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Abstract1

Mechanistic representations of individual life-history trajectories are powerful tools for the pre-2

diction of organismal growth, reproduction and survival under novel environmental conditions.3

Dynamic energy budget (DEB) theory provides compact models to describe the acquisition and4

allocation of organisms over their full life cycle of bioenergetics. However, estimating DEB model5

parameters, and their associated uncertainties and covariances, is not trivial. Bayesian inference6

provides a coherent way to estimate parameter uncertainty, and propagate it through the model,7

while also making use of prior information to constrain the parameter space. We outline a Bayesian8

inference approach for energy budget models and provide two case studies – based on a simplified9

DEBkiss model, and the standard DEB model – detailing the implementation of such inference pro-10

cedures using the open-source software package deBInfer. We demonstrate how DEB and DEBkiss11

parameters can be estimated in a Bayesian framework, but our results also highlight the difficulty12

of identifying DEB model parameters which serves as a reminder that fitting these models requires13

statistical caution.14

Key words: dynamic energy budget theory, parameter identifiability, informative priors15

1 Introduction16

Dynamic energy budget (DEB) theory (Kooijman, 2010) provides a powerful and well tested frame-17

work to describe the acquisition and use of energy by individual organisms over their entire life18

cycle. The standard DEB model is built on rules inherent to the process of resource uptake and19

allocation by all heterotrophs. It is a compact model that is able to describe the full life cycle20

bioenergetics of a living animal (Kooijman, 2010). DEB models are used as tools to address both21

fundamental and applied questions in ecology, e.g. about metabolic scaling (Maino et al., 2014),22

life-history strategies (Kooijman, 2013), in ecotoxicology (Jager et al., 2006; Jager and Zimmer,23

2012), or as components of population models (Martin et al., 2012; Smallegange et al., 2017).24
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Because of strong correlations between individual parameters, simultaneous parameter inference25

for DEB models is not trivial. The difficulty of estimation is by no means unique to DEB models,26

but is commonly encountered in dynamic systems models across scientific disciplines (Aster et al.,27

2011; Brewer et al., 2008; Johnson and Briggs, 2011). Parameter inference for DEB model param-28

eters themselves is routinely based on a non-linear least squares regression approach, the so-called29

covariation method (Lika et al., 2011). The covariation method makes use of constraints on param-30

eters that follow from theory (Lika et al., 2014, 2011), as well as by reducing the effective number31

of parameters by the use of so-called pseudo data: canonical fixed values for certain parameters32

which enter the estimation procedure with low weights. This approach has been successfully used33

to parameterize DEB models for over 1000 species. However, one drawback of the method is that34

uncertainty estimates of parameters are not readily available. Furthermore, while the DEB litera-35

ture acknowledges the importance of biological variability (e.g. Lika et al., 2014), input data are36

treated as known without error for the purposes of the parameter estimation. While measurement37

error for many observable traits used to parameterize DEB models may indeed be small, trait data38

often exhibits heterogeneity between individuals of a species, which would be expected to reflect39

individual heterogeneity in the underlying metabolic parameters. Given the potential of DEB the-40

ory as a building block for population models, we feel these are important hurdles to overcome, so41

more value can be added to DEB-based population models by incorporating both better estimates42

of parameter uncertainty, and a better reflection of individual variability.43

In contexts where quantification of uncertainty in parameters is desired, the Bayesian inference44

framework offers multiple advantages. First, multiple sources of uncertainty can be accounted for.45

Second, the use of informative priors can constrain the parameter space to biologically sensible46

outcomes while allowing fairly straightforward assessment of the influence of the prior information.47

Finally, the implementation of hierarchical models which allow inferences about both individual and48

population heterogeneity, as well as partial information pooling across individuals, is conceptually49

straightforward (Gelman et al., 1996).50

Bayesian parameter inference for DEB models has been demonstrated by Johnson et al. (2013).51

However, until recently, general inference for these models in a Bayesian framework has required52

that the practitioner be able to implement the full inference procedure, from the differential equation53

model specification through to the sampler used to obtain posterior draws. Here, we present a54

tutorial for the estimation of model parameters for dynamic energy budget models using the open-55

source R package deBInfer (Boersch-Supan et al., 2017) which makes the approach simpler to56

implement. We present this tutorial using two case studies. The first is based on a DEBkiss model,57

a simplified bioenergetic model that builds on DEB theory Jager et al. (2013). We follow this with58

a case study based on the standard DEB model. In each case study we discuss how the model is59

implemented and the approach estimate parameters. The R and C code needed to reproduce all of60

the analyses are available as supplementary materials.61

2 Basics of the Bayesian Approach62

Bayesian approaches for parameter estimation in complex, nonlinear models are being applied with63

increasing frequency to a broad range of biological models (e.g. Coelho et al., 2011; Voyles et al.,64

2012; Johnson et al., 2013; Smith et al., 2015). Here we very briefly explain the rationale behind65

the approach. Further details on the statistical background and software implementation can be66

found in the literature, (e.g. Clark, 2007; Gelman et al., 2003; Hobbs and Hooten, 2015; Johnson67
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et al., 2013; Boersch-Supan et al., 2017).68

In the Bayesian approach the model, and in particular its parameters, are viewed as random vari-69

ables. In contrast, the data, once observed, are treated as fixed. This approach to parameter70

inference is attractive, as it provides a coherent framework that allows the incorporation of uncer-71

tainty in the observation process and model parameters, and it relaxes the assumption of normal72

errors that is inherent in least-squares fitting. It provides us not only with full posterior probabil-73

ity distributions describing the parameters, but also with posterior distributions for any quantity74

derived from the parameters, including the model trajectories. Further, the Bayesian framework75

naturally lets us incorporate prior information about the parameter values and examine the sensi-76

tivity of our inferences to this incorporated information. This is particularly useful in the context77

of DEB theory, where there are known biological and theoretical constraints on parameters (Lika78

et al., 2011, 2014; Johnson et al., 2013). For example, many biological quantities, such as body size,79

are strictly non-negative, and most DEB parameters have at least one well defined bound, e.g. the80

allocation fraction κ is bounded on the interval [0,1]. Using informative priors can help constrain81

the parameter space, aiding with parameter identifiability.82

The purpose of our case studies is to show how to estimate the posterior probability distribution83

of the parameters of an energy budget model M, given an empirical dataset Y, and accounting for84

the uncertainty in the data. The model takes the general form85

M ≡ dx

dt
= f(xt, t, θ) (1)

where x is a vector of state variables evolving with time; f is a functional operator that takes a86

time input and a vector of continuous functions xt(θ) and generates the vector dx
dt as output; and87

θ denotes a set of parameters.88

Using Bayes’ Theorem (Hobbs and Hooten, 2015) we can calculate the posterior distribution of the89

model parameters, given the data and the prior information as90

Pr(θ|Y) = Pr(Y|θ) Pr(θ)∫
Pr(Y|θ) Pr(θ)dθ

(2)

where Pr() denotes a probability, Y denotes the data, and θ denotes the set of model parameters.91

The product in the numerator is the joint distribution, which is made up of the likelihood Pr(Y|θ)92

or L(Y|θ), which gives the probability of observing Y given the deterministic model M(θ), and the93

prior distribution Pr(θ), which represents the knowledge about θ before the data were collected.94

Closed form solutions for the posterior are practically impossible to obtain for complex non-linear95

models such as DEB models, but they can be approximated numerically, e.g. by using Markov96

Chain Monte Carlo (MCMC) integration methods (Gilks et al., 1995).97

2.1 Computation using the deBInfer package98

The deBInfer package (Boersch-Supan et al., 2017) provides templates for implementing dynamical99

models consisting of a deterministic differential equation (DE) model and a stochastic observation100

model and subsequently for performing inference for these models. To perform inference, R functions101

or data structures must be specified to represent both the dynamical (here bioenergetic) model and102

the observation model (i.e., the data likelihood). Further, all model and observation parameters103

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/259705doi: bioRxiv preprint 

https://doi.org/10.1101/259705
http://creativecommons.org/licenses/by/4.0/


must be declared, including prior distributions for those parameters that are to be estimated or104

values for those that are fixed. The DE model itself can also be provided as a shared object, e.g. a105

compiled C function, which can considerably speed up inference (see Appendix S3 in Boersch-Supan106

et al., 2017). deBInfer then samples from the posterior distributions of parameters via MCMC,107

specifically using Metropolis-Hastings updates nested within a Gibbs sampler (Brooks et al., 2011).108

As each sample of the posterior distribution is obtained, the differential equation model must be109

solved numerically within the MCMC procedure.110

3 Case Study 1: DEBKiss Model111

The standard DEB model is a powerful framework to describe the bioenergetics of an organism112

across its full life cycle (Kooijman, 2010). However, that power comes at a cost of many complex113

equations with many parameters needing a great deal of data to parameterize properly. In an effort114

to develop a simpler model that still exhibits important features of the full DEB Theory Jager115

et al. (2013) developed the DEBKiss model. It is a model inspired by DEB but “with a strong116

focus on the KISS principle” (Jager et al., 2013). The main departures from DEB are the absence117

of a reserve buffer and a maturation state variable. This has the effect of reducing the number118

of differential equations in the system, as well as reducing the number of parameters. The model119

is slightly less flexible. For instance, the organism must mature at a fixed length or weight. In120

contrast, the DEB framework allows maturation to happen once sufficient complexity has been121

accrued, which can correspond to a different weights or lengths in organisms living in differing food122

environments.123

We use the DEBKiss model as a simplified DEB-like model to show the the basics of the Bayesian124

approach to fitting models of this sort. We perform inference using the same data set used in125

the paper introducing DEBKiss: data on growth and reproduction of the pond snail, Lymnaea126

stagnalis. These data come from a series of part of partial life experiments. Juvenile snails that127

were the same age (113 days from when the egg was laid) and approximately the same size were128

selected and followed for an additional 140 days (Figure 1, (data from Zimmer et al., 2012)). The129

reproduction and length data were originally from different experiments, but we treat them together130

here, following Jager et al. (2013). To keep this example especially simple use data from a single131

food level treatment, specifically snails that were fed ad libitum over the course of the experiment.132

Further, we only estimate a subset of the parameters estimated in the original DEBKiss paper133

(which were, in turn, a subset of all of the parameters) as not all parameters are simultaneously134

identifiable at a single food level. The model is specified and described in detail in both the main135

and supplementary text of Jager et al. (2013), so we do not re-produce the equations here. However,136

the complete implementation of the model in R, including the inference shown here, is included as137

supplementary materials.138

3.1 Bayesian Parameter Estimation139

For simplicity, we focus on estimating a subset of parameters from data on snail growth and140

reproduction at a single food level. The DEBKiss model was implemented as a set of differential141

equations following (Jager et al., 2013). Similarly to the standard DEB model, the state variables142

in the DEBKiss framework are not all directly measurable. However, it is possible to specify how143

measured quantities, such as length and numbers of eggs, are related to the state variables. For144
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Figure 1: Snail growth and reproduction data (from Zimmer et al., 2012) plotted with predictions
from the DEBKiss model (based on parameters from Jager et al., 2013).

this application, we used the formulation of the DEBKiss equations in terms of physical length and145

cumulative number of eggs produced by the snails.146

Likelihood147

Once the differential equations have been specified, the likelihood of the data conditional on the148

parameters and model must next be specified. The deBInfer package allows substantial flexibility149

in the probability distributions that may be used for this purpose. For instance, one could allow150

Normal errors for lengths and truncated or log-normal, or Poisson for eggs. This allows the user to151

choose an appropriate distribution that is consistent with the characteristics of the data the user152

wishes to model. The snail data we use here consists of average lengths (mm) and mean cumula-153

tive eggs. Thus both the lengths and eggs are appropriately modeled as continuous distributions.154

Additionally both are constrained to be positive and have error that increases over time (as small155

differences between individuals is likely to be magnified as the grow).156

To define out likelihood, we must relate our measured quantities to the model outputs. We assume157

that the observed length, L̃, is the product of two quantities: the predicted physical length from the158

DEBKiss model, denoted as Lw and a log-normally distributed, multiplicative noise term. Thus:159

L̃(t) = Lw(t)ϵL with log ϵL ∼ N (0, σ2
L). (3)

Similarly, the resources allocated to reproduction, WR, are related to the number of eggs. However,160

the number of eggs created depend on the energy needed per egg, WB0, and the conversion efficiency161

of assimilated energy to egg, yBA. Again, the noise is assumed to be multiplicative and log-normal,162

so the cumulative egg production at any given time, F , is given by163

F (t) = WR(t)yBA

WB0
ϵE with log ϵE ∼ N (0, σ2

E). (4)
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Conditional on the solution to the underlying differential equations we assume that the observed164

lengths and eggs are independent at each time. Thus the likelihood is constructed by multiplying165

the (independent) likelihoods of the lengths and fecundity at each time point together.166

Priors and sampling details167

We chose relatively un-informative priors for the four parameters that we chose to estimate. The168

choice of prior here was primarily guided by simple constraints on the values that the parameters169

may take. For example, κ, the proportion of energy directed towards growth processes, must lie170

between 0 and 1. Thus we used a uniform prior over this full range as the prior. Priors for estimated171

parameters are specified in Table 1.172

Table 1: Prior distributions used for parameter inference in the DEBKiss model.
parameter prior distribution parameters reasoning
κ kappa Uniform a = 0; b = 0 bounded on [0,1]
ln(Jv

M ) logJMv normal µ = 0; σ2 = 100 weakly informative prior, con-
straining the untransformed
parameter to be positive.

ln ϵL sdlog.L lognormal µ = 0; σ2 = 1 weakly informative prior regu-
larizing towards 0

ln ϵE sdlog.E lognormal µ = 0; σ2 = 1 weakly informative prior regu-
larizing towards 0

In addition to a prior distribution, the user must specify a proposal distribution for each parameter173

being sampled (Gilks et al., 1995). This distribution determines how new values of each parameter174

are chosen as the MCMC algorithm progresses. In the deBInfer package one can choose between175

3 options: 1) a random walk proposal with a normal proposal distribution centered at the current176

accepted parameter value; 2) a random walk proposal with a uniform distribution that is asymmetric177

around the current accepted value; 3) independent draws from the prior distribution. In the example178

here we chose all random walk proposals. For κ and ln(Jv
M ) we used a normal proposal. For the179

two standard deviations we used the asymmetric uniform proposals. This latter is especially good180

for sampling parameters that are bounded on the left with values that may be close to that lower181

bound.182

3.2 DEBKiss Model: Results183

MCMC Output Diagnostics184

When examining the posterior output from the MCMC produced by deBInfer, the first step is185

always to check for mixing and convergence of the MCMC chain by plotting traces of the chains186

(e.g., Figure 2). A “good”, well behaved chain (i.e., that mixes adequately and that has converged187

to the posterior distribution) is sometimes described as resembling a “fuzzy caterpillar”. A chain188

that doesn’t look very fuzzy is often called a “sticky” chain – it has high auto-correlation and the189

effective sample size is low. If the chain has converged a horizontal line should approximately go190

through the center of the trace and there shouldn’t be major patterns, such as a linear trend, visible.191

The chains for this example appear to be well behaved, and seem to indicate both adequate mixing192
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and convergence. The subtleties of assessing mixing and convergence is beyond the scope of this193

paper, but may be found in textbooks such as Gilks et al. (1995) or Hobbs and Hooten (2015).194
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Figure 2: MCMC traces and marginal distribution for 2 observation and 2 primary model parame-
ters estimated for the DEBKiss model.

Once mixing and convergence have been assessed, the next, very important, diagnostic to check is195

the prior-posterior overlap. Priors in Bayesian analyses can be double edged swords – they allow196

us to incorporate previous knowledge and constraints into our process in a formal way. However197

it is possible to inject more prior information than one means to through the prior. If you don’t198

have good information about a parameter value, you ideally want to choose a “vague” prior so that199

the information in your data can drive the posterior results. Thus it is always a good idea to plot200

the marginal posterior distribution together with the marginal prior to confirm that your choice of201
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prior is not influencing your posterior more than you intended. In our example, even though we202

knew the values that (Jager et al., 2013) had previously reported for both parameters, we wanted203

to incorporate as little additional information as possible in our priors. In Figure 3 we show the204

marginal posterior distribution for each parameter (in black) overlaid with the prior distribution205

(in red). Notice that across all 4 panels the red line lies across the very bottom of the panel – the206

priors have very little mass in the areas corrsponding to the posterior distribution. In all cases the207

data seem to be informative for the parameters and the posteriors different from the priors.208

0.83 0.85 0.87 0.89

0
40

kappa

N = 9001   Bandwidth = 0.0009206

0.02 0.06 0.10 0.14

0
20

sdlog.L

N = 9001   Bandwidth = 0.002035

0.05 0.15 0.25

0
5

10

sdlog.E

N = 9001   Bandwidth = 0.004457

−4.92 −4.86 −4.80

0
10

25

logJMv

N = 9001   Bandwidth = 0.002135

Figure 3: Marginal posterior samples of parameters (black lines) plotted with prior distributions
(red). Notice that in all cases the prior is very different from the prior and the data are informative
for all parameters.

We also typically examine the full joint posterior distribution by visualizing the pairwise joint distri-209

butions (e.g. Figure 4). The pairwise plots can give additional indications about the identifiability210

of individual parameters, independent of the others. In this example we can see that the correla-211

tion between our estimated parameters is overall very low, with the strongest correlation being (not212

surprisingly) between κ and ln(Jv
M ). This is often the case. For nonlinear systems such as these,213

often the observation parameters are not highly correlated with the primary parameters, but the214

model parameters themselves may be. Very strong correlations between parameters can indicate215

that the data are not fully informative for each parameter individually – for example it may be216

that the quotient or product is very tightly constrained by the available data, but the marginal217

uncertainty in the individual parameters is higher. This is not necessarily problematic, per se, but218
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should be kept in mind when using and interpreting posterior samples. Further, some patterns219

in the posterior, such as extreme nonlinear patterns (“banana” shapes, etc.) can indicate that220

parameters are not well constrained. For an example of this for DEB models see Johnson et al.221

(2013).222
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Figure 4: Joint samples from the full posterior of the 2 observation and 2 primary model parameters
estimated for the DEBKiss model.

Posterior estimates of parameters223

Now that we feel confident in the convergence of the chains and that our parameters are well224

identified we can interpret and present the inferred parameters, including the posterior uncertainties.225

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/259705doi: bioRxiv preprint 

https://doi.org/10.1101/259705
http://creativecommons.org/licenses/by/4.0/


Further, we can use the posterior distribution of parameters to obtain the posterior distributions226

of other functions of the parameters, such as the trajectories of the system.227

In a Bayesian analysis we often report the marginal highest posterior density (HPD) interval or228

credible interval, which are the Bayesian analogs to confidence intervals. In Figure 5 we show a229

graphical representation of the HPD intervals for the two primary parameters that we estimated.230

The shaded region corresponds to the HPD region (i.e., 95% of the posterior weight), and the HPD231

interval thus corresponds to the locations of the edges of the region. We indicate the posterior232

mean, often used as the point estimate for the parameter, using a solid line. For comparison we233

also indicate the “true” parameter (i.e., the estimate obtained by Jager et al. (2013)). Note that234

Jager et al. (2013) fit the model via maximum likelihood assuming normal errors on data that235

has been square-root transformed. This is a very different assumption about the underlying data236

model and is likely part of the reason for the discrepancy. The extra data from other experimental237

treatment groups would also provide additional information about parameter values.238
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Figure 5: Marginal posterior distributions of two primary parameters κ and ln(Jv
M ). Shaded areas

indicate the 95% highest posterior density (HPD) region. The posterior mean is indicated with a
solid line, and the “true” parameter (i.e., the estimate obtained by Jager et al. (2013)). Note that
Jager et al. (2013) fit the model via maximum likelihood, assuming normal errors on data that has
been square-root transformed, compared to our assumption of log-normal errors.

Finally, we can construct and visualize the posterior distributions of any functions of the parameters.239

For this example, we focus on the posterior distribution of the trajectories of the sets of differential240

equations. To obtain the posterior distribution of trajectories requires solving the set of differential241

equations with the parameters set to the estimated values in the posterior sample. For instance,242

in this example we collected N = 20000 samples of the posterior distribution of parameters. We243

discarded the first 1000 as burn-in (because for part of that the chain had not yet converged),244

leaving 19000 samples. We then “thinned” these samples (that is sub-sampled them), taking every245

10th sample. This leaves 1900 parameter samples. For each of these samples we take the pair or246

primary parameter estimates together with the fixed parameters and initial conditions and solve247

the DEs. After repeating this for all 1900 samples we have 1900 trajectories of the system. We can248
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obtain the mean behavior by taking the mean at each time point in the trajectory across the 1900249

samples. Similarly we can calculate the credible intervals by obtaining the appropriate values of250

the quantiles at each time point. The posterior mean and credible intervals of the trajectories for251

our example are shown in Figure 6. Notice that this fit is slightly different than the fit obtained by252

Jager et al. (2013). In particular this fit slightly over-estimates the egg production, whereas Jager253

et al. (2013) slightly under-estimate egg production. Both give similar fits for the length.254

Note that, unlike most methods for obtaining uncertainty estimates of parameters (e.g. obtained255

via maximum likelihood or least squares) we do not need to assume that the parameters are approx-256

imately multivariate normal. Although that assumption may not be far off for the simple example257

here, there are certainly cases where that assumption is a poor representation of the posterior258

distribution, and where assuming the parameters are jointly normal would result in very different259

predictions of the system trajectories.260
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Figure 6: Posterior mean and 95% credible interval (CI) of the predicted growth and reproduction
from the DEBKiss model plotted with the pond snail data. Solid lines indicate the posterior mean,
and dotted lines the edges of the 95% CI.

4 Case Study 2: The Standard DEB Model261

For our second case study we attempt to replicate the DEBtool estimation of growth and repro-262

duction parameters for the standard DEB model for the earthworm Lumbricus terrestris. For263

the sake of simplicity we did not estimate ageing parameters. Data and DEB model parameters264

estimated with DEBtool_M (https://github.com/add-my-pet/DEBtool_M) in MATLAB R2014b265

(MathWorks, Inc.) were obtained from the add-my-pet database. To assess parameter identifi-266

ability and the precision of the posterior parameter estimates this case study is uses simulated267

observations based on the AmP parameters, rather than the original earthworm data from Butt268

(1993). Empirical distributions of DEB parameters for the construction of priors were obtained269

using AmPtool (https://github.com/add-my-pet/AmPtool).270
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Figure 7: Earthworm growth and reproduction data (Butt, 1993) plotted with predictions from the
standard DEB model based on parameters for Lumbricus terrestris from the AmP database.

4.1 Bayesian parameter estimation271

We implemented the standard DEB model in terms of scaled energy density e, scaled length l, and272

scaled maturity and reproductive buffer uH and uR, respectively, (Kooijman, 2010, Table 2.5) as273

functions compliant with the ODE solvers provided by the deSolve package Soetaert et al. (2010).274

Further R functions to compute boundary values for the state variables from DEB parameters (Kooi-275

jman, 2009) were adapted from DEBtool routines and are available in the R package DEButilities276

(https://doi.org/10.5281/zenodo.1162331) which we provide in the supplementary materials.277

Treating the initial value for the scaled reserve density u0
E as parameter dependent (Kooijman, 2009)278

necessitates a recalculation of two of the initial values, the scaled length lb and maturity at birth279

ub
H , respectively, for the DEB model within the MCMC inference procedure. This computational280

step is currently only implemented in a development branch of deBInfer, which is available on281

github (https://github.com/pboesu/debinfer/tree/recalc-inits) and provided in the supplementary282

materials.283

Initial inference runs highlighted parameter identifiability issues, in particular the strong, non-linear284

correlation between Lm, {ṗAm} and v̇ made it impossible to estimate [EG]. This could partially be285

resolved by using informative priors based on the empirical distribution of parameters in the AmP286

database (see below).287

The strong parameter correlations further resulted in slow mixing of the MCMC chain, necessitating288

a large number of samples to explore the posterior distribution. We therefore conducted inference289

for this model using a compiled ODE model implemented in C to speed up inference.290
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We ran three separate MCMC chains of 150000 samples each. We discarded the first 10000 samples291

of each chain and thinned the remaining samples retaining every 10th sample.292

4.1.1 Prior distributions293

Priors on the parameters were chosen to be weakly informative, based on the principle that priors294

should contain enough information to rule out unreasonable parameter values but not values that295

might make sense. Hard bounds were used only where dictated by DEB theory. We further aimed296

to translate the pseudodata approach of the covariation method (Lika et al., 2011) into our choices297

of prior distributions and their location and scale parameters. Specific prior choices are detailed in298

Table 2.299

4.1.2 Data model and likelihood300

The state variables of the DEB model are abstract quantities that are not directly observable, but301

can be mapped to observable quantities using auxiliary parameters. We used the following mappings302

between the so-called zero-variate observable quantities and model states and parameters:303

Ww0 = u0
E

v2

g2 k3
M pAm

wE

µEdE

Wwb = (lbLm)3(1 + fω)

Wwp = (lpLm)3(1 + fω)

ab = τb/k̇M

ap = τb + ρ−1
B log l∞ − lb

l∞ − lp

where u0
E , l∗, and τb were calculated following Kooijman (2009).304

Further, the time series of wet weight Ww(t) and reproductive output R(t) were mapped from the
model using the equations

Ww(t) = (l(t)Lm)3(1 + f ∗ ω)

R(t) = κR ∗ uR(t)/u0
E .

The full likelihood of error at time t is as follows305
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Table 2: Prior distributions used for parameter inference in the standard DEB model.
parameter prior distribution parameters reasoning
Lm L_m truncated normal a = 0; µ = 1, σ2 = 1 weakly informative prior in

the absence of species specific
maximum length or weight
data

{ṗAm} p_Am normal µ = 900; σ2 = 300 weakly informative prior
based on AmP collection

v̇ v truncated normal a = 0; µ = 0.2, σ2 = 0.2 weakly informative prior
based on generalised animal

κ kap Beta α = β = 2 bounded on [0,1], regularizing
away from bounds

[EG] E_G truncated normal a = dV µV
wE

; µ = 4200; σ2 = 100 informative prior based on
theoretical lower bound and
AmP data scaled for dV =
0.16

Eb
H E_Hb truncated normal a = 0; µ = 0; σ2 = 100 weakly informative prior regu-

larizing towards 0
Ep

H E_Hp truncated normal a = 0; µ = 1000; σ2 = 1000 weakly informative prior regu-
larizing to values ≈ 1000

ln εW w sdlog.EWw truncated normal a = 0; µ = 0.1; σ2 = 0.1 weakly informative prior regu-
larizing towards 0

ln εR sdlog.R truncated normal a = 0; µ = 0.1; σ2 = 0.1 weakly informative prior regu-
larizing towards 0

Table 3: Fixed parameters used for inference in the standard DEB model. Values are based on
the AmP entry for Lumbricus terrestris. No uncertainty estimates for ages and weights at stage
transitions in L. terrestris were available in the literature. We therefore assumed a fixed standard
deviation of 1% of the corresponding mean for those values.
parameter value
k̇J k_J 0.002 cm/d
TA T_A 5000 K
Tref T_ref 293.15 K
f f 1
wE w_E 23.9 g/mol
dV d_v 0.16 g/cm3

dE d_E 0.16 g/cm3

µE mu_E 550000 J/mol
µV mu_v 500000 J/mol
κR kap_R 0.95
σ2

a∗ 0.01 × µa∗
σ2

W w∗ 0.01 × µW w∗
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L =∆b ∆p ∆H×
truncnorm(W̃w0|Ww0, σ2

W w0 , a = 0, b = ∞)×
truncnorm(W̃wb|Wwb, σ2

W wb
, a = 0, b = ∞)×

truncnorm(W̃wp|Wwp, σ2
W wp

, a = 0, b = ∞)×
truncnorm(ãb|ab, σ2

ab
, a = 0, b = ∞)×

truncnorm(ãp|ap, σ2
ap

, a = 0, b = ∞)×∏
t

lognormal(W̃w(t)| ln Ww(t), ln εW w)×∏
t

lognormal(R̃(t)| ln R(t), ln εR)

(5)

where the constraints on the parameter space follow from theoretical considerations detailed in Lika306

et al. (2014) about the animal reaching the stage transitions at birth and puberty:307

∆b =
{

0 for lb ≥ f or k vb
H ≥ f

g+f l2b (g + lb)
1 otherwise

(6)

∆p =
{

0 for k vp
H ≥ f(f − lT )2

1 otherwise
(7)

∆H =
{

0 for Hb ≥ Hp

1 otherwise
(8)
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4.2 Results: Standard DEB Model308

Initial inference runs highlighted parameter identifiability issues, in particular the strong, non-linear309

correlation between Lm, {ṗAm} and v̇ (see the bana-shaped contours in the joint density plots for310

the variables in Figure 8) made it impossible to estimate [EG], even when using informative priors311

based on the empirical distribution of parameters in the AmP database. We therefore present312

inferences for a model where [EG] was fixed at the value of 4150 J/cm3 (Figure 9).313

Despite the strong correlations, the AmP parameter values were recovered within the 95% highest314

posterior density interval, although the posterior means and modes diverged substantially from the315

AmP parameter values for Lm, {ṗAm}, and v̇, and to a lesser extent for Eb
H (Figure 10).316

Posterior trajectories for the earthworm DEB model (Figure 11) further indicate that the parameter317

identifiability issues encountered here are a structural property of the model, rather than a result of318

poor statistical fit. The posterior distribution of model trajectories is relatively narrow on the data319

scale, which is well constrained by the observations, but wide on the scale of the state variables.320

5 Discussion321

DEB theory and related bioenergetic models such as the DEBkiss framework have the potential322

to unify biological theory across levels of organization (Nisbet et al. 2000). However, to realize323

this potential robust methods are needed to connect the theoretical predictions with the inherently324

variable and noisy biological data.325

We here demonstrate how DEB and DEBkiss parameters can be estimated in a Bayesian framework,326

a coherent, effective, and well-established approach, using the freely available deBInfer package327

in R. The Bayesian approach is particularly useful for DEB models as it provides a fairly straight-328

forward way to incorporate prior information and at the same time provides a means to quantify329

uncertainty in parameters and predictions. DEB theory in its very core is focused on the individual330

animal, and the role of individual trait heterogeneity is increasingly recognized as an important331

factor underlying ecological dynamics (e.g. Cam et al., 2002; Vindenes et al., 2008; Jenouvrier et al.,332

2015). The Bayesian approach, in principle, provides a conceptually straightforward avenue for hi-333

erarchical inference for bioenergetic models, thereby opening a door to better understanding causes334

and effects of individual heterogeneity of metabolic traits. However, our results also highlight the335

difficulty of identifying DEB model parameters which serves as a reminder that fitting these models336

requires statistical caution.337

In particular, we were not able to simultaneously estimate the same number of parameters for the338

standard DEB model for Lumbricus terrestris as are presented in the corresponding AmP entry,339

even when using priors based on AmP information.340

Both the Bayesian approach presented here, and the DEBtool procedure make use of expert opin-341

ion to constrain the parameter estimation. The former through the choice of particular prior342

distributions and likelihoods, the latter by using pseudodata and setting weight coefficients for the343

least-squares estimation. Furthermore, the weighted least-squares method underlying the DEBtool344

estimation procedure does in principle provide variances and approximate covariances on param-345

eter estimates, however, these are rarely if ever reported, and are not currently part of the AmP346

database. To better understand the sensitivities of parameter estimates we would encourage all347
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Figure 8: Pairwise correlations of posterior parameter estimates for the standard DEB model. EG

was fixed at 4150 J/cm3.
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Figure 9: Even with a fixed value of EG the data likelihood provided little information about the
values of v̇, Lm, and {ṗAm}, as is apparent from the substantial overlap between posterior and prior
densities .
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Figure 10: Eventhough several parameters of the standard DEB model were only weakly identified,
the true values of all free parameter were recovered within the 95% highest posterior density interval.
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Figure 11: Posterior trajectories for the earthworm DEB model. The posterior distribution of model
trajectories is relatively narrow on the data scale, but wide on the scale of the state variables. This
indicates that the weak identifiability of several parameters is structural, rather than a consequence
of poor statistical fit. The red lines are a random sample of 500 posterior trajectories. The black
line represents the ”true” trajectories on which the simulated observations are based, black circles
show the simulated univariate data used in the inference procedure.
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DEB practitioners to report choices made to constrain the parameter estimation, as well as variance348

and covariance estimates for estimated parameters.349
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