Abstract
Mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) are a considerable cause for Parkinson’s disease (PD). However, the high- resolution 3D structure of the protein is still lacking. This structure will not only help to understand PD etiology but will also enable rational drug design. We have established a reliable method to produce LRRK2 crystals for the first time. However, the limited resolution of the diffraction data prevented structure determination using crystallographic methods. Herein we describe our efforts to improve the crystal quality by crystallizing under microgravity conditions aboard the International Space Station (ISS). Our method features diffusive sample mixing in capillaries and controlled crystal formation by transporting the samples in a frozen state. The crystallisation was successfully repeated under microgravity conditions. However, comparison of earth-grown and microgravity-grown LRRK2 crystals did not reveal any differences in diffraction quality. Here we present the established protocol and our experience adapting crystallization condition to the requirements necessary for successful crystallization of large and sensitive biomolecules under microgravity.