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 14 

How motor memory consolidates still remains elusive. Motor tasks’ consolidation were shown to depend 15 

on periods of sleep, whereas pure non-hippocampal dependent tasks, like motor adaptation, might not. 16 

Some research suggests that the mode of training might affect the sleep dependency of motor adaptation 17 

tasks. Here we investigated whether sleep differentially impacts memory consolidation dependent on the 18 

variability during training. Healthy men were trained with their dominant, right hand on a force field 19 

adaptation task and re-tested after an 11-h consolidation period either involving overnight sleep (Sleep) or 20 

daytime wakefulness (Wake). Retesting also included a transfer to the non-dominant hand. Half of the 21 

subjects in each group adapted to different force field magnitudes with low inter-trial variability (Sleep-22 

Blocked; Wake-Blocked), the other half with high variability (Sleep-Random; Wake-Random). EEG was 23 

recorded during task execution and overnight polysomnography. Motor adaptation was comparable 24 

between Wake and Sleep groups, although performance changes over sleep correlated with sleep spindles 25 

nesting in slow wave upstates. Higher training variability improved retest, including transfer learning, and 26 

these improvements correlated with higher alpha power in contralateral parietal areas. Enhanced 27 

consolidation after training might foster the ability to correct ongoing movements by responsive feedback 28 

rather than their pre-execution prediction. 29 

  30 
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Introduction  31 

The influence of post-learning sleep on motor memory consolidation has been frequently investigated (1). 32 

However, the literature shows an inconsistent picture with studies supporting (e.g. 2-4) and not supporting 33 

(e.g. 5,6) sleep dependent motor memory consolidation. Many studies, hence, point to a more complex 34 

relationship between specific factors of motor tasks and sleep (7, but also see 8) In a recent qualitative 35 

literature review (1), researchers identified that motor benefits or stabilizations due to sleep can be seen in 36 

explicit sequence learning tasks, specific variants of implicit sequence learning tasks, and specific 37 

visuomotor adaptation tasks, with all of these tasks involving hippocampal function to a certain extent. On 38 

the other side, it has been suggested that specific non-hippocampal-mediated tasks, like motor adaptation 39 

to dynamic perturbations (e.g. force field adaptation, 9), reflect a motor memory process that is purely 40 

time- but not sleep-dependent (5), although those results, to the best of our knowledge, have not been 41 

confirmed so far. 42 

 Beyond sleep’s dependency on specific task aspects, the effects might also depend on the specific 43 

training schedule. Several studies showed that motor training under highly unstable conditions, compared 44 

to more stable conditions, enhances posttest and transfer performance, suggesting that depending on the 45 

training schedule different memory systems are involved (e.g. 10-12). Furthermore, it has been assumed 46 

that specifically benefits after variable training depend on sleep (1). This assumption is derived from a 47 

study investigating imaginary training which showed that variable but not constant mental training of a 48 

motor task leads to sleep dependent memory improvements (13). Moreover, other studies revealed that 49 

hippocampal dependency of a motor task changes with the schedule and the amount of training (14-16). 50 

 In this study, we assessed the effects of sleep on memory for a force field adaptation task. 51 

Specifically, we were interested whether effects of sleep might express depending on the variability of 52 

different force fields used during training. For this purpose, subjects were examined either in more stable 53 

or highly unstable training conditions, and retested after periods of sleep or wakefulness with the same 54 

arm. Since previous work from our lab showed sleep dependent consolidation effects for contralateral 55 

transfer (17), we also examined transfer performance on the contralateral hand. We recorded EEG 56 

correlates during training, intervening sleep, and during retest, and also aimed to characterize the role of 57 

online feedback mechanisms in mediating improvements during movement execution. 58 

 59 

Results 60 

Behavioral results 61 

All groups adapted to the dynamic force fields and decreased their motor error (quantified by the enclosed 62 

area, EA) during Training (Fig. 2a,b, F(1,44) = 143.05, p < 0.001, pEta² = 0.765, for ANOVA with factor 63 

time (First Training Trials, Last Training Trials)) independent of Sleep/Wake conditions (F(1,44) = 0.06, 64 

p = 0.801, pEta² = 0.001) or Blocked/Random training conditions (F(1,44) = 1.95, p = 0.169, pEta² = 65 

0.042). The Blocked groups adapted faster during Training than the Random groups (time*training, 66 

F(1,44) = 4.50, p = 0.040, pEta² = 0.093; time*sleep, F(1,44) = 1.29, p = 0.262, pEta² = 0.028, for mixed 67 

ANOVA with factors training (Blocked, Random), sleep (Sleep, Wake), and time (First Training Trials, 68 

Last Training Trials)). Faster learning for Blocked groups was confirmed by FDR corrected post-hoc t-69 

tests on Last Training Trials between Random and Blocked groups (t(46) = 3.96, p = 0.002, d = 1.144). 70 

 Random and Blocked groups started with similar Posttest performance (Fig. 2a,b), showing that 71 

the retention from the Last Training Trials (11 hours earlier) to Posttest was worse for the Blocked 72 

compared to the Random groups (Fig 2b, retention*training, F(1,44) = 6.95, p = 0.012, pEta² = 0.136, for 73 

mixed ANOVA with factors retention (Last Training Trials, Posttest) and training (Blocked, Random)), 74 

but independent of sleep (retention*sleep, F(1,44) = 1.68, p = 0.201, pEta² = 0.037) for any group 75 

combination (retention*sleep*training, F(1,44) = 1.44, p = 0.237, pEta² = 0.032, for mixed ANOVA with 76 

factors retention (Last Training Trials, Posttest), training (Blocked, Random) and sleep (Sleep, Wake)). 77 

The benefit of Random over Blocked training manifested quickly during the Posttest from the 5th trial 78 

onwards (Fig. 2c). This benefit is also confirmed by Pearson correlation analyses showing that training 79 

success (i.e., lower motor error at the end of Training) was inversely related to retention success 80 

(percentage of Posttest error related to last Training error, r = - 0.78, p < 0.001, n = 48) with this effect 81 
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weaker in the Random (r = -0.51, p = 0.01, n = 24) than in the Blocked groups (r = -0.86, p < 0.001, n = 82 

24; p = 0.018, z = 2.36, for the difference using Fisher r-to-z transformation). However, training success in 83 

general was moderately predictive and positively correlated with the overall Posttest performance for all 84 

groups (r = 0.29, p = 0.044, n = 48; for any group r is within 0.167–0.35). This suggests, though initial 85 

Training performance might benefit from a blocked training schedule, motor memory retention benefit 86 

from a randomized training schedule. These processes were unaffected by sleep. 87 

 We further investigated if memory consolidation also enhanced the generalization from the 88 

dominant hand (during Training) to the non-dominant (Transfer). All groups performed worse during 89 

Transfer testing as compared to the Last Training Trials (F(1,44) = 483.56, p < 0.001, pEta² = 0.917). In 90 

addition, initial Transfer performance of all groups was worse compared to the initial Training 91 

performance (First Training Trials; Fig. 2). This lower initial performance during contralateral transfer 92 

learning indicates that participants expected the force field in the opposite direction as during Training 93 

(relying on an internal rather than an external representation). This is also supported by the motor 94 

prediction (force field compensation factor, FFCF) showing similar force field predictions in the initial 95 

Transfer trials for the Blocked and Random groups (Blocked: -15.64 %, SD 16.61 %; Random: -15.62 %, 96 

SD 17.85 %, negative sign indicates expectation of opposite force field direction). Motor error in Transfer 97 

test was lower in the Random than in the Blocked groups (retention*training, F(1,44) = 16.57, p < 0.001, 98 

pEta² = 0.274, for mixed ANOVA with factors retention (Last Training Trials, Transfer) and training 99 

(Blocked, Random)) and this effect manifested immediately after the first Transfer trial (Fig. 2a,d). 100 

Transfer learning effects were independent of sleep (retention*sleep, F(1,44) = 0.11, p = 0.742, pEta² = 101 

0.002) and not strongly predictive by training success (for all groups r = 0.12, p = 0.42, n = 48; Random 102 

group r = 0.14, p = 0.54, n = 24; Blocked group r = 0.395, p = 0.056, n = 24). However, transfer learning 103 

was strongly influenced by motor memory retention, that is, improvements over the retention period from 104 

Last Training Trials to Posttest were associated with improvements from Last Training Trials to Transfer 105 

(r = 0.84, p < 0.001, n = 48), an association that was weaker for the Random (r = 0.48, p = 0.024, n = 24) 106 

than for the Blocked groups (r = 0.88, p < 0.001, n = 24; p = 0.007, z = 2.72, for the difference between 107 

correlation coefficients after Fisher r-to-z transformation). This suggests that, in general, an enhanced 108 

consolidation from Training to Posttest is strongly connected to an enhanced Training to Transfer 109 

consolidation but transfer learning was less hampered by motor memory consolidation after random than 110 

after blocked training. 111 

 Motor error quantified by EA is affected by both, predictive feedforward and responsive motor 112 

feedback. As the feedback responses typically start to compensate for feedforward errors already at 100 113 

ms (18) and the average trial duration across groups was about 550 ms, EA should mostly reflect the 114 

feedback responses. Thus, we tested if the observed influences of training conditions also underlie 115 

feedforward motor prediction as measured by FFCF. Neither training nor sleep condition influenced motor 116 

prediction changes from Training to Posttest (retention*sleep, F(1,44) = 1.23, p = 0.274, pEta² = 0.027; 117 

retention*training, F(1,44) = 0.56, p = 0.459, pEta² = 0.013) or Training to Transfer (retention*sleep, 118 

F(1,44) = 1.37, p = 0.249, pEta² = 0.030; retention*training, F(1,44) = 0.41, p = 0.524, pEta² = 0.009). 119 

This suggests that the observed effect here is more affected by late feedback than early feedforward 120 

responses. 121 

 122 

Task-EEG  123 

Explorative analysis using cluster-based statistics for a possible retention*sleep effect (with retention: Last 124 

Training Trials, Posttest; Last Training Trials, Transfer) revealed that cortical activity in all frequency 125 

bands were unaffected by Sleep vs. Wake. Thus, we focused on further task-EEG analysis regarding the 126 

training conditions (Blocked, Random). 127 

 Analysis of a possible training condition effect was restricted to the alpha band power (Fig. 3) 128 

over parietal areas according to previous work showing a linkage between training effect and force field 129 

adaptation only in alpha frequencies (19). Based on these previous findings, we defined a left- and right-130 

hemispheric region of interest (ROIl: CP5, CP1, Pz, P3; ROIr: CP6, CP2, Pz, P4) and found a higher alpha 131 

band power for the Random compared to the Blocked groups in the Posttest and a similar effect which did 132 

not reach significance in the Transfer test, both during movement execution (Posttest, t(46) = -2.22, p = 133 
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0.031, d = 0.642, for t-test of ROIl; Transfer, t(44) = -1.85, p = 0.072, d = 0.543, for t-test of ROIr). 134 

Increased alpha band values over ROIl from Training to Posttest during movement execution were 135 

associated with better task retention success (quantified by a small Training-to-Posttest difference of the 136 

motor error; Fig. 4) for participants of the Random but not of the Blocked groups (Random, ρ = -0.50, p = 137 

0.031; Blocked, ρ = 0.04, p = 1.0, for Spearman correlations with ρ representing Spearmans rho). This 138 

suggests that random training of force fields affects the parietal alpha band activity of the Posttest. 139 

 Furthermore, we explored if the behavioral retention effects (Training-to-Posttest, Training-to-140 

Transfer), are predictable by EEG’s alpha band power during Training. Spearman correlations indicate 141 

positive but weak associations from Training-to-Posttest for both groups (Random, Blocked), phases 142 

(planning, execution), and ROIs (ROIl, ROIr), which did not reach statistical significance (Fig. 5). 143 

However, associations of Training-to-Transfer consolidation were strong for Blocked (ρ in all cases 144 

between 0.39 and 0.60) but still weak for Random groups (ρ between 0.04 and 0.20). These positive 145 

correlations for Blocked groups were still statistically significant after FDR correction for ROIl (Fig. 5; 146 

planning, ρ = 0.595, p = 0.025; execution, ρ = 0.550, p = 0.025) but only during trial execution for ROIr 147 

(planning, ρ = 0.389, p = 1.0; execution, ρ = 0.486, p = 0.050). 148 

 149 

Sleep-EEG 150 

Though sleep during consolidation did not improve the motor performance more than wake-time, we 151 

explored which activity during sleep could give an indication of the consolidation processes to happen 152 

during the time of sleep. None of the basic sleep stage parameters correlated with consolidation 153 

performance (Supplementary Table S1). 154 

Consolidation success was predicted by sleep spindles and their occurrence during upstates of 155 

slow waves (Supplementary Table S2). In brief, longer sleep spindles and especially their occurrence 156 

(count and density) during upstates of slow waves were associated with improvements from Training to 157 

Posttest and Training to Transfer. This effect was most pronounced in the left parietal area (i.e., P3, 158 

corresponding to ROIl) and also indicated by more slow-wave activity (power density) during sleep-159 

spindle enriched Stage 2 sleep. A less steep decline in oscillation frequency (i.e. less ‘chirp’ towards lower 160 

oscillation frequency) during such spindles predicted worsening from Training to Transfer, and a higher 161 

sleep spindle oscillation frequency in fronto-central areas was predictive for the deterioration of the motor 162 

performance from Training to Posttest or Training to Transfer. Higher dispersion of sleep spindles locked 163 

to the slow wave down state (in Cz), which suggests generally impaired mechanisms in the timing of sleep 164 

spindles and slow waves, predicted less improvements during Transfer compared to Training. No other 165 

sleep measures reached significant correlation with consolidation measures. 166 

 167 

Discussion 168 

Our results show that Random and Blocked groups adapted to the force field conditions successfully. 169 

Subsequent consolidation was influenced by training conditions but unaffected by intervening sleep. 170 

Regarding training conditions, although Training outcome was worse for the Random than Blocked 171 

groups, all groups showed a similar motor performance in the Posttest and Random groups showed an 172 

even more pronounced motor performance compared to the Blocked groups when tested for transfer on 173 

the untrained, non-dominant hand. This improvement expressed itself in reductions in motor error 174 

(enclosed area), which is mostly affected by responsive feedback corrections, but not in the measure of 175 

motor prediction (force field compensation factor). 176 

 Our behavioral results exclude a substantial profit from sleep on the present motor adaptation task. 177 

Task performance and measures of consolidation were independent on whether participants spent awake 178 

or asleep during the intervening time between Training and Retest. Thus, our study confirms earlier 179 

findings (5) and concurs with some force field studies (20,21) claiming that consolidation of motor 180 

adaptation towards dynamic perturbations is time but not sleep dependent. Previous work suggested that 181 

force field adaptation represents a non-hippocampal dependent, implicit memory (20,22). Accordingly, 182 

our negative findings here agree with the assumption that only hippocampal dependent motor processes 183 

benefit from sleep (1). However, research showed that hippocampal damage deteriorates the benefits of 184 
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unstable training conditions (16), indicating that a motor task might become hippocampal-dependent - and 185 

thus would be expected to become sleep-dependent - when trained under highly unstable conditions 186 

(1,13). However, this view is not supported by our behavioral data also showing now sleep effects for the 187 

Random groups. The exact extent to which motor adaptation after variable training becomes hippocampal-188 

dependent is unclear and need to be elaborated in future studies. 189 

 Despite the lack of a consolidation benefit of sleep over wake retentions, the consolidation success 190 

correlated positively with sleep spindle activity during slow-wave upstates. This is at odds with the view 191 

that consolidation of motor adaptation learning is completely independent of hippocampal processes, 192 

because the coalescence of spindle and slow-wave activity during sleep is thought to benefit consolidation 193 

of hippocampal-dependent tasks in particular (22-24). Intriguingly, we found task-consolidation-194 

associated alpha activity over parietal brain regions which matches the strong association of sleep-195 

mediated consolidation in the same regions. This concurs with the view that cortical regions that were 196 

engaged in learning have a strong local association with spindles and slow waves in subsequent sleep (25) 197 

and predict the extent of consolidation (26). If such associations are functionally involved in the 198 

consolidation process in our data or are merely a reflection of consolidation success of other memories, 199 

not tested by our task, is unclear. 200 

 We found variable training in the motor adaptation task was predictive of consolidation benefits. 201 

This study therefore reproduced earlier findings of the contextual interference effect (12,27) in that higher 202 

training variability led to a decreased motor performance at the end of Training, but to a performance 203 

similar to that of the blocked training groups on the Posttest and to even performance benefits on the 204 

Transfer test. As previously reported (19), this gain induced by variable training is only seen in the motor 205 

error which is mostly affected by feedback responses. By contrast, motor prediction again did not show 206 

this effect. Because subjects do not receive task specific feedback during force channel trials, FFCF is 207 

only feedforward dependent (28,29). Therefore, it is likely that the motor benefits of the Random groups 208 

were facilitated by feedback corrections during movement execution evoked by the permanent regulation 209 

of random, unexpected forces during Training. 210 

 Although the Random groups ended their training worse compared to the Blocked groups, their 211 

Posttest performance was comparable. This points to unstable training conditions to either prime for better 212 

memory consolidation or the formation of memory that is more stable. Also, the generalization to the 213 

Transfer test on the left hand was more pronounced in the Random groups. The consistency of this 214 

generalization benefit over 30 trials speaks for a stable long-term memory effect. This was confirmed by 215 

the significant association of the Training performance and benefits in memory consolidation that is lower 216 

Training performance (in terms of higher motor error) from unstable training also led to better retention 217 

performance. 218 

 During Transfer testing, the participants expected a force field on their left hand that was directed 219 

in the opposite direction than force field was during Training of the right hand which explains the initially 220 

worse Transfer performance present in all groups when compared to initial Training and Posttest 221 

performance. This suggest the generalization not to take place in an extrinsic force field transformation 222 

but rather in intrinsic, mirror symmetric coordinates, that is, perturbation was expected to come from right 223 

on the right hand and from left on the left hand. This agrees with the literature (9) but contradicts the 224 

preference of extrinsic coordinates in other studies (30,31). The divergent findings of coordinate systems 225 

in use for generalization are in line with the recent assumption that representations might occur in a 226 

mixture of coordinate systems (32,33). 227 

 Paradoxically, we do not find an even more decreased initial Transfer performance for Random 228 

groups, as would be expected by a more stable intrinsic representation in this group which gives rise to 229 

predict the force field in the opposite ‘wrong’ direction during Transfer. But the opposite was the case, 230 

i.e., the Random groups showed an enhanced Transfer performance compared to the Blocked groups. 231 

There are three possible explanations for this outcome: 232 

 (1) Generalization was worse for the Random compared to the Blocked groups. Increased motor 233 

performance of the Random group might be facilitated by a weaker generalization or consolidation of the 234 

generalized memory. However, motor performance quantified by the motor prediction showed similar 235 

Transfer performances for all groups, indicating similar generalizations between groups. 236 
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 (2) Random training favored the formation of a different coordinate system (or mixture of 237 

systems, 32). The results, however, do not support such explanation as motor predictions were similar 238 

between groups. In addition, inspection of single individual data revealed cues for an extrinsic force field 239 

representation in only 4 of the 24 participants of the Random groups. This was also the case in 2 of the 24 240 

participants of the Blocked groups. 241 

 (3) Random training led to a generally increased ability to use feedback responses. This 242 

explanation is supported by the finding that only motor error, which is sensitive to feedback corrections, 243 

but not motor prediction showed an increased memory consolidation for the Random groups. In addition, 244 

the EEG data shows that parietal but not frontal areas of the brain are involved in the contextual 245 

interference effect, with the former known to be specifically implicated in sensory integration (34). 246 

However, future research should further investigate the influence of variable training on online feedback 247 

corrections in motor behavior. 248 

 Altogether, variable training leads to benefits in consolidation of a force field adaptation task. 249 

This effect is even more prominent when retention is tested on the contralateral hand. We assume that the 250 

increased consolidation after highly variable training is facilitated by an increased ability to use online 251 

feedback corrections. 252 

 Task-EEG during task performance showed that behavioral changes across the consolidation 253 

period after Random training are accompanied with a parallel increase (from Training to Posttest) in alpha 254 

band power over parietal areas, which concurs with previous findings from our lab (19). In detail, we were 255 

able to reproduce a negative correlation between changes in alpha power over contralateral parietal areas 256 

(ROIl) and motor error during movement execution. An increased alpha band power is frequently 257 

discussed as a sign of an active inhibition of the underlying cortical region (35). Therefore, a negative 258 

correlation might indicate that, for Random groups, a more accurate and, thus, better consolidated motor 259 

performance comes in parallel with an increased inhibition of parietal areas. 260 

 The results also showed that consolidation in this force field adaptation task can be predicted by 261 

the alpha power over parietal areas during Training. Blocked but not Random groups showed significant 262 

associations between Training-to-Transfer consolidation and the alpha band power. Thus, high parietal 263 

alpha power and, thus, inhibition of parietal cortical areas during Training, might favor a weaker 264 

consolidation for the Blocked but not for the Random groups. Intriguing questions arising here are 265 

whether the greater efficacy of random training specifically results from its ability to counter the 266 

disadvantage of increased parietal alpha power during training and whether parietal alpha power is 267 

connected to online feedback corrections of the motor system. 268 

 269 

Methods 270 

Participants 271 

Forty-eight healthy, male participants recruited from the local university campus were included in the 272 

study (age 24.27 ± 0.45 yrs.). All participants were native German speakers with normal or corrected to 273 

normal vision and were tested for right-handedness by the Edinburgh handedness inventory (36). They 274 

reported not to nap habitually or have any sleep disorders and did not take any medication at the time of 275 

the experiments. Participants followed a normal sleep–wake rhythm and reported no night shifts during 276 

the 6 weeks before the experiment. Participants were instructed to keep a regular sleep schedule, abstain 277 

from caffeine- and alcohol-containing drinks for at least 2 days before and on the days of the experiments. 278 

Experimental task and task-protocol were new to the participants. All participants provided written 279 

informed consent and the study was approved by the ethics committees of the Karlsruhe Institute of 280 

Technology and the University of Tübingen. 281 

 282 

Apparatus and motor adaptation task 283 

Apparatus and task stem from a previous study (see 19, for a detailed description). Participants performed 284 

point-to-point reaching movements at a robotic manipulandum (Kinarm End-Point Lab, BKIN 285 

Technologies, Kingston, Canada; Fig. 1a). The manipulandum sampled position of the handle and forces 286 

exerted on the handle at 1000 Hz. Participants’ grasped the handle and their forearm was supported by an 287 
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air-sled system which enabled low friction movements. The task goal was to move a cursor on a screen – 288 

controlled via the robot handle – into a target circle (Fig. 1b). To prevent movement anticipation, each 289 

trial started with a fixation cross and the highlight-duration of this fixation cross varied randomly between 290 

0.8 and 1.5 s. When the fixation cross changed its shape to a target circle, subjects were allowed to start 291 

their movement (no fast reaction times were required). After reaching the target, the manipulandum 292 

actively guided subjects’ hands back to the center point and provided the beginning of the next trial. In 293 

total, six targets were arranged on a circle with a diameter of 20 cm surrounding the center target. The 294 

target order was pseudo-randomized so that in every block (containing 6 movements) every target 295 

highlighted just once. In addition, within each group the target order was different for every single subject 296 

so that the mean target direction and the mean force field magnitude across all subjects was identical of 297 

each specific trial. 298 

 The manipulandum can produce forces via the handle towards subjects’ hands. In this study, we 299 

implemented three types of trials. In null field trials, no forces were produced and subjects performed 300 

movements under unperturbed conditions. In force field trials, the motors of the manipulandum were 301 

turned on and produced a velocity-dependent curl force field in clockwise direction with three different 302 

viscosity magnitudes of 10, 15, and 20 Ns/m. In force channel trials, the manipulandum produced a virtual 303 

force channel from start to target so that the subjects were only able to move along this path directly into 304 

the target (Fig. 1c). In every single trial, visual feedback about the movement time was given to ensure 305 

similar movement times across trials and subjects (< 450 ms: too slow; > 550 ms: too fast). 306 

 Offline calculations of dependent variables on the behavioral level were performed using 307 

MATLAB R2015b (MathWorks Inc., Natick, MA, United States). For null field and force field trials, we 308 

computed the motor error by using the enclosed area (EA) between subjects’ hand path and the vector 309 

joining start and target (Fig. 1c, left). This parameter was averaged over 30 trials for the Baseline, First 310 

Training Trials, Last Training Trials, Posttest, and Transfer. To quantify motor performance in force 311 

channel trials, we calculated a force field compensation factor (FFCF; Fig. 1c, right) by means of the 312 

linear regression of the measured and the ideal perpendicular force profile (29) and averaged this across 313 

each 6 force channel trials. As subjects do not receive error-feedback in these trials, this parameter reflects 314 

mainly movement prediction and, thus, feedforward mechanisms (28). From now on, the term motor error 315 

will refer to the enclosed area and the term motor prediction will refer to the force field compensation 316 

factor. 317 

 318 

Design and Procedures 319 

This study compares the effects of random (unstable) vs. blocked (stable) training on motor adaptation and 320 

consolidation processes during wake vs. sleep. In a between-groups design, participants were randomly 321 

assigned to four equal sized groups (n = 12) of comparable age (range 18–30 yrs; p > 0.45, for one-way 322 

ANOVA between groups) with altered training conditions and retention periods taken place either in the 323 

night or during the day. All participants trained with their dominant right hand the motor adaptation task. 324 

The task was either trained in a random trial sequence (Random group) or in three randomized blocks, 325 

each containing a consistent field magnitude (Blocked group). Participants trained either in the morning (9 326 

am; Fig. 1d) and were retested in the evening (8 pm; Wake-Random, WR; Wake-Blocked, WB) or, vice 327 

versa, trained in the evening and were retested the following morning after a night of sleep (Sleep-328 

Random, SR; Sleep-Blocked, SB). The retention period between Training and Retest sessions was about 329 

11 hours for all groups. The Wake participants spent their awake time following their usual daily activity 330 

and Sleep participants went home after Training to sleep there with polysomnographic home recordings. 331 

Retest session contained a Posttest and Transfer test, quantifying the motor performance of participants 332 

using their right (Posttest) and left (Transfer) hand (Fig. 1d). 333 

Before Training, participants were mounted with a task-EEG and familiarized themselves with the 334 

motor adaptation task. During Familiarization, participants performed 144 null field trials with their right 335 

hand. Before Training and Posttest, participants were tested on possible confounding effects of subjective 336 

sleepiness (Stanford Sleepiness Scale, SSS, 37), mood (Positive Affect Negative Affect Scale, PANAS, 337 

38,39), and objective vigilance (5-min Psychomotor Vigilance Task, PVT, 40). 338 
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Then, participants performed a Baseline measurement using 30 null field trials and 6 additional 339 

force channel trials. Training contained 144 force field trials followed by 6 consecutive force channel 340 

trials. All participants trained force field trials split into three force field magnitudes (10, 15 and 20 Ns/m) 341 

with a mean force field magnitude of 15 Ns/m over all trials. Random and Blocked groups trained the 342 

magnitudes under different training schedules that manipulate the training variability of those groups: the 343 

Random group trained all trials with force field magnitude switching from trial to trial in a pseudo-random 344 

order (unstable); the Blocked groups trained three trial blocks, each containing 48 trials with consistent 345 

force field magnitude, with force field magnitude switching only between the blocks. The block order was 346 

counterbalanced across participants of each group. The Wake group participants ended the Training 347 

session with unmounting of the task-EEG and were given instructions for the daytime until arrival for the 348 

Retest session in the evening; the Sleep group participants, however, were additionally prepared for the 349 

sleep-EEG and received instruction for the overnight home-polysomnography recording until the next day. 350 

The Sleep group started the Retest session with the unmounting of the sleep-EEG. 351 

The Retest session was the same for all participants. Thereby, all participants performed a Posttest 352 

of the task with 6 force channel trials, 30 force field trials, and 6 force channel trials. All force field trials 353 

were fixed at the mean force field magnitude of the Training (15 Ns/m). Posttest was followed by a 354 

Transfer test. Transfer test had the same protocol as Posttest and participants performed the behavioral 355 

task with the non-dominant left hand. Note that the force field direction in the Transfer test was still 356 

clockwise. 357 

 358 

Task-EEG 359 

To record the EEG during task performance we used the actiCHamp system with 32 active-electrodes and 360 

used the BrainVision PyCorder V1.0.6 for data recordings (Hard- and software from Brain Products, 361 

Gilching, Germany). The task-EEG was synchronized with the manipulandum via a direct link and the 362 

data was sampled at 1000 Hz. Electrodes were mounted on subjects’ heads with a cap and 29 electrodes 363 

were used for the recording of cortical activity using the international 10-10 system (Fp1, Fp2, F7, F3, Fz, 364 

F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, TP10, O1, Oz, 365 

O2). The remaining three electrodes were used to record horizontal and vertical eye movements. Electrode 366 

Cz was used as the reference and Fpz as the ground electrode. The impedances of the electrodes were kept 367 

below 10 kΩ. 368 

 Offline EEG analyses were done using MATLAB R2015b (MathWorks Inc., Natick, MA, United 369 

States) and EEGLAB 13.5.4b (41). Raw data of the task-EEG was filtered first by a FIR high-pass filter 370 

with a cut-off frequency of 0.5 Hz and then by a FIR low-pass filter with a cut-off frequency of 281.25 371 

Hz. Line noise was removed using the cleanline plugin for EEGLAB. Channels strongly affected by 372 

artifacts were removed by visual inspection and the missing channels restored using a spherical 373 

interpolation. Electrodes were re-referenced to the average reference and channel location Cz was 374 

reconstructed and appended to the data. Then, EEG data was epoched into segments of 8.5 s ranging from 375 

6 s before to 2.5 s after trial start. Principle component analysis (PCA) was performed to compress the 376 

data to 99.9 % of the variance and, thus, deal with the reduced rank due to interpolation. Then, infomax 377 

independent component analysis (ICA, 42) was performed on the principle components. To detect bad 378 

ICA components, the components were evaluated in the spectral, spatial and temporal domain. 379 

Components showing distinct artifacts were rejected and the data was re-transformed into the channel 380 

domain. 381 

 We calculated the percentage power in the frequency domain for subsequent statistical 382 

comparisons. For this, we used complex Morlet wavelets for the frequency decomposition. We 383 

decomposed the data into 40 frequency bins ranging from 2 to 100 Hz in logarithmic space with 5 to 19 384 

wavelet cycles changing as a function of frequency. The decomposed data was averaged over 30 trials and 385 

squared, resulting in the average power for: Baseline, First Training Trials, Last Training Trials, Posttest, 386 

and Transfer. Then, power was normalized according to the average reference period 250 ms before the 387 

highlighting of a fixation cross and the event-related desynchronization / synchronization (ERD / ERS) 388 

was calculated (43). 389 
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 Data was averaged in the frequency domain into specific frequency bands: theta (4-7 Hz), alpha 390 

(8-13 Hz), beta (14-30 Hz), and gamma (30-45 Hz). The data was also compressed in the time-domain by 391 

averaging to two time windows: movement planning (-400 ms to 0 ms) and movement execution (0 s to 392 

400 ms), where 0 s indicates the start of the trial. 393 

 394 

Polysomnography and sleep-EEG analyses 395 

Standard polysomnography was assessed using a home recording system (Somnoscreen Plus, 396 

Somnomedics, Randersacker, Germany) including electroencephalography (EEG) at locations F3, F4, Fz, 397 

C3, C4, Cz, P3, P4, Pz (International 10–20 system), electrooculography (EOG) sites around the eyes, 398 

electromyography (EMG) with electrodes placed at each musculus mentalis as well as the two electrodes 399 

at each mastoids behind the ear. Fpz served as the ground electrode and Cz as the original reference. Data 400 

was digitized at 256 Hz and down-sampled to 128 Hz to facilitate computation. Offline manual sleep 401 

scoring and automatic basic sleep-EEG analysis was performed using the open-source toolbox SpiSOP 402 

(44). Data of two participants (one from the Blocked, one from Random group) were excluded for these 403 

analyses due to technical failures (n = 22). Scoring was performed by an experienced rater according to 404 

standard criteria (45) and was blind to the participant’s conditions. Sleep-EEG analyses, apart from sleep 405 

scoring, were performed on EEG channels re-referenced to the average signals from the mastoids. Sleep-406 

EEG parameters were detected using standard settings of SpiSOP (44) based on analyses described in (46) 407 

and briefly described in the following. 408 

Power spectral analyses of sleep EEG. Power spectra were calculated separately for Stage 2, 409 

SWS, non-REM and REM sleep on consecutive artifact-free 10 s intervals of non-REM sleep, which 410 

overlapped in time by 9 s. Each interval was tapered by a single Hanning-adapted window (1 s tails follow 411 

Hanning window, the other 8 s are 1) before applying Fast Fourier Transformation that resulted in interval 412 

power spectra with a frequency resolution of 0.1 Hz. Power spectra were then averaged across all blocks 413 

(Welch's method) and normalized by the effective noise bandwidth to obtain power spectral density 414 

estimates for the whole data. Mean power density in the following frequency bands was determined: slow-415 

wave activity (0.5–4 Hz), theta (4–8 Hz), spindles (9–15 Hz), alpha (8–12 Hz), slow spindles (9–12 Hz) 416 

and fast spindles (12–15 Hz), and beta (15–30 Hz), and log transformed (decibel) prior to statistical 417 

testing. 418 

Slow waves. For the identification of slow waves, the signal in each channel during non-REM 419 

sleep epochs was filtered between 0.5 and 3.5 Hz. Next, all intervals of time with consecutive positive-to-420 

negative zero crossings were marked as putative slow waves if their durations corresponded to a frequency 421 

between 0.5 and 1.11 Hz (zero crossings marked beginning and end of slow oscillation), yet these were 422 

excluded in case their amplitude was >1000 mV (as these were considered artifacts) or when both 423 

negative and positive half-wave amplitudes lay between −15 and +10 mV. A slow wave was identified if 424 

its negative half-wave peak potential was lower than the mean negative half-wave peak of all putatively 425 

detected slow oscillations in the respective EEG channel, and also only if the amplitude of the positive 426 

half-wave peak was larger than the mean positive half-wave amplitude of all other putatively detected 427 

slow waves within this channel. For each participant and channel, the number of slow oscillations, their 428 

density (per min non-REM sleep), mean amplitude, and slopes (down slope, the ratio between value of the 429 

negative half-wave peak and the time to the initial zero crossing, up slope, the ratio between absolute 430 

value of the negative half-wave peak and the time to the next zero crossing) were calculated. 431 

Sleep spindles. For each EEG channel, the signal during non-REM epochs was filtered in a 2-Hz 432 

frequency band centered to the visually determined corresponding power peak (12 to 15 Hz range, 13.32 ± 433 

0.11) in the non-REM power spectrum of each participant. Then, using a sliding window with a size of 0.2 434 

s, the root mean square was computed, and the resulting signal was smoothed in the same window with a 435 

moving average. A sleep spindle was detected when the smoothed RMS signal exceeded an individual 436 

amplitude threshold by 1.5 standard deviations of the filtered signal in this channel at least once and for 437 

0.5 to 3 s. The threshold crossings marked the beginning and end of each spindle and quantified their 438 

duration. Sleep spindle amplitude was defined by the voltage difference between the largest trough and the 439 

largest peak. Spindles were excluded for amplitudes >200 mV. We focused the analysis on fast spindles 440 

only as slow spindles power peaks could not clearly identified in too many participants. For each 441 
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participant and channel’s absolute spindle counts, spindle density (per min non-REM sleep), mean 442 

amplitude, average oscillatory frequency and duration were calculated. 443 

Sleep spindles co-occurring with slow wave upstates. To explore if spindles co-occurring with 444 

slow waves possess altered properties and associations with behavior, we identified slow waves that had at 445 

least one detected sleep spindle from the lowest trough (down state) to +0.5 seconds after the next 446 

positive-to-negative zero crossing (i.e., the slow wave upstate). Only the first spindle with the shortest 447 

delay to the down state was considered. Then properties of these co-occurring sleep spindles and slow 448 

waves were determined as mentioned above. In addition, the mean delay of sleep spindles to the slow 449 

wave down state as well as the standard deviation of this delay were calculated to estimate the temporal 450 

dispersion of their co-occurrence. 451 

For an exploratory analysis of standard and fine-tuned sleep EEG parameters and their 452 

associations with memory consolidation, power density, slow wave and sleep spindle parameters (e.g. 453 

density) were averaged per electrode. Pz, F3 and F4 was each excluded from analysis in two sleep subjects 454 

and C4 in one sleep subject since these electrodes went bad during sleep EEG recording with otherwise 455 

good sleep EEG. 456 

 457 

Statistical analysis 458 

We used independent two-tailed t-tests and mixed model ANOVAs with the within factors time (First 459 

Training Trials, Last Training Trials), retention (Last Training Trials, Posttest; Last Training Trials, 460 

Transfer), and the between factors sleep (Sleep, Wake) and training (Random, Blocked) to test differences 461 

in the motor error (EA) and motor prediction (FFCF). Data normality was tested using the Shapiro-Wilk 462 

W-test, and parametric or nonparametric statistical tests were chosen accordingly. For choice of 463 

appropriate t-tests equal variances of groups was tested using Levene's test. 464 

 Statistical analysis of task-EEG in terms of a possible sleep effect were done using cluster-based 465 

statistics corrected by the maximum permuted cluster values (47). Therefore, mixed model ANOVAs with 466 

factors retention (Last Training Trials, Posttest; Last Training Trials, Transfer) and sleep (Sleep, Wake) 467 

were performed for every frequency band during movement planning and execution. Clusters were 468 

computed on the channel level according to p-values of the ANOVAs and the summed F-value for each 469 

cluster was stored as the observed statistic. Then, permutation testing was done using 1000 iterations. For 470 

each iteration, data was shuffled across both dimensions (retention, sleep), ANOVA was computed, and 471 

the maximum cluster value was stored. P-values were defined as the account of maximum permutation 472 

clusters exceeding the observed statistic divided by the number of iterations. 473 

 Furthermore, we tried to reproduce previous findings from our lab (19), targeting the neural basis 474 

for the benefits of variable training. Accordingly, independent t-tests between training groups (Random, 475 

Blocked) were performed to test alpha band power differences during Posttest and Transfer. In addition, 476 

motor error differences between Posttest and Last Training Trials (Training-to-Posttest) and Transfer and 477 

Last Training Trials (Training-to-Transfer) were computed for each subject on the behavioral level and 478 

correlated with the EEG data during Training using Spearman correlations. 479 

Likewise, to find potential correlates of consolidation success within sleep parameters, we 480 

performed an explorative analysis across both Sleep groups using Spearman correlations between 481 

behavioral changes over the retention period and all sleep parameters (i.e., total sleep time [TST]; sleep 482 

onset delay; duration and percentage of TST sleep in stages like Wake after sleep onset, Stage 1, Stage 2, 483 

SWS, non-REM [i.e. SWS+Stage 2]; Power density of each sleep stage in the prominent frequency bands; 484 

parameters of slow waves, sleep spindles and their co-occurrence during the slow-wave upstates). Due to 485 

the explorative nature in the absence of a behavioral sleep effect we did not corrected these correlations 486 

for multiple comparisons. 487 

 Data and statistical analyses were performed using Matlab R2015b (Mathworks, Natick, USA) for 488 

Windows, JASP 0.8.0.1 (www.jasp-stats.org), and [R] (Windows 64bit version, 3.3.1, R Development 489 

Core Team) [The R Foundation for Statistical Computing, (www.r-project.org/foundation) 2007]. 490 

Threshold for statistical significance was set to p = 0.05. Multiple comparisons were either corrected by 491 

the maximum statistic (permutation test) or by the False Discovery Rate (FDR, 48). In the case of FDR, p-492 

values in this study represent the FDR corrected p-value (49). 493 
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 494 

Data availability 495 

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 496 

Materials, including a Supplemental Data file (csv format) of all individual data points. Additional data 497 

related to this paper may be requested from the authors. Computer codes used to generate the results can 498 

be provided upon request. Code for sleep analyses and standard parameters is publicly available at 499 

www.spisop.org. 500 

 501 
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 622 

Figure Legends 623 

Figure 1: Motor adaptation task and experimental design. (a) The motor adaptation task was instrumented 624 

by a robotic manipulandum (Kinarm End-Point Lab, BKIN Technologies) with a custom made low 625 

friction air-sled system. The robotic manipulandum can induce force fields to perturb participants’ hand 626 

movements. During the task, participants’ EEG is recorded. (b) Example of one trial from highlighting of 627 

the fixation cross to trial termination by reaching the target. (c) Sketch of the parameters quantifying the 628 

motor error (enclosed area, EA) and motor prediction (force field compensation factor, FFCF). Enclosed 629 

area (left) is defined by the area between the trajectory and the direct line between start and target. Arrows 630 

indicate the force field direction. The FFCF (right) is computed using the subject’s forces (Fx) directed 631 

against virtual channel walls and compared to the ideal force profile to cancel out the perturbation. (d) All 632 

participant groups had a Training session to train the motor adaptation task with their dominant right hand 633 

including Familiarization phase, Control tests (subjective sleepiness, mood, and vigilance), a Baseline, and 634 

the force field Training (gray blocks). After a Retention period, Retest performance was quantified in a 635 

Posttest and an additional Transfer test on the left hand. Groups differed in their training and consolidation 636 

period. The Random groups trained motor adaptation under highly unstable conditions and the Blocked 637 

groups under more stable training conditions. The Wake groups trained in the morning and were retested 638 

in the evening and the Sleep groups were trained in the evening and retested the following morning after a 639 

night of sleep. 640 

 641 
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Figure 2: Behavioral results. (a) Progress of the mean (± s.e.m) motor error (enclosed area, EA) for the 642 

Blocked (black) and Random (red) groups during Training (left), Posttest (middle) and Transfer trials 643 

(right). (b) Mean (± s.e.m) motor error across 30 trials for each group during First and Last Training 644 

Trials, Posttest and Transfer. SB: Sleep-Blocked, SR: Sleep-Random, WB: Wake-Blocked, WR: Wake-645 

Random. (c) P-values of different factors and interactions of the mixed ANOVAs investigating a 646 

consolidation effect from Training to Posttest and (d) Training to Transfer. 647 

 648 

Figure 3: Mean alpha band power. Progress of the mean alpha band power for Blocked and Random 649 

groups during the Training session and during the Posttest and Transfer test of the Retest session. 650 

Leftmost and rightmost topographies represent the mean power across motor planning (-400–0 ms) and 651 

execution (0–400 ms) with respect to the trial start (0 ms). Other plots represent the topographical power 652 

at specific points in time (from -300–300 ms). Power values are in percentage of the average reference 653 

period 250 ms before the highlighting of a fixation cross. 654 

 655 

Figure 4: Association between Training-to-Posttest difference for motor error and alpha power. 656 

Associations between Training-to-Posttest difference of the motor error (quantified by the enclosed area) 657 

and alpha power (8–13 Hz) for ROIl (CP5, CP1, Pz, P3) during motor execution were tested using 658 

Spearman correlation. Each red cross represents the data of a single participant from the Random group 659 

and each black circle of a participant from the Blocked group. Lines represent a basic linear fit (red: 660 

Random; black: Blocked) and ρ represent Spearmans rho. 661 

 662 

Figure 5: Prediction of motor memory consolidation by alpha power (8–13 Hz) during Training. The 663 

predictability of motor memory consolidation (Training-to-Posttest or Training-to-Transfer difference of 664 

motor error) is indicated. Each plot represents the data points for each participant of the Blocked (black 665 

circle) and Random (red cross) groups together with their groups’ linear fit. Asterisks indicate a 666 

significant Spearman correlation coefficient after FDR correction. Lines represent basic linear fit whereas 667 

ρ represents Spearmans rho. 668 
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