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Abstract

Mechanistic representations of individual life-history trajectories are powerful tools for the pre-
diction of organismal growth, reproduction and survival under novel environmental conditions.
Dynamic energy budget (DEB) theory provides compact models to describe the acquisition and
allocation of energy by organisms over their full life cycle. However, estimating DEB model param-
eters, and their associated uncertainties and covariances, is not trivial. Bayesian inference provides
a coherent way to estimate parameter uncertainty, and propagate it through the model, while also
making use of prior information to constrain the parameter space. We outline a Bayesian inference
approach for energy budget models and provide two case studies – based on a simplified DEBkiss
model, and the standard DEB model – detailing the implementation of such inference procedures
using the open-source software package deBInfer. We demonstrate how DEB and DEBkiss pa-
rameters can be estimated in a Bayesian framework, but our results also highlight the difficulty of
identifying DEB model parameters which serves as a reminder that fitting these models requires
statistical caution.
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1 Introduction

Dynamic energy budget (DEB) theory (Kooijman, 2010) provides a powerful and well tested frame-
work to describe the acquisition and use of energy by individual organisms over their entire life
cycle. The standard DEB model is built on rules inherent to the process of resource uptake and
allocation by all heterotrophs. It is a compact model that is able to describe the full life cycle
bioenergetics of a living animal (Kooijman, 2010). DEB models are used as tools to address both
fundamental and applied questions in ecology, e.g. about metabolic scaling (Maino et al., 2014),
life-history strategies (Kooijman, 2013), in ecotoxicology (Billoir et al., 2008b; Jager et al., 2006;
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Jager and Zimmer, 2012), or as components of population models (Billoir et al., 2007; Martin et al.,
2012; Smallegange et al., 2017).

Because of strong correlations between individual parameters, simultaneous parameter inference
for DEB models is not trivial (Billoir et al., 2008a; Johnson et al., 2013). The difficulty of estimation
is by no means unique to DEB models, but is commonly encountered in dynamic systems models
across scientific disciplines (Aster et al., 2011; Brewer et al., 2008; Johnson and Briggs, 2011).
Parameter inference for DEB model parameters themselves is often based on a non-linear least
squares regression approach, the so-called covariation method (Lika et al., 2011). The covariation
method makes use of constraints on parameters that follow from theory (Lika et al., 2014, 2011),
as well as by reducing the effective number of parameters by the use of so-called pseudo data:
canonical values for certain parameters which enter the estimation procedure with low weights. This
approach has been successfully used to parameterize DEB models for over 1000 species (Marques
et al., 2018) . However, one drawback of the method is that uncertainty estimates of parameters
are not readily available. Furthermore, while the DEB literature acknowledges the importance of
biological variability (e.g. Lika et al., 2014), input data are treated as known without error for
the purposes of the parameter estimation. While measurement error for many observable traits
used to parameterize DEB models may indeed be small, trait data often exhibits heterogeneity
between individuals of a species, which would be expected to reflect individual heterogeneity in
the underlying metabolic parameters. Given the potential of DEB theory as a building block for
population models, we feel these are important hurdles to overcome, so more value can be added
to DEB-based population models by incorporating both better estimates of parameter uncertainty,
and a better reflection of individual variability.

In contexts where quantification of uncertainty in parameters is desired, the Bayesian inference
framework offers multiple advantages. First, multiple sources of uncertainty can be accounted for.
Second, the use of informative priors can constrain the parameter space to biologically sensible out-
comes (e.g. by constraining maximum lengths or reproductive rates to values that are realistically
attainable by a given species), while allowing fairly straightforward assessment of the influence of
the prior information. Finally, the implementation of hierarchical models which allow inferences
about both individual and population heterogeneity, as well as partial information pooling across
individuals, is conceptually straightforward (Gelman et al., 1996). Computationally, hierarchical
inference in differential equation models still provides a number of challenges (see e.g., Krauss and
Schuppert, 2017). It is therefore beyond the scope of this tutorial.

Bayesian parameter inference for DEB models has been demonstrated by Billoir et al. (2008b)
and Johnson et al. (2013). However, until recently, general inference for these models in a Bayesian
framework has required that the practitioner be able to implement the full inference procedure,
from the differential equation model specification through to the sampler used to obtain posterior
draws. Here, we present a tutorial for the estimation of model parameters for dynamic energy
budget models using the open-source R package deBInfer (Boersch-Supan et al., 2017) which
makes the approach simpler to implement.

We present a tutorial detailing Bayesian parameter inference for two case studies. The first
is based on a DEBkiss model, a simplified bioenergetic model that builds on DEB theory (Jager
et al., 2013; Jager, 2016). We follow this with a case study based on the standard DEB model. In
each case study we discuss how the model is implemented and the approach estimate parameters.
The R and C code needed to reproduce all of the analyses are available as supplementary materials.

Given the complexity of both DEB theory itself, and the statistical and computational proce-
dures involved in parameter inference for differential equations, this tutorial presupposes a basic
knowledge of DEB theory, and a basic familiarity with the R computing environment. For back-
ground materials on DEB theory we refer the reader to Maino et al. (2014) as an initial introduction,
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and the recent review by Jusup et al. (2017) and the monograph by Kooijman (2010) for a com-
prehensive treatment. General approaches to working with differential equation models in R are
outlined in Soetaert et al. (2010), and comprehensively in the monographs Soetaert and Herman
(2008); Soetaert et al. (2012).

2 Basics of the Bayesian Approach

Bayesian approaches for parameter estimation in complex, nonlinear models are being applied with
increasing frequency to a broad range of biological models (e.g. Coelho et al., 2011; Voyles et al.,
2012; Johnson et al., 2013; Smith et al., 2015). Here we very briefly explain the rationale behind
the approach. Further details on the statistical background and software implementation can be
found in the literature, (e.g. Clark, 2007; Gelman et al., 2003; Hobbs and Hooten, 2015; Johnson
et al., 2013; Boersch-Supan et al., 2017).

In the Bayesian approach the model, and in particular its parameters, are viewed as random
variables. In contrast, the data, once observed, are treated as fixed. This approach to parameter
inference is attractive, as it provides a coherent framework that allows the incorporation of uncer-
tainty in the observation process and model parameters, and it relaxes the assumption of normal
errors that is inherent in least-squares fitting. It provides us not only with full posterior probabil-
ity distributions describing the parameters, but also with posterior distributions for any quantity
derived from the parameters, including the model trajectories. Further, the Bayesian framework
naturally lets us incorporate prior information about the parameter values and examine the sensi-
tivity of our inferences to this incorporated information. This is particularly useful in the context
of DEB theory, where there are known biological and theoretical constraints on parameters (Lika
et al., 2011, 2014; Johnson et al., 2013). For example, many biological quantities, such as body
size, are strictly non-negative, and most DEB parameters have at least one well defined theoretical
bound, e.g. the allocation fraction κ is bounded on the interval [0,1]. Using informative priors can
help constrain the parameter space, aiding parameter identifiability.

The purpose of our case studies is to show how to estimate the joint posterior probability
distribution of the parameters of an energy budget model M, given an empirical dataset Y, and
accounting for the uncertainty in the data. The deterministic model M takes the general form

M≡ dx

dt
= f(xt, t,θ) (1)

where x is a vector of state variables evolving with time; f is a functional operator that takes a
time input and a vector of continuous functions xt(θ) and generates the vector dx

dt as output; and
θ denotes a set of parameters.

Using Bayes’ Theorem (Hobbs and Hooten, 2015) we can calculate the posterior distribution of
the model parameters, given the data and the prior information as

Pr(θ|Y) = Pr(Y|θ) Pr(θ)∫
Pr(Y|θ) Pr(θ)dθ (2)

where Pr() denotes a probability, Y denotes the data, and θ denotes the set of model parameters.
The product in the numerator is the joint distribution, which is made up of the likelihood Pr(Y|θ)
(corresponding to the likelihood function L(θ;Y) of the frequentist approach), which gives the
probability of observing Y given the deterministic model M(θ), and the prior distribution Pr(θ),
which represents the knowledge about θ before the data were collected.
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Closed form solutions for the posterior are practically impossible to obtain for complex non-
linear models such as DEB models, but they can be approximated numerically, e.g. by using Markov
Chain Monte Carlo (MCMC) integration methods (Gilks et al., 1995).

2.1 Computation using the deBInfer package

The deBInfer package (Boersch-Supan et al., 2017) provides templates for implementing dynamical
models consisting of a deterministic differential equation (DE) model and a stochastic observation
model and subsequently for performing inference for these models. To perform inference, R functions
or data structures must be specified to represent both the dynamical (here bioenergetic) model and
the observation model (i.e., the data likelihood). Further, all model and observation parameters
must be declared, including prior distributions for those parameters that are to be estimated or
values for those that are fixed. The DE model itself can also be provided as a shared object, e.g. a
compiled C function, which can considerably speed up inference (see Appendix S3 in Boersch-Supan
et al., 2017). deBInfer then samples from the posterior distributions of parameters via MCMC,
specifically using Metropolis-Hastings updates nested within a Gibbs sampler (Brooks et al., 2011).
As each sample of the posterior distribution is obtained, the differential equation model must be
solved numerically within the MCMC procedure.

3 Case Study 1: DEBKiss Model

The standard DEB model is a powerful framework to describe the bioenergetics of an organism
across its full life cycle (Kooijman, 2010). However, that power comes at a cost of many complex
equations with many parameters needing a great deal of data to parameterize properly. In an effort
to develop a simpler model that still exhibits important features of the full DEB theory Jager et al.
(2013) developed the DEBKiss model. It is a model inspired by DEB but “with a strong focus
on the KISS principle” (Jager et al., 2013). The main departures from DEB are the absence of
a reserve buffer and a maturation state variable. This has the effect of reducing the number of
differential equations in the system, as well as reducing the number of parameters. The model
is slightly less flexible. For instance, the organism must mature at a fixed length or weight. In
contrast, the DEB framework allows maturation to happen once sufficient complexity has been
accrued, which can correspond to different weights or lengths in organisms living in differing food
environments.

We use the DEBKiss model as a simplified DEB-like model to show the basics of the Bayesian
approach to fitting models of this sort. We perform inference using a subset of the data set used in
the paper introducing DEBKiss: data on growth (measured as shell length in mm) and reproduction
(cumulative egg production) of the pond snail, Lymnaea stagnalis. These data come from a series
of partial life experiments. Juvenile snails that were the same age (113 days from when the egg
was laid) and approximately the same size were selected and followed for an additional 140 days
(data from Zimmer et al., 2012). To keep this example especially simple we use data from a single
food level treatment, specifically snails that were fed ad libitum over the course of the experiment.
Further, we only estimate a subset of the parameters estimated in the original DEBKiss paper
(which were, in turn, a subset of all of the parameters) as we found during initial analyses that not
all parameters were practically identifiable with data for a single food level under the assumption
of unknown observation error. The model is specified and described in detail in both the main and
supplementary text of Jager et al. (2013), thus we do not provide a complete overview here, instead
summarizing a few key equations and parameters. The DEBkiss model is formulated as a set of
coupled ordinary differential equations for 3 state variables: the egg buffer WB; structural body
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mass WV ; and reproduction buffer WR. The structural body mass is related to the physical length,
Lw = L

δM
where L = WV

dv
, and all equations may be written in terms of these lengths instead of

the masses. Thus the equations governing the growth and and allocation to reproduction can be
written as

dWB

dt
= −JA until WB = 0 (3)

dLw
dt

= JV
3dV L2δM

(4)

dWR

dt
=

{
0 for Lw < Lp

JR otherwise
(5)

with parameters defined in Table 1. The data we utilize is recorded beginning after hatching,
and thus we begin with the reserve in the egg, WB = 0. The complete implementation of the model
in R, including the inference shown here, is included as supplementary materials.

3.1 Bayesian Parameter Estimation

For simplicity, we focus on estimating a subset of parameters from data on snail growth and
reproduction at a single food level, keeping most model parameters fixed (see Table 1). The
DEBKiss model was implemented as a set of differential equations following Jager et al. (2013).
Similarly to the standard DEB model, the state variables in the DEBKiss framework are not all
directly measurable. However, it is possible to specify how measured quantities, such as length and
numbers of eggs, are related to the state variables. For this application, we used the formulation
of the DEBKiss equations in terms of physical length and cumulative number of eggs produced by
the snails.

Likelihood

Once the differential equations have been specified, the likelihood of the data conditional on the
parameters and model must next be specified. The deBInfer package allows substantial flexibility
in the probability distributions that may be used for this purpose. For instance, one could allow
normal errors for lengths and truncated normal or log-normal, or Poisson errors for egg counts. This
allows the user to choose an appropriate distribution that is consistent with the characteristics of
the data the user wishes to model. The snail data we use here consist of average lengths (mm) and
mean cumulative eggs. Thus both the lengths and eggs are appropriately modeled as continuous
distributions. Additionally both are constrained to be positive and have error that increases over
time (as small differences between individuals is likely to be magnified as the grow).

To define our likelihood, we must relate our measured quantities to the model outputs. We
assume that the observed length, L̃, is the product of two quantities: the predicted physical length
from the DEBKiss model, denoted as Lw and a log-normally distributed, multiplicative noise term.
Thus:

L̃(t) = Lw(t)εL with ln εL ∼ N (0, σ2
L). (6)

Similarly, the resources allocated to reproduction, WR, are related to the number of eggs. However,
the number of eggs created depend on the energy needed per egg, WB0, and the conversion efficiency
of assimilated energy to egg, yBA. Again, the noise is assumed to be multiplicative and log-normal
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(since we cannot use a Poisson or similar as the counts have been averaged), so the cumulative egg
production at any given time, F , is given by

F (t) = WR(t)yBA
WB0

εE with ln εE ∼ N (0, σ2
E). (7)

Conditional on the solution to the underlying differential equations we assume that the observed
lengths and eggs are independent at each time. Thus the likelihood is constructed by multiplying
the (independent) likelihoods of the lengths and fecundity at each time point together.

Priors and sampling details

We chose relatively un-informative priors for the four parameters that we chose to estimate. The
choice of prior here was primarily guided by simple constraints on the values that the parameters
may take. For example, κ, the proportion of energy directed towards growth processes, must lie
between 0 and 1. Thus we used a uniform prior over this full range as the prior. Priors for estimated
parameters are specified in Table 1.

Table 1: State variables and parameters for the DEBKiss model, as well as fixed values and prior
distributions used for the parameter inference procedure.

Parameter Description Fixed value or
Prior distribution

Reasoning

WB Mass of egg buffer
WB0 Mass of assimilates in an egg 0.15 mg
F Cumulative egg production
Lw Physical body length
WR Mass of reproductive buffer
JA Mass flux for assimilation fJaAmL

2

JV Mass flux for structure yV A(κJA − JM )
JM Mass flux for somatic maintenance JvML3

JR Mass flux to reproductive buffer (1− κ)JA
JaAm Surface-specific maximum assimilation rate 0.11 mg/mm2/d
dV Dry-weight density of structure 0.1 mg/mm3

L Volumetric body length
δM Shape correction coefficient 0.40
f Functional response 1
yV A Yield of structure on assimilates 0.8
yBA Yield of egg buffer on assimilates 0.95
κ Fraction of assimilation flux for soma Uniform

a = 0; b = 0
bounded on [0,1]

ln(JvM ) ln of volume-specific maintenance costs normal
µ = 0;σ2 = 100

weakly informative prior,
constraining the untrans-
formed parameter to be
positive.

ln εL ln of observation error on length lognormal
µ = 0;σ2 = 1

weakly informative prior
regularizing towards 0

ln εE ln of observation error on F lognormal
µ = 0;σ2 = 1

weakly informative prior
regularizing towards 0

In addition to a prior distribution, the user must specify a proposal distribution for each pa-
rameter being sampled (Gilks et al., 1995). This distribution determines how new values of each
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parameter are chosen as the MCMC algorithm progresses. In the deBInfer package one can choose
between 3 options: 1) a random walk proposal with a normal proposal distribution N (θ(k), σ2

prop),
centered at the current accepted parameter value θ(k); 2) a random walk proposal with a uniform
distribution U(ab θ

(k), baθ
(k)) that is asymmetric around the current accepted value θ(k); 3) indepen-

dent draws from the prior distribution. In the example here we chose all random walk proposals.
For κ and ln(JvM ) we used a normal proposal. The normal proposal distribution is generally a robust
default choice. However, more efficient sampling can be achieved in certain situations, in particular
where a parameter is strictly positive. This is why we used asymmetric uniform proposals for the
two standard deviations, which by definition have a lower bound at zero. The asymmetric uniform
proposal is especially good for sampling parameters that are bounded on the left with values that
may be close to that lower bound as it ensures strictly positive proposals and smaller sampling
increments towards the bound.

3.2 DEBKiss Model: Results

MCMC Output Diagnostics

When examining the posterior output from the MCMC produced by deBInfer, the first step is
always to check for mixing and convergence of the MCMC chain by plotting traces of the chains
(e.g., Figure 1). A “good”, well behaved chain (i.e., that mixes adequately and that has converged
to the posterior distribution) is sometimes described as resembling a “fuzzy caterpillar”. A chain
that doesn’t look very fuzzy is often called a “sticky” chain – it has high auto-correlation and
the effective sample size is low. If the chain has converged a horizontal line should approximately
go through the center of the trace and there shouldn’t be major patterns, such as a linear trend,
visible. The chains for this example appear to be well behaved, and seem to indicate both adequate
mixing and convergence. The subtleties of assessing mixing and convergence is beyond the scope
of this paper, but may be found in textbooks such as Gilks et al. (1995) or Hobbs and Hooten
(2015). A more formal assessment of convergence can be obtained by running multiple MCMC
chains and calculating the potential scale reduction factor, a measure comparing within-chain and
between-chain variances (Brooks and Gelman, 1998). Approximate convergence is diagnosed when
the upper limit of this measure is close to 1 for each variable.

Once mixing and convergence have been assessed, the next, very important, diagnostic to check
is the prior-posterior overlap. Priors in Bayesian analyses can be double edged swords – they allow
us to incorporate previous knowledge and constraints into our process in a formal way. However it
is possible to inject more prior information than one means to through the prior. If you don’t have
good information about a parameter value, you ideally want to choose a “vague” prior so that the
information in your data can drive the posterior results. Thus it is always a good idea to plot the
marginal posterior distribution together with the marginal prior to confirm that your choice of prior
is not influencing your posterior more than you intended. In our example, even though we knew
the values that Jager et al. (2013) had previously reported for both DEBkiss parameters κ and JvM
, we wanted to incorporate as little additional information as possible in our priors. In Figure 2
we show the marginal posterior distribution for each parameter (in black) overlaid with the prior
distribution (in red). Notice that across all 4 panels the red line lies across the very bottom of the
panel – the priors have very little mass in the areas corresponding to the posterior distribution. In
all cases the data seem to be informative for the parameters and the posteriors different from the
priors.

We also typically examine the full joint posterior distribution by visualizing the pairwise joint
distributions (e.g. Figure 3). The pairwise plots can give additional indications about the iden-
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Figure 1: The MCMC traces and marginal distribution for two estimated observation parame-
ters (the noise terms on the observed length measurements and egg counts) and two estimated
parameters of the deterministic DEBKiss model indicate convergence and good mixing.

tifiability of individual parameters, independent of the others. This is important, as in complex
models not all parameters may be identifiable, that is different combinations of parameters lead
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Figure 2: Marginal posterior samples of parameters (black lines) plotted with prior distributions
(red). Shaded areas indicate the 95% highest posterior density (HPD) region. The posterior mean
is indicated with a solid line. Notice that in all cases the prior is very different from the prior and
the data are informative for all parameters.

to the same likelihood, making it impossible - with the data at hand - to decide among possible
parameter values (Cobelli and Distefano, 1980) . In this example we can see that the correlation
between our estimated parameters is overall very low, with the strongest correlation being between
κ and ln(JvM ), as we might expect as κ (the proportion of reserves invested in growth/maintenance)
and ln(JvM ) (volume-specific maintenance costs) together jointly determine the growth rate of the
organism. For nonlinear systems such as these, often the observation parameters are not highly
correlated with the primary parameters, but the model parameters themselves may be. Very strong
correlations between parameters can indicate that the data are not fully informative for each param-
eter individually – for example it may be that the quotient or product is very tightly constrained by
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the available data, but the marginal uncertainty in the individual parameters is higher. This is not
necessarily problematic, per se, but should be kept in mind when using and interpreting posterior
samples, for example marginal posterior densities of individual parameters may be misleading about
the possible values a parameter can take. Further, some patterns in the posterior, such as extreme
nonlinear patterns (“banana” shapes, etc.) can indicate that parameters are strongly correlated
and not well constrained. For an example of this for DEB models see Johnson et al. (2013).

Posterior estimates of parameters

Now that we feel confident in the convergence of the chains and that our parameters are well iden-
tified we can interpret and present the inferred parameters, including the posterior uncertainties.
Further, we can use the posterior distribution of parameters to obtain the posterior distributions
of other functions of the parameters, such as the trajectories of the system.

In a Bayesian analysis we often report the marginal highest posterior density (HPD) interval
or credible interval, which are the Bayesian analogs to confidence intervals. In Figure 2 we show a
graphical representation of the HPD intervals for the parameters that we estimated. The shaded
region corresponds to the HPD region (i.e., 95% of the posterior weight), and the HPD interval
thus corresponds to the locations of the edges of the region. We indicate the posterior mean, often
used as the point estimate for the parameter, using a solid line.

Finally, we can construct and visualize the posterior distributions of any functions of the pa-
rameters. For this example, we focus on the posterior distribution of the trajectories of the sets of
differential equations. To obtain the posterior distribution of trajectories requires solving the set
of differential equations with the parameters set to the estimated values in the posterior sample.
For instance, in this example we collected N = 20000 samples of the posterior distribution of pa-
rameters. We discarded the first 1000 as burn-in (because for part of that the chain had not yet
converged), leaving 19000 samples. We then “thinned” these samples (that is sub-sampled them),
taking every 10th sample. This leaves 1900 parameter samples. For each of these samples we take
the pair of primary parameter estimates together with the fixed parameters and initial conditions
and solve the DEs. After repeating this for all 1900 samples we have 1900 trajectories of the system,
reflecting parameter uncertainty of the deterministic model . We can obtain the mean behavior by
taking the mean at each time point in the trajectory across the 1900 samples. Similarly we can
calculate the credible intervals by obtaining the appropriate values of the quantiles at each time
point. The posterior mean and credible intervals of the trajectories for our example are shown in
Figure 4.

Note that, unlike most methods for obtaining uncertainty estimates of parameters (e.g. obtained
via maximum likelihood or least squares) we do not need to assume that the parameters are
approximately multivariate normal. Although that assumption may not be far off for the simple
example here, there are certainly cases where that assumption is a poor representation of the
posterior distribution, and where assuming the parameters are jointly normal would result in very
different predictions of the system trajectories and their uncertainties.

4 Case Study 2: The Standard DEB Model

For our second case study we attempt to replicate the DEBtool estimation of growth and repro-
duction parameters for the standard DEB model for the earthworm Lumbricus terrestris. We
implemented the standard DEB model (Kooijman, 2010) in terms of scaled energy density e, scaled
length l, and scaled maturity uH and reproductive buffer uR, respectively, as functions compliant
with the ODE solvers provided by the deSolve package Soetaert et al. (2010). The model equations
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Figure 3: Joint samples from the full posterior of the 2 observation and 2 primary model parameters
estimated for the DEBKiss model.

are given in Appendix A, parameter definitions are given in Tables 2 and 3. Further R functions
to compute boundary values for the state variables from DEB parameters (Kooijman, 2009) were
adapted from DEBtool routines and are available in the R package DEButilities which we provide
in the supplementary materials.
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Figure 4: Snail growth (measured as shell length in mm) and reproduction data (from Zimmer
et al., 2012) plotted with the posterior mean and 95% credible interval (CI) of the predicted shell
length growth and cumulative egg production from the DEBKiss model. Solid lines indicate the
posterior mean, and dotted lines the edges of the 95% CI.

For the sake of simplicity we did not estimate ageing parameters. DEB model parameters esti-
mated from observations of earthworm growth (Butt, 1993) with DEBtool M (https://github.com/add-
my-pet/DEBtool M) were obtained from the add-my-pet database (Marques et al., 2018). Rather
than re-estimating the DEB parameters from the original data we simulated observations for this
case study, by solving the DEB equations with the AmP parameters for this species, and adding
random log-normal noise to the simulated trajectories. This allowed us to conduct inference on
a set of known reference parameters for both the deterministic model, and the observation model,
and thus to objectively assess parameter identifiability and the precision of the posterior parameter
estimates independent of the inferential performance of DEBtool. The code for the simulation
procedure is provided in the supplementary materials.

4.1 Bayesian parameter estimation

Treating the initial value for the scaled reserve density u0
E as parameter dependent (Kooijman, 2009)

necessitates a recalculation of two of the initial values for the DEB model equations, the scaled
length lb and maturity at birth ubH , respectively, within the MCMC inference procedure. This
computational step is currently only implemented in a development branch of deBInfer, which is
provided in the supplementary materials.

Initial inference runs highlighted parameter identifiability issues, in particular a strong, non-
linear correlation between the maximum structural length Lm, the specific assimilation rate {ṗAm}
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and the energy conductance v̇ made it impossible to estimate the specific cost of structure [EG]. We
tried to resolve this by using informative priors based on the empirical distribution of parameters
in the AmP database (see below).

The strong parameter correlations further resulted in slow mixing of the MCMC chain, neces-
sitating a large number of samples to explore the posterior distribution and achieve approximate
convergence, as indicated by potential scale reduction factors < 1.1 (Brooks and Gelman, 1998).
We therefore conducted inference for this model using a compiled ODE model implemented in C
to make inference feasible in an acceptable amount of wall time. We ran three separate MCMC
chains of 150000 samples each. We discarded the first 10000 samples of each chain as ’burnin’ and
thinned the remaining samples retaining every 10th sample.

4.1.1 Prior distributions

Priors on the parameters were chosen to be weakly informative, based on the principle that priors
should contain enough information to rule out unreasonable parameter values but not values that
might make sense. Hard bounds were used only where dictated by DEB theory. We further aimed
to translate the pseudodata approach of the covariation method (Lika et al., 2011) into our choices
of prior distributions and their location and scale parameters. Specific prior choices are detailed in
Table 2. Informative priors for {ṗAm} and [EG] were based on exisiting DEB parameter estimates.
To this end we extracted DEB parameter values across taxa for all members of the kingdom
Animalia represented in the AmP database using the prtStat function of AmPtool (Marques
et al., 2018), and based informative priors on the interspecific means and standard deviations.

4.1.2 Data model and likelihood

The state variables of the DEB model are abstract quantities that are not directly observable,
but can be mapped to observable quantities using auxiliary parameters. We used the following
mappings between the so-called zero-variate observable quantities and model states and parameters
(see Tables 2 and 3 for definitions):

Ww0 = u0
E

v̇2

g2 k
3
MpAm

wE
µEdE

(8)

Wwb = (lbLm)3(1 + fω) (9)

Wwp = (lpLm)3(1 + fω) (10)

ab = τb/k̇M (11)

ap = τb + ρ−1
B log l∞ − lb

l∞ − lp
(12)

where u0
E , l∗, and τb were calculated following Kooijman (2009).

Further, the time series of wet weight Ww(t) and reproductive output R(t) were mapped from
the model using the equations

Ww(t) = (l(t)Lm)3(1 + fω) (13)

R(t) = κRuR(t)/u0
E . (14)

As in the first case study we assume multiplicative log-normally distributed error terms on the
time-series observations of lengths and cumulative egg production, but truncated normal likelihoods
on the zero-variate observations of weights and ages at the start of development, birth, and puberty.
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Table 2: Parameters of the standard DEB model that were estimated in the earthworm case study,
and their associated prior distributions and hyper-parameters.

parameter description prior reasoning
Lm Max. structural length truncated normal

a = 0;µ = 1, σ2 = 1
weakly informative prior in
the absence of species specific
maximum length or weight
data

{ṗAm} Specific assimilation rate normal
µ = 900;σ2 = 300

weakly informative prior
based on AmP collection

v̇ energy conductance truncated normal
a = 0;µ = 0.2, σ2 = 0.2

weakly informative prior
based on generalised animal

κ Allocation fraction to soma Beta
α = β = 2

bounded on [0,1], regularizing
away from bounds

[EG] Specific cost of structure truncated normal
a = dV µV

wE
;µ = 4200;

σ2 = 100

informative prior based on
theoretical lower bound (Lika
et al., 2014) and AmP data
scaled for dV = 0.16

EbH Maturity at birth truncated normal
a = 0;µ = 0;σ2 = 100

weakly informative prior reg-
ularizing towards 0

EpH Maturity at puberty truncated normal
a = 0;µ = 1000;σ2 = 1000

weakly informative prior reg-
ularizing to values ≈ 1000

ln εWw observation error on Ww truncated normal
a = 0;µ = 0.1;σ2 = 0.1

weakly informative prior reg-
ularizing towards 0

ln εR oberservation error on R truncated normal
a = 0;µ = 0.1;σ2 = 0.1

weakly informative prior reg-
ularizing towards 0

Table 3: Parameters of the standard DEB model that were treated as fixed in the estimation
procedure. Values are based on the AmP entry for Lumbricus terrestris. No variance estimates for
ages ab, ap and weights Ww0,Wwb,Wwp at stage transitions in L. terrestris were available in the
literature. We therefore assumed an arbitrary fixed standard deviation σ2

a∗ and σ2
Ww∗ of 1% of the

reported mean for those values. Additional parameters are defined in Appendix A.
parameter value description
k̇J 0.002 cm/d Maturity maintenance rate coefficient
TA 5000 K Arrhenius temperature
Tref 293.15 K Reference temperature
f 1 Functional response
wE 23.9 g/mol Molecular weight of reserve
dV 0.16 g/cm3 Specific density of structure
dE 0.16 g/cm3 Specific density of reserve
µE 550000 J/mol Chemical potential for reserve
µV 500000 J/mol Chemical potential for structure
κR 0.95 Reproduction efficiency
σ2
a∗ 0.01× a∗ Std. deviation on ages ab, ap
σ2
Ww∗ 0.01×Ww∗ Std. deviation on ages Ww0, Wwb, Wwp
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This choice of likelihood offered a straightforward way to parameterize the likelihood, given that
zero-variate data are often reported as means and standard deviations, while the truncation ensures
that only positive values are allowable. The full likelihood of error at time t is therefore as follows

L =∆b ∆p ∆H×
truncnorm(W̃w0|Ww0, σ

2
Ww0 , a = 0, b =∞)×

truncnorm(W̃wb|Wwb, σ
2
Wwb

, a = 0, b =∞)×
truncnorm(W̃wp|Wwp, σ

2
Wwp

, a = 0, b =∞)×
truncnorm(ãb|ab, σ2

ab
, a = 0, b =∞)×

truncnorm(ãp|ap, σ2
ap
, a = 0, b =∞)×∏

t

lognormal(W̃w(t)| lnWw(t), ln εWw)×∏
t

lognormal(R̃(t)| lnR(t), ln εR)

(15)

where further constraints ∆ on the parameter space follow from theoretical considerations de-
tailed in Lika et al. (2014) about the animal reaching the stage transitions at birth and puberty:

∆b =
{

0 for lb ≥ f or k vbH ≥
f
g+f l

2
b (g + lb)

1 otherwise
(16)

∆p =
{

0 for k vpH ≥ f(f − lT )2

1 otherwise
(17)

∆H =
{

0 for EbH ≥ E
p
H

1 otherwise
(18)
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4.2 Results: Standard DEB Model

Initial inference runs highlighted parameter identifiability issues, in particular the strong, non-linear
correlation between Lm, {ṗAm} and v̇ (see the banana-shaped contours in the joint density plots
for the variables in Figure 5) made it impossible to estimate [EG], even when using informative
priors based on the empirical distribution of parameters in the AmP database. We therefore present
inferences for a model where [EG] was fixed at the value of 4180 J/cm3 (Figure 6).

Despite the strong correlations, the AmP parameter values were recovered within the 95%
highest posterior density interval, although the posterior means and modes diverged substantially
from the AmP parameter values for Lm, {ṗAm}, and v̇, and to a lesser extent for EbH (Figure 6).

Posterior trajectories for the earthworm DEB model (Figure 7) further indicate that the param-
eter identifiability issues encountered here are likely a structural property of the model, rather than
a result of poor statistical fit due to large observation errors. The posterior distribution of model
trajectories is relatively narrow on the data scale, which is well constrained by the observations,
but wide on the scale of the state variables.

5 Discussion

DEB theory and related bioenergetic models such as the DEBkiss framework have the potential to
unify biological theory across levels of organization (Nisbet et al. 2000). However, to realize this
potential, robust methods are needed to connect the theoretical predictions with the inherently
variable and noisy biological data.

We here demonstrate how DEB and DEBkiss parameters can be estimated in a Bayesian frame-
work, a coherent, effective, and well-established approach, using the freely available deBInfer
package in R. The Bayesian approach is particularly useful for DEB models as it provides a fairly
straightforward way to incorporate prior information and at the same time provides a means to
quantify uncertainty in parameters and predictions. DEB theory in its very core is focused on
the individual animal, and the role of individual trait heterogeneity is increasingly recognized as
an important factor underlying ecological dynamics (e.g. Cam et al., 2002; Vindenes et al., 2008;
Jenouvrier et al., 2015). The problem of inter-individual variation and thus dependence in observa-
tions remains an important source of bias for inference in DEB models. The Bayesian approach, in
principle, provides a conceptually straightforward avenue for hierarchical inference, thereby opening
a door to better understanding causes and effects of individual heterogeneity of metabolic traits.
However, the computational implementation of such a hierarchical inference is challenging, and
currently exceeds the capabilities of the deBInfer software. Progress towards more general tools
for this purpose is being made (Carpenter et al., 2017; Krauss and Schuppert, 2017), and should
provide great opportunities to further develop inferential approaches for DEB models. Our results
furthermore highlight the difficulty of identifying DEB model parameters when taking into account
measurement uncertainty, which serves as a reminder that fitting these models requires statistical
caution (Billoir et al., 2008a). In particular, we were not able to simultaneously estimate the same
number of parameters for the standard DEB model for Lumbricus terrestris as are presented in
the corresponding AmP entry, even when using priors based on AmP information. Further work
should employ additional datasets to further elucidate the influence of data availability (as in the
number of measured traits) and quality (as in the precision of observations) on practical parameter
identifiability in the standard DEB model when assuming observation error.

Any statistical inference procedure involves arbitrary choices made by the modeller, and both
the Bayesian approach presented here, and the DEBtool procedure make use of distributional as-
sumptions, as well as expert opinion to constrain the parameter estimation. The former through
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Figure 5: Pairwise correlations of posterior parameter estimates for the standard DEB model for
the earthworm Lumbricus terrestris. The value for the specific cost of structure [EG] was fixed at
4180 J/cm3.
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Figure 6: Even with a fixed value of the specific cost of structure [EG] the data likelihood pro-
vided little information about the values of energy conductance v̇ and the specific assimilation rate
{ṗAm}, as is apparent from the substantial overlap between posterior and prior densities for these
parameters. Despite this, the reference values of all free parameter were recovered within the 95%
highest posterior density interval.
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Figure 7: Posterior trajectories for the earthworm DEB model. The posterior distribution of model
trajectories is relatively narrow on the data scale, but wide on the scale of the state variables. This
indicates that the weak identifiability of several parameters is structural, rather than a consequence
of poor statistical fit. The red dashed lines are a random sample of 500 posterior trajectories.
The black solid line represents the simulated trajectories which were used to generate the noisy
observations (black dots) used as data in the inference procedure.
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the choice of particular prior distributions and likelihoods, the latter by using pseudodata and set-
ting weight coefficients for the least-squares estimation. Furthermore, the weighted least-squares
method underlying the DEBtool estimation procedure does in principle provide variances and ap-
proximate covariances on parameter estimates, however, these are rarely if ever reported, and are
not currently part of the AmP database. To better understand the uncertainties of parameter esti-
mates we would encourage all DEB practitioners to report choices made to constrain the parameter
estimation, as well as variance and covariance estimates for estimated parameters.
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(https://doi.org/10.5281/zenodo.1162331)

• deBInfer 0.4.2 is available on CRAN (https://CRAN.R-project.org/package=deBInfer)

• deBInfer 0.4.1.9000-recalc-inits is available on github
(https://github.com/pboesu/debinfer/tree/recalc-inits)

• Simulation and inference code for this paper are archived on zenodo
(http://doi.org/10.5281/zenodo.1298407)
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A The standard DEB model

Dynamics for the scaled standard DEB model for e > l > lb following Table 2.5 in Kooijman (2010).

d

dt
e = k̇Mg

f − e
l

(19)

d

dt
l = k̇M

3
e− l

1 + e/g
(20)

d

dt
uH =

{
k̇M ((1− κ)el2 g+l

g+e − kuH for uH < upH
0 otherwise

(21)

d

dt
uR =

{
0 for uH < upH
k̇M ((1− κ)el2 g+l

g+e − kuH otherwise
(22)
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Table 4: Definitions of state variables and parameters of the standard DEB model not detailed in
Tables 2 or 3 .

parameter description
e scaled reserve density
l scaled length
lb length at birth
lp ultimate length
l∞ length at birth
lT heating length
uH scaled maturity density
uR scaled reproductive buffer density
u0
E initial scaled reserve
vbH scaled maturity volume at birth
vpH scaled maturity volume at puberty
k maintenance ratio k̇J/k̇M
g energy investment ratio [EG]v̇

κ{ṗAm}
k̇M somatic maintenance rate coefficient
ω contribution of reserve to body weight
Ww0 Wet weight of egg
Wwb Wet weight at birth
Wwp Wet weight at puberty
ab age at birth
ap age at puberty
τb scaled age at birth abk̇M
ρB scaled von Bertalanffy growth rate
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