ∗ ∗’: 0.001 ≥ p. The seasons 1975/76 and 1978/79 are not included in the analysis, because of the

missing age-stratification at the time of the epidemic peak. (B) Similar to (A), but then comparing the

cumulative incidences of the age classes, i.e. the fraction of individuals that has been infected during

the season (S0−S∞, where S∞ denotes the fraction remaining susceptible at the end of the epidemic).

albeit non-linear. The non-linearity can be described as herd immunity. Herd immunity becomes more

important when multiple compartments (in our case age classes) are involved; the attack rate within a

class becomes a poorer ‘predictor’ for the susceptibility of this class, since the other classes interfere.

This can be seen in Figure 4B. In a way, estimating susceptibility with a compartmental model could be

seen as a method to de-correlate age-stratified incidence data.

Using the estimates of S0 and the contact matrix, we can compute for each season the effective reproduc-

tion number Reff at the start of the epidemic (Figure 5), still assuming that individuals that experience

mild disease hardly contribute to the epidemic. The effective reproduction number is related to the

basic reproduction number in the sense that they are equal when there is no pre-existing immunity. On

average, Reff equals 1.31 (95% CrI: [1.07, 1.49]; aggregated over all seasons). It is to be expected that the

epidemic in a season with a high Reff starts earlier than epidemics in seasons with low Reff , but we do

not find any evidence for this in the data. We do find a strong correlation between the Reff of a season,

and the precision with which we can estimate the start of the epidemic (Figure 5), as the interference of

background ILI is stronger for small epidemics. Perhaps our inability to find a relation between timing

and reproduction number is due to the lack of precision with which we can estimate this timing.

Some of the estimated reproduction numbers can easily be related to the circulation of specific strains

in the Netherlands. For instance, the relatively high reproduction number at the start of the 1993/94

epidemic season can probably be attributed to a strain from the BE92 (H3N2) cluster, which in antigenic

space is far away from the previous BE89 cluster (Smith et al., 2004). In addition, the cluster transition

around the year 1993 coincides with a large CTL-antigenic jump (Woolthuis et al., 2016). Similarly, the
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Figure 5: Estimates of the reproduction number and the onset of the epidemics. (A)

The posterior densities of the compound parameter Reff (the effective reproduction number) for the

45 seasons. The horizontal black line indicates the epidemic threshold Reff = 1. (B) Estimates of t0,

the start of the 45 epidemics (week number). The precision (sd(t0)−1) of the start of the epidemic is

strongly correlated with the posterior mean of Reff (Spearman ρ = 0.85, p < 10−12). The posterior

modes and 95% CrIs of Reff and t0 are listed in Supplementary Table 1.

high Reff in 2009/10 is due to the pandemic H1N1 strain. The reappearance of H1N1 in 1977 (in the

form of the A/USSR/90/77 strain) might be responsible for the high Reff in 1977/78. For 1969/70, we

only have data for the second half of the epidemic. The fact that we are able to estimate susceptibility

and a reproduction number for this season, is due to the mixed effects model for S0. The high Reff for

this season corresponds well with estimates from England and Wales (Fleming and Elliot, 2008), and

might be due to the re-assortment event that led to the replacement of H2N2 by H3N2. No H3N2 strains

circulated during the 2000/01 season (Dijkstra et al., 2009), resulting in an estimated Reff around 1.

CTL- and Ab-antigenic drift do not predict (relative) susceptibility

Previously, we calculated how many CTL epitopes appear or disappear from IAV between consecutive

seasons (Woolthuis et al., 2016, and see Data). Since the escape of an epitope should lead to loss of

CTL memory in some individuals, we test whether the number of lost epitopes in H3N2 can explain

susceptibility as estimated above. We focus on the H3N2 subtype, since this subtype circulates the most,

causes the most severe disease, and evolves most rapidly. It is expected that an effect of CTL epitope

loss on estimated susceptibility is small in the youngest children, because most of them have not been

infected before, and tend to lack CTL memory against influenza. Additionally, the fact that CTL-epitope

regions in IAV are relatively conserved (Machkovech et al., 2015), could be an indication of a fitness cost

associated with mutations in these regions (Berkhoff et al., 2006). A strain that has many mutations in

these epitopes, could therefore suffer from diminished infectiousness, when compared to the wild-type

form in immunologically naive populations.

Apart from intrinsic fitness effects, variation of the susceptibility of the youngest children should also

reflect environmental influences on influenza transmission, such as (indoor) humidity and temperature
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Figure 6: Susceptibility plotted against antigenic drift. Each dot corresponds to an epidemic

season (the colors indicate calendar time). For the age class [0, 5), the posterior mean absolute sus-

ceptibility is used (A,C,D), and for the other age classes, the posterior mean susceptibility relative to

the first age class (B,D,F). We test different antigenic drift values for their predictive power. (A,B)

Antibody-antigenic drift, (C,D) CTL-antigenic drift with “naive” timing (i.e. isolates are assigned to

a season based on only their calendar year), (E,F) CTL-antigenic drift with “informed” timing (i.e.

periods with significant IAV circulation are derived from the fitted model, and missing isolation dates

are sampled). The Spearman correlation coefficients are listed in Table 2.

(Lowen et al., 2007; Lowen and Steel, 2014). We normalize for such yearly effects by considering the

susceptibility of the age classes, relative to the susceptibility of the youngest age class (henceforth “relative

susceptibility”). In the following analyses, we leave out seasons dominated by H1N1 (1983/84, 1986/87,

2000/01, 2007/08, 2009/10, 2010/11). Likewise, seasons with missing age-stratified data around the

epidemic peak we also removed from the analyses (1975/76, 1978/79).

We use the antigenic distance between strains (Bedford et al., 2014) as a measure of Ab-antigenic drift. In

short, this antigenic distance is derived from hemagglutinin inhibition (HI) assays using Bayesian multi-

dimensional scaling (BMDS). The location of the strains along the first antigenic dimension is informed

by a “drift prior”, in order to solve identifiability issues. Displacement along this axis is therefore a

measure of antigenic drift. The antigenic drift between epidemic seasons is derived by first averaging the

first coordinates of all strains in a particular year, and then taking the difference of the averages. No

correlation between Ab-antigenic drift and relative susceptibility can be found (Figure 6A and Table 2).
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age class Ab-Antigenic drift CTL-Antigenic drift
naive informed

ρ p ρ p ρ p

[0, 5) −0.15 0.40 −0.29 0.09 0.03 0.88

[5, 10) −0.10 0.59 0.25 0.14 0.09 0.62
[10, 20) 0.02 0.90 0.16 0.36 0.05 0.78
[20, 45) 0.09 0.62 0.24 0.17 −0.10 0.59
[45, 65) 0.06 0.73 0.37 0.02 −0.08 0.67
[65,∞) 0.12 0.50 0.29 0.08 −0.10 0.61

Table 2: Correlations between antigenic drift and (relative) susceptibility. The correlation

is calculated between the posterior mean (relative) susceptibility, and measures of antigenic drift. For

the age class [0, 5), the absolute susceptibility is used. Listed are the Spearman correlation coefficients

(ρ), and the corresponding p-value. The susceptibility and antigenic drift values are plotted in Figure 6.

We use “epitope loss”, as defined previously (Woolthuis et al., 2016, and see Methods), as a measure

for CTL-antigenic drift. Epitope loss measures the number of epitopes that were present in one year,

but absent (escaped) in the next. Intriguingly, we do find a significant positive correlation between

CTL-antigenic drift and relative susceptibility, but only in the age class [45, 65) (Figure 6B and Table 2).

Positive trends can be observed in some of the other age classes, and a negative trend between CTL-

antigenic drift and the absolute susceptibility of the youngest age class.

The between-season Ab- and CTL-antigenic drift used in the above analyses has been computed using

a number of simplifying assumptions, including the way isolates are assigned to epidemic seasons (i),

and what isolates are selected for the analyses (ii). Assumption (i) can be problematic for two reasons.

Firstly, the older strains are often only dated at the resolution of calendar years. In the Northern

hemisphere, influenza epidemics consistently occur during the winter months, and hence for these strains

it is difficult to determine which season they should be assigned to. Secondly, the timing of the epidemic

season differs from season to season (Figure 5), in such a way that for some seasons (e.g. 1978/79),

the epidemic falls mostly in the first calendar year (1978), while for other seasons (e.g. 1990/91), the

epidemic falls in the next calendar year (1991). Assumption (ii) can be problematic when isolates are

used that circulate during the summer. Many of them are sampled in the Southern hemisphere, and it

is not clear if they can be used as representative strains during the winter epidemic, or for which of the

two possible winter epidemics (cf. assumption (i)). Furthermore, sparse sampling of isolates can lead to

large uncertainty in antigenic drift.

We resolve both problematic assumptions using a bootstrapping procedure. Using our epidemiological

model, we estimate the periods that most likely contains the influenza epidemic (Figure 7A; pink bands).

For isolates that have interval censored isolation dates, we sample random dates from a distribution

estimated from the known isolation dates (Figure S4). We then sample N = 1000 isolates from the total

set of viruses (see Woolthuis et al., 2016) to address assumption (ii), and assign an isolate to a season if

it falls into the estimated time interval. Isolates that do not fall into an epidemic season are discarded.

This resolves assumption (ii). Using a sampled set of isolates and isolation dates, we re-compute the

epitope loss (and gain; see Methods). This procedure is repeated a 1000 times. The result of this more
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Figure 7: Estimation of CTL-antigenic drift. (A) Time intervals of influenza circulation in the

Netherlands, and known sampling dates of the isolates. The red bars indicate the epidemic periods,

and the black dots the sampling dates of the isolates. (B) The yearly number of isolates used for the

analyses. The whiskers indicate the standard deviation due to the bootstrapping procedure (see Data).

(C) The epitope gain and loss, as defined by Equation (1). The whiskers indicate the standard deviation,

estimated by bootstrapping.
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accurately computed epitope loss (and gain) is shown in Figure 7C. Unfortunately, when the timing-

aware CTL-antigenic drift replaces the previously used timing-naive CTL-antigenic drift, the previous

correlation with relative susceptibility in the age class [45, 65) years is lost (Figure 6F; Table 2).

Discussion

Using long-term data of ILI reported to GPs, we estimated the yearly age-specific susceptibility of the

Dutch population to influenza. Our estimates were obtained using a transmission model in a Bayesian

framework, so that all parameters have a clear-cut biological interpretation. We found large variation in

susceptibility within age classes, and interesting correlations between age classes that can be explained

by expected differences in immunological memory. In contrary to expectation, we were unable to find a

relation between Ab- and CTL-antigenic drift in the H3N2 subtype and relative susceptibility.

A large body of work exists where parameters are estimated from ILI (or related) time series. For

the Dutch ILI data, this was done by e.g. Xia et al. (2005); Te Beest et al. (2013); Ratmann et al.

(2012). Related studies using non-Dutch data were presented by Goeyvaerts et al. (2015); Yang et al.

(2015); Baguelin et al. (2013). Most notably, Ratmann et al. (2012) use NIVEL’s ILI data in synergy

with influenza HA sequence data to test evolutionary hypotheses about the virus. Specifically, using

approximate Bayesian computation, they fitted the epochal evolution model of Bedford et al. (2012) to

the ILI data.

The fact that it seems so difficult to find relations between antigenic drift and susceptibility is curious,

and has been noticed before (Van Noort et al., 2012; Chowell et al., 2008). Yet, the belief that variation

in attack rates is caused by antigenic drift is widespread. Below, we discuss several reasons for not

finding any relation between antigenic drift and susceptibility in detail, but it should be noted that our

result, and lack of other epidemiological evidence indicates that the relation between antigenic drift and

susceptibility is not as strong and direct as often assumed.

Although we are comparing estimated susceptibility to IAV with disappearance of CTL epitopes, we

do not assume that CTL-memory provides neutralizing immunity against IAV infection. More likely,

any effect of CTL-memory should be sought in reduced viremia, or enhanced clearance (Gog et al.,

2003), and the increased likelihood of asymptomatic infection (Hayward et al., 2015). If asymptomatic

infection coincides with decreased transmission, asymptomatically infected individuals can be counted as

non-susceptible, since a model with an asymptomatic compartment is equivalent to the usual SIR model

(Van Noort et al., 2012, and Supplementary material).

We compared relative susceptibility with a simple measure of antigenic drift. In reality each individual

will have its particular immunity against future influenza strains, due to the many influenza infection

histories that are possible (Fonville et al., 2014), and therefore each individual experiences the antigenic

drift or shift differently (Cobey and Pascual, 2011; Cobey and Hensley, 2017). As an extreme example,

HA-imprinting and the replacement of H1 with H2 in 1957 and then H3 in 1968 is likely the reason

why birth year explains susceptibility to either severe H7N1, or severe H5N1 avian influenza infections

(Gostic et al., 2016). Because we consider T-cell responses, HLA polymorphism complicates the matter

even further; each HLA haplotype results in a different set of possible epitopes. Possibly, an agent-based
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model can be used to generate individual infection histories, giving a more complete measure of the

effects of CTL-antigenic drift, that can then be compared with susceptibilities measured from ILI data.

However, such an approach is not straightforward. For instance, as mentioned by Ratmann et al. (2012),

estimation of the effect of immune histories on susceptibility is sensitive to small uncertainties in the

historical sequences and ILI data. Our previous considerations about epitope loss indicate that these

uncertainties may not even be that small.

Another source of uncertainty is the fact that ILI is not a very specific predictor for influenza. The

positive predictive value (PPV) of ILI has been estimated at ≈ 50% for influenza during the peak ILI

weeks of the seasons 2003/04 to 2011/12. We attempt to correct for this relatively low PPV by using a

phenomenological model for the background ILI. When instead the background ILI is assumed to occur

at a constant rate throughout the year (the “constant background ILI” scenario; Table 1), the estimates

of Reff tend to stay away from the epidemic threshold (minReff = 1.11), since background ILI wrongfully

has to be explained by influenza. However, we expect some model misspecification by ignoring the fact

that background ILI, akin to influenza, is caused by infectious pathogens.

Our assumption about the mechanism underlying the trend in the reporting rate is consistent with other

studies (Dijkstra et al., 2009), but not based on hard evidence. Although our estimates for more recent

years are consistent with an independent data source (GIS), the high reporting rate during the seventies

could be an artifact of our model. Van Noort et al. (2012) have hypothesized that not infectiousness, but

reporting rate is influenced by weather, and use this to explain variation in reported incidence. However,

such a hypothesis is not sufficient to explain the strong decrease in reported ILI during the last five

decades. In a later study (Van Noort et al., 2015), differences in reporting rate between countries are

attributed to cultural differences. The differences in reporting rate between countries are of the same

order of magnitude as the difference within the Netherlands between 1970 and 2014. Another possibility

is formulated by Morens et al. (2009), who hypothesize that for evolutionary reasons, the virulence of

influenza could be decreasing, while infectiousness is retained; a host that is not put to bed will spread

a disease more efficiently. Although intriguing, this idea does not fit well with our model, since not

only influenza reporting decreases, but also reporting of background ILI. Finally, the fitness of seasonal

influenza could be slowly deteriorating, possibly due to continuous antigenic drift needed for immune

evasion, as argued by Fleming and Elliot (2008) based on an ILI time series from England and Wales.

However, following the same reasoning as above, most ILI-causing pathogens should then be subject to

fitness erosion. This includes (in hindsight) the pandemic H1N1 virus from 2009/10, since the incidence

during this season is not strikingly different from its surrounding years (Figure 1).

Some of the decreasing ILI in the age class [65,∞) could be the result of vaccination policy (McDonald

et al., 2016) and uptake (Spruijt et al., 2016). As of the year 1997, vaccination against influenza for

individuals in this age class is free of charge in the Netherlands. Despite the fact that we use a trended q

to account for the decreasing ILI, one might still expect a difference in susceptibility before and after 1997

for the elderly. However, we cannot find evidence of an effect of vaccination by making this comparison

(p = 0.47, t-test based on posterior means). Analogous to antigenic drift and susceptibility, the difficulty

with finding associations between vaccine uptake and ILI incidence may be due to complex infection

histories itself (Spruijt et al., 2016),

Recapitulating, our analyses have shown that, on the one hand, there are systematic and substantial
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differences between age classes in their susceptibility to IAV infection, with 5 to 20 year-olds being

least susceptible, and infants and young children ([0, 5) years) and older adults (65 years and older)

being most susceptible. On the other hand, there is also substantial variation in susceptibility between

years, thereby precluding attempts to quantitatively predict age-specific susceptibility with meaningful

precision. Although it is generally believed that these patterns of differences in susceptibility between

years and between age-groups are molded by viral evolution and pre-existing immunity, we were unable

to find evidence for this hypothesis in our data. This was true both for humoral immunity mediated

by antibodies directed against the hemagglutinin protein and also for cellular immunity mediated be

cytotoxic T cell responses. Hence, we are led to the perhaps somewhat sobering viewpoint that the

complex interplay of viral evolution and pre-existing immunity is highly sensitive to details of the infection

histories in narrow age strata (Ratmann et al., 2012; Gostic et al., 2016), and may be fundamentally

unpredictable.

Methods

Data

We made use of a number of data sources. For self-consistence, we here briefly discuss these sources, and

our particular usage of the data.

NIVEL. The catchment population covers approximately 1% of the Dutch population, equally dis-

tributed over different regions in the Netherlands (Donker, 2016; Dijkstra et al., 2009). Using the ISO

week date system, we translated years and week numbers into the number of days since January 1, 1970.

This solves the issue of ‘leap weeks’, which should be treated with care, since they tend to coincide with

the epidemic peaks.

The data is stratified into 6 age classes: [0, 5), [5, 10), [10, 20), [20, 45), [45, 65) and [65,∞) years,

usually indexed by a = 1, . . . , 6, respectively. As of 1986, the resolution of the age stratification has been

increased. Our age classes are chosen to be compatible with early and more recent ILI data stratification,

and to fit well with contact-intensive clusters (not shown) that can be observed in the contact matrix

(see below). Some of the ILI data is missing, but has been partially recovered (see Missing data).

Dutch law allows the use of electronic health records for research purposes under certain conditions.

According to this legislation, neither obtaining informed consent from patients nor approval by a medical

ethics committee is obligatory for this type of observational studies containing no directly identifiable

data (Dutch Civil Law, Article 7:458). This study has been approved by the applicable governance

bodies of NIVEL Primary Care Database under nr NZR00316.056.

POLYMOD. The POLYMOD study is a prospective survey of social contact patterns in multiple

countries (Mossong et al., 2008; Wallinga et al., 2006). The key assumption for epidemiological studies

of respiratory-spread infectious diseases is that conversational contact can be used as a proxy for infectious

contact (the social contact hypothesis, Wallinga et al., 2006). Our contact matrix is based on only the

Dutch data, and estimated using a method developed by Van de Kassteele et al. (2017). In the study,

16

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/259614doi: bioRxiv preprint 

https://doi.org/10.1101/259614


participants (see Figure S2) were asked to keep a diary on the individuals with whom they had contact

during one day. The average numbers of contacts applied to our age classes are given in Figure S2.

GIS. The Great Influenza Survey is the Dutch branch of the European Influenzanet project (Van Noort

et al., 2015), a monitoring system for ILI, using voluntary cohorts approached via the Internet. In the

on-line questionnaire, the participants are asked, among other things, if they had influenza-like symptoms

such as fever and coughing, and if they consulted a GP while they had these symptoms.

Most of the GIS data used in this paper is published by Friesema et al. (2009). Unfortunately, the age

stratification in this report has a slight mismatch with our choice of age classes, and in order to compute

confidence intervals, the population sizes of self-diagnosed ILI patients, and the sub-population seeking

a GP consult are needed. I. Friesema kindly provided the original data, which enabled us to compute

the population sizes for our age stratification.

Epitopes. The full procedure for collecting epitopes is described in (Woolthuis et al., 2016). In short,

we collected all complete, human IAV proteomes without ambiguous amino-acids from the GISAID

EpiFlu database (www.gisaid.org). All known CTL epitopes were downloaded from IEDB (www.iedb.

org). Epitope sequences that contained shorter epitopes were filtered out. For each epitope e and each

calendar year y, the fraction of IAVs that contained the epitope is denoted by ϕy,e. Epitope gain (∆+
y E)

and loss (∆−y E) were defined as

∆±y E =
∑
e

max {0,±(ϕy,e − ϕy−1,e)} . (1)

In order to estimate the uncertainty of the gain and loss, we applied the following bootstrap procedure.

First, we sample (with replacement) a 1000 strains from the total number of 3321 isolates. Using the

sample, we compute gains and losses (Equation 1) for every year y, whenever the sample contains isolates

from both years in the pair (y− 1, y). We repeat the sampling and computation n = 1000 times. Notice

that we produce less bootstrap samples for a year y, whenever few strains were isolated in the year y or

the previous year y − 1.

In order to assign isolates to seasons in an informed manner, we first have to estimate when the epidemics

took place. We assign a a week to the epidemic, when the weekly incidence of the total catchment

population exceeds 10 cases per 100 000 individuals. Hence, when
∑
a ∆Sa,wga,w > 1 · 10−4

∑
a ga,w

(using notation introduced below). We then define tstart as the first day of the first epidemic week

and tend as the last day of the last epidemic week. Notice that tstart and tend need not be defined;

when Reff is close to 1, the incidence may never reach the threshold. This leads to epidemic periods

that are on average 12.3 weeks long (IQR: [11.0, 14.0] weeks). On purpose, our the epidemic threshold

is 5 times smaller than the guideline used by NIVEL (51 cases per 100 000), resulting in slightly longer

epidemics. Isolates are then assigned to season s, if they were sampled within the epidemic period

[tstart, tend] of season s. Isolates that do not fall into any epidemic period are ignored. Missing isolation

dates are sampled from a distribution inferred from the known dates (Figure S4). This distribution is

estimated by fitting a Circular-Gaussian kernel with a bandwidth of 30 days to the set of known calendar

days. The bootstrapping procedure is similar as in the naive case. A 1000 strains are sampled (with
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replacement), then, sampled isolates with missing dates are randomly generated, and finally we assign

seasons to the isolates. Epitope gain and loss is computed as usual.

Dynamical model

We model the influenza epidemics using a system of ordinary differential equations (ODEs). The popu-

lation is partitioned into classes depending on disease status: susceptible (S), infectious (I) and recovered

(R). We use an age stratified ‘SIIR’ model, with fixed contact rates C (Figure S2). The model is given

by the following equations:

d
dt
~S = −diag(~S)C(~I1 + ~I2)

d
dt
~I1 = diag(~S)C(~I1 + ~I2)− 2γ~I1

d
dt
~I2 = 2γ~I1 − 2γ~I2 ,

(2)

where diag(~S) is the diagonal matrix with the vector ~S on the diagonal. The two infectious phases are

used to better model (non exponential) distribution of the length of the infectious period. The initial

condition at time t = t0, is given by a small perturbation (of size ε, with 0 < ε = 10−6 � 1) of the

disease-free steady state: ~S0⊕~0⊕~0 + εv, where ~0 is the zero vector in R6, and ⊕ denotes concatenation

of vectors. Here, v is the dominant eigenvector of the Jacobian of system (2) at the state ~S0 ⊕ ~0 ⊕ ~0.

The vector v has positive I-coordinates and satisfies ‖v‖2 = 1. Using the S-coordinates of the solution

for (2), we compute the weekly incidence ∆~Sw = ~S(7w − 7)− ~S(7w).

The likelihood of observing fa,w ILI cases in age class a during week w, is assumed to be Poisson

distributed:

fa,w ∼ Poisson(qa · [1− (1−∆Sa,w)(1−Ba,w)] · ga,w) . (3)

The Poisson distribution is taken because it approximates the Binomial distribution, but can be computed

more efficiently, and has convenient additive properties (see below). The expectation is the product of

the catchment population size ga,w, the reporting probability qa, and the probability of contracting either

influenza (∆Sa,w), or another ILI-causing pathogen (Ba,w).

The incidence of background ILI (Ba,w) is modeled using the sine function, in order to capture seasonal

effects (cf. Van Noort et al., 2012). We set Ba,w = Ba(7w), where

logit(Ba(t)) = bage,a + bamp sin
(

2πt
365.24 − bphase

)
. (4)

The age effect bage, the phase bphase ∈ [0, 2π), and the amplitude bamp ∈ [0,∞) of the background ILI

have to be estimated.

The reporting probability qa is allowed to follow a trend, by defining

logit(qa) = µrepo,a + αrepo,a · (s− s̄) . (5)

The logit function on (0, 1) is defined by logit(x) = log(x/(1 − x)). The seasons (s) are centralized (by
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subtracting the middle season s̄ = 22 from s) to reduce the correlation between µrepo and αrepo.

Estimation of the parameters

The parameters of the model are estimated using Markov chain Monte Carlo (MCMC). Since ODEs

have to be integrated in order to compute the likelihood, we implemented a (Metropolis within) Gibbs

sampler in C++. The code, together with mock data and a Python script for interpreting the output, has

been made publicly available (Van Dorp, 2016). The costly likelihood computation can be accelerated by

updating the seasonal sub-models in parallel, and using the fact that updating of many of the parameters

does not require re-integration of the ODEs. The length of the chains is 2 × 105, and only the second

half is used in the analysis, after applying a 1 : 100 thinning. Convergence of the chain was assessed

visually, by inspection of the trace plots.

The susceptibility parameters S0,a are given Logit-Normal prior distributions, dependent on season and

age class a, with mean µsusc,a + αsusc,a · (s − s̄) (where s denotes the season, and s̄ the middle season)

and variance σ2
susc,a, which are given non-informative hyper-priors µsusc ∼ Normal(0, 100), αsusc ∼

Normal(0, 100) and σ2
susc ∼ Half-Normal(100). In this way, susceptibility during seasons, or for age classes

with little information, are informed by the other seasons and age classes. Similarly, the (relative) onsets

of the epidemics t0 are given a Normal(µons, σ
2
ons) prior, with hyper-priors Normal(100, 1000) v µons

and Half-Normal(1000) v σ2
ons. The average background ILI bmean,a is given a Normal(0, 100) prior,

and the parameters governing the seasonality of the background ILI rate, bamp and bphase, are given a

Half-Normal(100) and a Circular-Uniform(0, 2π) prior, respectively. The offset µrepo and slope αrepo of

the logit-reporting rate both have a Normal(0, 100) prior distribution.

The proposal distribution for each parameter is given by a symmetric mixture of normal distributions

(Yang and Rodriguez, 2013), with mean equal to the present state of the parameter. The proposal

variance is tuned during the burn-in phase to achieve an acceptance rate of about 0.44 (Rosenthal,

2011). For parameters whose domains have boundaries, the proposal is reflected in these boundaries to

make sure that the Markov chain converges to the posterior distribution (due to the ‘detailed balance’

condition). Likewise, a wrapped version of the proposal is used for circular domains.

Missing data

Some ILI data is missing (see the gray blocks in Figure 1), but part of this data could be retrieved from

(Xia et al., 2005). This recovered data is, however, not age-stratified, and also the catchment population

sizes g are absent; instead the fraction of ILI incidence is reported. In order to compute the likelihood of

observing a fraction of ILI incidence, given our model, we took the following steps. First, the time series

of the present catchment population sizes shows a highly predictable pattern (Figure S1), and hence we

took the simple approach of filling in the missing population sizes by taking a weighted average of the

values in the 4 surrounding years:

(1− c0)ĝa,w =

2∑
i=−2,
i6=0

ciga,w+i·52 (6)

19

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2018. ; https://doi.org/10.1101/259614doi: bioRxiv preprint 

https://doi.org/10.1101/259614


with c±2 = 0.061, c±1 = 0.245, and c0 = 0.388 (a Gaussian kernel). Second, suppose that µa is the

expected ILI incidence (see Equation 3), and π is the reported fraction of ILI incidence, and fa is the

true ILI incidence, then
∑
a fa ≈ π

∑
a ĝa ∼ Poisson(

∑
a µa), because of the additive properties of the

Poisson distribution. The Gaussian kernel model does not correspond to the data that well between the

years 2004 and 2006, but this poses no problem, since the data is age-stratified around that time.

Model selection

We compare the different models using the WAIC (Watanabe, 2010; Gelman et al., 2014), and the WBIC

(Watanabe, 2013). Models with a lower WAIC or WBIC are able to describe the data better. The WAIC,

is an estimate of the out-of-sample prediction error. Ideally, one would use Bayes factors to compare

different models, but computing Bayes factors is highly impractical in our case. The WBIC is acts as an

approximation for the marginal likelihood (and hence, the difference in the WBIC for the Bayes factor).

For non-singular models, one could replace WAIC by AIC, and WBIC by BIC. However, as our model

is singular due to the use of hyper-parameters, we need to use WAIC and WBIC.

The WAIC equals −2 · (l̂pd− p̂WAIC), where l̂pd is the log point-wise predictive density, and p̂WAIC is a

penalty term based on the effective number of parameters (Gelman et al., 2014). Unlike the WAIC,

the WBIC can not be computed from the output of the Gibbs-sampler. Instead, sampling has to

occur at a different “temperature” determined by the number of observations (n = 13333). More

precisely, WBIC = −2 · Eβθ [L(D|θ)], where L(D|θ) equals the log-likelihood of the data D given the

parameters θ, and Eβθ denotes the expectation with respect to the distribution function proportional to

θ 7→ exp(βL(D|θ))π(θ), with π denoting the prior distribution of θ, and β = 1/ log(n) ≈ 0.11.
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Supplementary material

Models with asymptomatic infection

CD8+ T-cell memory might not result in reduced susceptibility, but does lead to less severe disease, and in

the best case asymptomatic infection. Therefore, a model that includes an asymptomatic compartment

would better fit with our assumptions about the epidemiology of influenza. However, as pointed out
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before for a simple case (Van Noort et al., 2012), such a model is equivalent to the usual SIR model, and

the additional parameters are not identifiable.

Since we use a slightly more intricate model than the one explored by Van Noort et al. (2012), we here

show that also our model is equivalent with a version that includes asymptomatic compartments. This

version of the model is given by the following ODEs:

d
dt
~S = −diag(~S)C(~I1 + r ~A1 + ~I2 + r ~A2)

d
dt
~I1 = (1− p) · diag(~S)C(~I1 + r ~A1 + ~I2 + r ~A2)− 2γ~I1

d
dt
~I2 = 2γ~I1 − 2γ~I2

d
dt
~A1 = p · diag(~S)C(~I1 + r ~A1 + ~I2 + r ~A2)− 2γ ~A1

d
dt
~A2 = 2γ ~A1 − 2γ ~A2 .

(7)

This model has two additional parameters: the reduction of infectiousness of the ‘asymptomatic’ in-

dividuals in the A compartment (r), and the fraction of susceptible individuals that move to the A

compartment upon infection (p). We have added 2 compartments A1 and A2 (of size A1 and A2, resp.)

such that the asymptomatic phase has the same duration as the infectious phase.

When r = 0, individuals in compartment A are not infectious (possibly due to largely reduced viral

shedding). In this special case, we can simply ignore the equations for ~Ai. We will not be able to

estimate the parameter p. Instead, we can write ~S∗ = (1 − p)~S, and can write the system of ODEs

in terms of ~S∗, and ~Ii. The variable ~S∗ can then be interpreted as the fraction of individuals that are

susceptible for symptomatic infection. For general 0 ≤ r ≤ 1, we can write ~I∗i = ~Ii + r ~Ai, and define
~S∗ = (1− p+ rp)~S, so that

d
dt
~S∗ = −diag(~S∗)C(~I∗1 + ~I∗2 )

d
dt
~I∗1 = diag(~S∗)C(~I∗1 + ~I∗2 )− 2γ~I∗1

d
dt
~I∗2 = 2γ~I∗1 − 2γ~I∗2 ,

(8)

and these equations are identical to system (2). It is not unreasonable to assume that individuals in

the A compartment have a reduced probability of consulting their GP compared to individuals in the I

compartment. Let us denote the reporting probabilities qA and qI, respectively. The rate of reported ILI

is therefore (qI(1− p) + qAp)
d
dt
~S. If we further assume that the probability of reporting is proportional

to the reduction in infectiousness, we get that (qI(1−p)+qAp)
d
dt
~S = q((1−p)+rp) ddt

~S = q ddtS
∗. Hence,

under these assumptions, the baseline model (2) is equivalent to a model with asymptomatic infection,

but with S interpreted as susceptibility weighted by the likelihood of seeking health-care.

Models with frailty

In the case of SIR-type models, the term “frailty” refers to heterogeneity in susceptibility. The two

extremes are zero-one susceptibility (a person is either fully susceptible to infection or not at all) and

uniform susceptibility (everyone has the same (reduced) susceptibility).

An example of a model that incorporates both of these susceptibility notions is given by the following
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equations:

d
dt
~S = −diag(~S)diag(p)C~I

d
dt
~I = diag(~S)diag(p)C~I − γ~I ,

(9)

with initial condition ~S(−∞) = ~S0. Here, the parameter ~p denotes the reduced susceptibility of the

different age classes. Let ~S∗ = diag( ~S0)−1~S, and ~I∗ = diag( ~S0)−1~I, then

d
dt
~S∗ = −diag(~S∗)diag(~p)Cdiag(~S0)~I∗

d
dt
~I∗ = diag(~S∗)diag(~p)Cdiag(~S0)~I∗ − γ~I∗

(10)

The force of infection acting on age class a, is given by

λa = pa (C1aS0,1I
∗
1 + · · ·+ C6aS0,6I

∗
6 ) . (11)

Above, we interpret the parameters S0,a as the fraction of susceptible individuals (by using ~S0 for

the initial condition). Equation (11) shows that S0,a can equally well be interpreted as reduction in

infectiousness. In the case of immunity due to neutralizing antibodies, the best interpretation of S0,a

would be the fraction of susceptible individuals. For cellular immunity, S0,a can probably be best

interpreted as reduced infectiousness of individuals in age class a. Hence, in general, S0,a should be

interpreted as a combination of both.

Supplementary Table 1: The posterior modes (MAP estimates) and the 95% CrIs of the susceptibili-

ties (S0), the effective reproduction numbers (Reff), and the onset of the epidemics (t0), are listed in the

supplementary file SupplTable.tsv as tab-separated values.
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Figure S1: Catchment population size. The actual population sizes g are shown in black. The

estimates (ĝ; Equation 6) based on the 4 surrounding years are shown in red. Only when the population

size is not known, an estimate is used instead. The vertical lines show the beginning of the seasons

(week 30).
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Figure S2: Contact matrix (C). The values represent the average number of contacts per day. The

dominant eigenvalue of C equals 7.1.

Figure S3: The reporting probability decreases with time. The reporting probabilities are

given as a function of time (lines for the MAP estimate, and bands for the 95% CrI). The color coding

for age class is identical to Figure 3. Notice that during a season the reporting probability is kept

constant. The diamonds give the estimates based on the GIS data (cf. Figure 2).
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Figure S4: Distribution of isolate sampling dates. The distribution of known isolate sampling

calendar days is shown as a black histogram. The red line represents the smoothened density function.
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