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 2 

Abstract 20 

Humans are highly skilled at analysing complex acoustic scenes. The segregation of different 21 

acoustic streams and the formation of corresponding neural representations is mostly attributed 22 

to the auditory cortex. Decoding of selective attention from neuroimaging has therefore focussed 23 

on cortical responses to sound. However, the auditory brainstem response to speech is modulated 24 

by selective attention as well, as recently shown through measuring the brainstem's response to 25 

running speech. Although the response of the auditory brainstem has a smaller magnitude than 26 

that of the auditory cortex, it occurs at much higher frequencies and therefore has a higher 27 

information rate. Here we develop statistical models for extracting the brainstem response from 28 

multi-channel scalp recordings and for analysing the attentional modulation according to the 29 

focus of attention. We demonstrate that the attentional modulation of the brainstem response to 30 

speech can be employed to decode the attentional focus of a listener from short measurements of 31 

ten seconds or less in duration. The decoding remains accurate when obtained from three EEG 32 

channels only. We further show how out-of-the-box decoding that employs subject-independent 33 

models, as well as decoding that is independent of the specific attended speaker is capable of 34 

achieving similar accuracy. These results open up new avenues for investigating the neural 35 

mechanisms for selective attention in the brainstem and for developing efficient auditory brain-36 

computer interfaces. 37 

 38 

Keywords: complex auditory brainstem response, natural speech, auditory attention decoding  39 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 15, 2019. ; https://doi.org/10.1101/259853doi: bioRxiv preprint 

https://doi.org/10.1101/259853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 40 

Humans have an extraordinary capability to analyse crowded auditory scenes. We can, for instance, 41 

focus our attention on one of two competing speakers and understand her or him despite the distractor 42 

voice (Middlebrooks et al., 2017). People with hearing impairment such as sensorineural hearing loss, 43 

however, face major difficulty with understanding speech in noisy environments, and this difficulty 44 

persists even when they wear auditory prosthesis such as hearing aids or cochlear implants (Armstrong 45 

et al., 1997). Auditory prosthesis could potentially aid with understanding speech in noise through 46 

selectively enhancing a target speech, for instance based on its direction, using algorithms such as beam 47 

forming (Kidd et al., 2015). However, such selective enhancement requires knowledge of which sound 48 

the user aims to attend to. Current research therefore attempts to decode an individual's focus of 49 

selective attention to sound from non-invasive brain recordings (O'Sullivan et al., 2014; Mirkovic et al., 50 

2015; Biesmans et al., 2016; Fuglsang et al., 2017). If such decoding worked in real time, it could inform 51 

the sound processing in an auditory prosthesis. It could also form the basis of a non-invasive brain-52 

computer interface for motor-impaired patients with brain injury, for instance, who may not be able to 53 

respond behaviourally.  Moreover, such decoding of selective attention could be employed clinically 54 

for a better understanding and characterization of hearing loss. 55 

Neural activity in the cerebral cortex, especially in the delta (1 – 4 Hz) and theta (4 – 8 Hz) 56 

frequency bands, tracks the amplitude envelope of a complex auditory stimulus such as speech (Ding 57 

and Simon, 2012; Giraud and Poeppel, 2012; Power et al., 2012; Ding and Simon, 2014). The tracking 58 

is shaped by selective attention to one of several sound sources and can be measured from 59 

electrocorticography (ECoG) (Mesgarani and Chang, 2012), and noninvasively from 60 

magnetoencephalograpy (MEG) (Ding and Simon, 2012), as well as from the clinically more applicable 61 

electroencephalography (EEG) (Kerlin et al., 2010; Horton et al., 2013). Attention to one of two 62 

competing voices has been successfully decoded from single trials of one minute in duration using MEG 63 

(Ding and Simon, 2012) as well as EEG (O'Sullivan et al., 2014; Mirkovic et al., 2015; Fiedler et al., 64 

2017). Further optimization of the involved statistical modelling led to an accurate decoding of the 65 

focus of selective attention from still shorter recordings lasting less than 30 s (Biesmans et al., 2016; 66 
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Van Eyndhoven et al., 2017). Moreover, a subject's changing focus of attention could be detected within 67 

tens of seconds from EEG data, and even faster from MEG data, when combined with additional sparse 68 

statistical modeling (Miran et al., 2018). 69 

Recently we showed that subcortical neural activity is consistently modulated by selective 70 

attention as well (Forte et al., 2017). To this end we developed a method to measure the response of the 71 

auditory brainstem to natural non-repetitive speech. We employed empirical mode decomposition 72 

(EMD) to extract a waveform from the speech signal that, at each time instance, oscillates at the 73 

fundamental frequency of the voice. We then correlated this fundamental waveform to the neural 74 

recording obtained from a few scalp electrodes. We observed a peak in the cross-correlation at a latency 75 

of 9 ms, evidencing a neural response at the fundamental frequency with a subcortical origin. This 76 

method determined the brainstem response to the voiced parts of speech, and in particular to its pitch. 77 

When volunteers listened to two competing speakers, we observed that the brainstem response to the 78 

fundamental frequency of each speaker was larger when the speaker was attended than when she or he 79 

was ignored. 80 

Because the brainstem response to speech that we measured occurs at the fundamental 81 

frequency of speech, typically between 100 – 300 Hz, it is ten- to hundredfold faster than the cortical 82 

tracking of the speech envelope. The rapidness of the brainstem response could imply a high 83 

information rate, despite the small magnitude of the response that is below that of cortical responses. 84 

We therefore wondered if the brainstem response to natural speech can be detected from high density 85 

EEG, that is typically used to capture the cortical activity, and whether it can be used to efficiently 86 

decode auditory attention. 87 

  88 
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Materials and Methods 89 

Participants 90 

 18 healthy adult English native speakers (aged 22.8 ± 1.9 year, four females), with no history of 91 

auditory or neurological impairments participated in the study.  All participants provided written 92 

informed consent. The experimental procedures were approved by the Imperial College Research Ethics 93 

Committee. 94 

Experimental Design and Statistical Analysis 95 

 We employed the same experimental design that we used previously to measure the brainstem response 96 

to non–repetitive speech and its modulation through selective attention (Forte et al., 2017). In particular, 97 

approximately ten-minute long continuous speech samples from a male and female speaker were 98 

obtained from publicly available audiobooks (librivox.org). For the female voice excerpts from "The 99 

Children of Odin" (chapters 2 and 4) and "The Adventures of Odysseus and the Tale of Troy" (part 2, 100 

chapter 8), all by Pádraic Colum and read by Elizabeth Klett, were selected. For the male voice excerpts 101 

from "Tales of Troy: Ulysses the Sacker of Cities" by Andrew Lang (section 11) and "The Green Forest 102 

Fairy Book" by Loretta Ellen Brady (chapter 10), all read by James K. White, were used. The first story 103 

from the female speaker was employed when presenting speech in quiet. The two other female speech 104 

samples were used to generate two stimuli with two competing speakers by mixing each with one 105 

sample from the male speaker, at equal root-mean-square amplitude. 106 

Participants first listened to the stimulus with a single speaker without background noise. They 107 

then listened to the two stimuli with two competing speakers each. They were instructed to exclusively 108 

attend either the male or female voice in the first stimulus, and to attend to the speaker they previously 109 

ignored in the second one. Whether a subject was instructed to first attend the male speaker and then 110 

the female speaker or vice versa was determined randomly for each subject. Each stimulus was 111 

presented in four parts of approximately equal duration (~2.5 minutes), and comprehension questions 112 

were asked after each part.  All stimuli were delivered diotically, that is, the same waveforms were 113 

delivered to the right and left ears, at 76 dB(A) SPL (A-weighted frequency response) using Etymotic 114 
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ER-3C insert tube earphones to minimise artifacts. The sound intensity was calibrated with an ear 115 

simulator (Type 4157, Brüel & Kjaer, Denmark). EEG recordings were obtained during the stimuli and 116 

their statistical analysis was performed using custom Matlab and Python code and functions from the 117 

MNE toolbox (Gramfort et al., 2013; Gramfort et al., 2014) as described below.  118 

Neural data acquisition and processing 119 

Neural activity was recorded at 1 kHz through a 64-channel scalp EEG system using active electrodes 120 

(actiCAP, BrainProducts, Germany) and a multi-channel EEG amplifier (actiCHamp, BrainProducts, 121 

Germany). The electrodes were positioned according to the standard 10-20 system and referenced to 122 

the right earlobe. The EEG recordings were band-pass filtered offline between 100 and 300 Hz (low 123 

pass: linear phase FIR filter, cutoff (-6 dB) 325 Hz, transition bandwidth 50 Hz, order 66 ; high pass: 124 

linear phase FIR filter, cutoff  (-6 dB) 95 Hz, transition bandwidth 10 Hz, order 364 ; both: one-pass 125 

forward and compensated for delay) and then referenced to the average. When only using three channels 126 

for the decoding, all channels except the two mastoids TP9 and TP10 and the vertex Cz were discarded, 127 

and the filters described above were applied. The audio signals were simultaneously recorded by the 128 

amplifier at a sampling rate of 1 kHz through an acoustic adapter (Acoustical Stimulator Adapter and 129 

StimTrak, BrainProducts, Germany), and were used to align the neural responses to the stimuli. A 1 ms 130 

delay of the acoustic signal introduced by the earphones was taken into account by shifting the audio 131 

signal forward by 1 ms with respect to the neural response. 132 

Computation of the fundamental waveform of speech 133 

 We employed Empirical Mode Decomposition (EMD) to extract a waveform from each speech signal 134 

that, at each time instance, oscillates at the fundamental frequency of the voice; we refer to it as the 135 

fundamental waveform (Forte et al., 2017). EMD is indeed well suited to analyze data that results from 136 

non-stationary and nonlinear processes such as speech production, and has been successfully used for 137 

pitch detection (Huang and Pan, 2006). The fundamental waveform was downsampled to 1 kHz, the 138 

sampling rate of the neural recordings, and filtered between 100 and 300 Hz as described above. Silent 139 

or unvoiced parts of the speech produced some segments where the fundamental waveform was equal 140 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 15, 2019. ; https://doi.org/10.1101/259853doi: bioRxiv preprint 

https://doi.org/10.1101/259853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

to zero. For the stimuli with a single speaker, we excluded such segments from the further analysis. For 141 

the stimuli with two competing speakers we excluded the few segments where the fundamental 142 

waveform of one of the two voices was entirely zero as attention could not be decoded in this case. 143 

We also computed a proxy of the fundamental waveform by band-pass filtering the audio signal 144 

in the range of the fundamental frequency. We thereby employed FIR filters with corner frequencies of 145 

100 Hz and 200 Hz for the male voice (linear-phase FIR filter, lower cutoff (-6 dB): 90 Hz, transition 146 

bandwidth 17.5 Hz, higher cutoff (-6 dB): 210 Hz, transition bandwidth 17.5 Hz, order 237, one pass 147 

forward and compensated for delay), as well as corner frequencies of 150 Hz and 250 Hz for the female 148 

voice (linear-phase FIR filter, lower cutoff (-6 dB): 135 Hz, transition bandwidth 25 Hz; higher cutoff 149 

(-6 dB): 275 Hz, transition bandwidth 25 Hz, order 157, one pass forward and compensated for delay). 150 

We employed the band-pass filtered audio signals to obtain the results on attention reported in Figure 151 

7-B. All other results presented here were obtained from waveforms extracted by EMD. 152 

Backward model 153 

We first used a linear spatio-temporal backward model to reconstruct the fundamental waveform of 154 

speech from the neural recordings. Specifically, at each time instance 𝑡", the fundamental waveform  155 

𝑦(𝑡") was estimated as a linear combination of the neural recordings 𝑥'(𝑡" + 𝜏*) as well as their Hilbert 156 

transform 𝑥'+(𝑡" + 𝜏*) at a delay 𝜏*: 157 

 𝑦,(𝑡") = ∑ ∑ /𝛽',*
(2)𝑥'(𝑡" + 𝜏*) + 𝛽',*

(3)𝑥'+(𝑡" + 𝜏*)45
*67

8
'67 .  (1) 158 

The index j refers hereby to the recording channel, and 𝛽',*
(2), 𝛽',*

(3) are a set of real coefficients to 159 

determine. We used a set of T = 25 possible delays 𝜏* ranging from -5 ms to 19 ms with an increment 160 

of 1 ms. The Hilbert transform of each recording channel was included in Equation (1), denoted with 161 

the upper index h, to allow the reconstruction of the fundamental waveform from these signals as well. 162 

The Hilbert transform of a sinusoid results in a phase shift of π/2, which equates to a temporal shift of 163 

a quarter period. Even narrow-band signals such as our band-pass filtered EEG recordings contain, 164 

however, a range of frequencies. While the Hilbert transform of these signals can still be interpreted as 165 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 15, 2019. ; https://doi.org/10.1101/259853doi: bioRxiv preprint 

https://doi.org/10.1101/259853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

a phase shift of π/2, it can no longer be obtained by a temporal shift. The Hilbert transforms therefore 166 

add another set of predictors in Equation (1) that are independent of the time-shifted EEG signals, and 167 

that thereby aid the reconstruction of the fundamental waveform. 168 

The model's coefficients can be assembled into complex coefficients 𝛽',* = 𝛽',*
(2) + 𝑖𝛽',*

(3) that 169 

encode accordingly the amplitude of the brainstem response, the temporal delay as well as the phase 170 

difference between stimulus and response. We thus obtained T = 25 temporal delays that, together with 171 

the N=64 recording channels, led to 1,600 complex model coefficients. 172 

The model coefficients were then estimated for each subject using a regularised ridge regression 173 

as 𝛽 = (𝑋;𝑋 + 𝜆𝐼)>7𝑋;𝑦, in which X is the design matrix of dimension 𝑛@ × 	2𝑁𝑇 with 𝑛@ the number 174 

of samples available in the recording, and 𝜆 is a regularisation parameter (Hastie et al., 2009). In 175 

particular, the columns of the design matrix are the neural recordings 𝑥'(𝑡" + 𝜏*) at the different time 176 

points 𝑡" as well as their Hilbert transforms 𝑥'+(𝑡" + 𝜏*). To normalise for differences between datasets, 177 

𝜆 can be written as 𝜆 = 	𝜆"	𝑒H where 𝑒H is the mean eigenvalue of 𝑋;𝑋 and 𝜆" is a normalised 178 

regularisation coefficient (Biesmans et al., 2016). 179 

A five-fold cross-validation procedure was implemented to evaluate the model. In each of five 180 

iterations, and for each participant, four folds of the ten-minute data were used to compute the model 181 

coefficients, yielding about eight minutes of training data. The remaining fifth fold, two minutes of 182 

testing data, served to estimate the fundamental waveform and to compute the performance of the 183 

model. The performance was quantified by dividing the reconstructed (𝑦, = 𝑋	𝛽) and the actual (𝑦) 184 

fundamental waveforms obtained on the testing data in ten-seconds long segments and computing 185 

Pearson’s correlation coefficient between these waveforms for each segment. The correlation values 186 

obtained over the five testing folds were pooled to determine the mean and standard error of the 187 

reconstruction performance. This performance was determined for 50 different normalised 188 

regularization parameters with values ranging from 10-15 to 1015. For each subject, the regularization 189 

parameter that yielded the largest reconstruction performance was chosen as the optimal regularization 190 

parameter. 191 
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The procedure above, including the use of the Hilbert transform of the EEG data, was employed 192 

both when reconstructing the fundamental waveform obtained from EMD as well as when estimating 193 

the fundamental waveform obtained from band-pass filtering the speech signal (see below). 194 

The Python code for computing the complex coefficients of the backward model, together with 195 

a sample of a fundamental waveform and the corresponding EEG recordings, is on Github (Kegler et 196 

al.). 197 

Significance of the fundamental waveform reconstruction 198 

 To determine if the linear backward models showed a significant brainstem response to the 199 

fundamental frequency, we also computed, for each subject, one noise model as a linear backward 200 

model that attempted to reconstruct the fundamental waveform of an unrelated speech segment from 201 

the same female speaker. The noise models were computed using the same methodology we employed 202 

for determining the actual brainstem response, including the same cross-validation procedure and the 203 

same determination of the optimal regularization parameter per subject. 204 

We then assessed whether the correct linear backward model outperformed the noise model, or 205 

the opposite, by comparing the correlation coefficients obtained on the ten-second segments through a 206 

two-tailed Wilcoxon signed rank test. The results of the statistical tests are indicated for each subject in 207 

Figure 1-A through asterisks: no asterisk is given when results are not significant (p > 0.05), one asterisk 208 

when results are significant (*,0.01 < 𝑝 ≤ 0.05), two asterisks when significance is high (**, 0.001 <209 

𝑝 ≤ 0.01), and three asterisks when significance is very high (***, 𝑝 ≤ 0.001). 210 

Estimation of the neural response (forward model) 211 

To gain further information about the neural origin of the response we also computed a linear forward 212 

model that estimated the EEG responses from the fundamental waveform. The coefficients of the 213 

forward model, as opposed to those of a backward model, allow for a neurobiological interpretation of 214 

their spatio-temporal characteristics (Haufe et al., 2014). The forward model relates the EEG recording 215 

𝑥'(𝑡") at time 𝑡" to the fundamental waveform 𝑦(𝑡" − 𝜏*) as well as its Hilbert transform 𝑦+(𝑡" − 𝜏*) 216 

at a delay 𝜏*: 217 
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 𝑥'(𝑡") = ∑ /𝛼*
(2)𝑦(𝑡" − 𝜏*) + 𝛼*

(3)𝑦+(𝑡" − 𝜏*)45
*67 ,  (2) 218 

in which 𝛼*
(2) and 𝛼*

(3) are the model's real coefficients. They can be interpreted as real and imaginary 219 

parts of the complex coefficients 𝛼* = 𝛼*
(2) + 𝑖	𝛼*

(3). To investigate the temporal dynamics of the neural 220 

response, we considered a broader range of time lags than for the backward model. Specifically, we 221 

employed a set of T=201 possible delays 𝜏* that ranged from -50 ms up to 150 ms with an increment 222 

of 1 ms. Although we did not expect a neural response at negative delays or at delays larger than 20 ms, 223 

we included those nevertheless to verify the absence of a significant response there. The model 224 

coefficients were estimated by concatenating the data from all subjects that showed a significant 225 

brainstem response to the speech signal as assessed earlier (generic or subject-averaged model) and 226 

using a regularised ridge regression as previously described.  227 

As for the backward model, we made the Python code for computing the complex coefficients 228 

of the forward model available on Github as well (Kegler et al.). 229 

Significance of the auditory brainstem response 230 

We sought to investigate at which latencies significant neural responses emerged. We therefore 231 

compared the obtained forward model to noise models. One thousand forward noise models were 232 

computed analogously to the forward model, except that the fundamental waveform of the actual speech 233 

signal was replaced with a fundamental waveform of an unrelated speech stimulus, from the same 234 

female speaker. We constructed these unrelated speech stimuli by randomly picking four parts, each 235 

with a duration of 2.5-minutes, from the eight parts that constituted the female speech material used in 236 

the competing speaker condition. This procedure was repeated to create 1,000 surrogate waveforms (out 237 

of all 1,680 possible combinations). We then employed a mass-univariate analysis to identify the 238 

significant time delays (Groppe et al., 2011). In particular, we computed the average magnitude of the 239 

responses over the EEG channels, yielding a single real time-varying function for the actual neural 240 

response and of the noise responses. We then pooled the values from the 1000 noise responses over the 241 

time lags to establish a single empirical null-distribution. We used this distribution to determine a 242 
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critical value corresponding to a p-value of 0.05 to which the actual neural response was compared at 243 

each time lag from -50 ms to 150 ms (Bonferroni correction for multiple comparison). 244 

In addition, we analysed the topography of the forward model at the peak latency 𝜏Q of the 245 

average magnitude of the responses over the EEG channels. To this end, the forward noise models were 246 

used to build an empirical null distribution for each channel. For each noise model, the peak latency of 247 

the average magnitude was determined, and the magnitude of each channel's response at this latency 248 

was used to establish the null distribution of that channel. Finally, the forward model at time 𝜏Q was 249 

compared to the corresponding null empirical distribution at the respective channel at a significance 250 

level of p = 0.05, with FDR correction for multiple comparison over channels. 251 

Stimulus artifacts 252 

We also computed the cross-correlation between the EEG responses to speech in quiet and the 253 

corresponding broad-band speech signal, with the purpose of checking for stimulus artifacts. To this 254 

end the speech stimulus was resampled from 44,100 Hz to 1,000 Hz, the sampling frequency of the 255 

EEG data. The cross-correlation functions were then analysed for statistically significant peaks at delays 256 

between -200 ms to 200 ms following the same procedure as described above for the forward model. 257 

Briefly, the cross-correlations were first averaged over subjects, and the absolute value of the resulting 258 

functions were then averaged over electrodes, yielding the average neural response as a function of 259 

latency. To establish a chance level, the same calculations were reproduced when replacing the speech 260 

stimulus by a different one from the same speaker. This procedure was repeated 1,000 times, yielding 261 

1,000 noise responses. These stimuli were constructed as described above. These noise responses were 262 

pooled over time lags to build a single null distribution that was then used to assess the significance of 263 

the actual averaged neural responses as described above for the forward model (p = 0.05, Bonferroni-264 

corrected for multiple comparison over time lags between -200 ms to 200 ms). 265 

Attentional modulation of the auditory brainstem response 266 

To analyse the attentional modulation of the brainstem response to one of two competing speakers, we 267 

computed two pairs of backward models for each subject. The first pair of models reconstructed the 268 
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fundamental frequency of the male voice while it was either attended (MA model) or ignored (MI 269 

model).  The second pair of models reconstructed the fundamental waveform of the female voice when 270 

the subject attended it (FA model) or when the subject ignored it (FI model). The computation of the 271 

backward models, and the assessment of their performance, was done through five-fold cross-validation 272 

as explained above. 273 

For each speaker, the performances of the attended and ignored models were then compared 274 

using a two-tailed Whitney-Mann rank test at the subject level. The results are indicated in Figure 4 275 

through asterisks as described above. We further employed a two-tailed Wilcoxon signed-rank test to 276 

investigate whether the population-average ratios of the performances were, for each speaker, 277 

significantly different from unity. Finally, we used a two-tailed Wilcoxon signed-rank test to check if 278 

the population-average ratios obtained from the responses to the male voice and to the female voice 279 

were significantly different. 280 

Differences between brainstem responses to attended and to ignored speech 281 

We sought to determine whether the difference in the brainstem response to attended and to ignored 282 

speech reflected merely a difference in the strength of the response, or if there were other as well. To 283 

this end, we compared the magnitudes and the phases of the complex coefficients of the forward model 284 

for an attended voice to those for an ignored voice. Because the forward models for the male and for 285 

the female voice reflected the different fundamental frequencies of both speakers, we performed this 286 

analysis separately for the male and for the female voice. Regarding the magnitude, we computed the 287 

ratio of the amplitude of the attended and of the unattended model, at the peak delay of their average 288 

amplitude (9 ms, for both the male and female voices). We then employed a two-tailed Wilcoxon sign-289 

rank test to determine for which electrodes the ratio was significantly different from unity (p < 0.05, 290 

FDR-corrected for multiple comparison over electrodes). To compare the phase, we computed the phase 291 

difference between the attended and the ignored model at each electrode at this same peak latency. We 292 

considered the wrapped phase differences that were mapped to the range of [-p, p]. We then determined 293 

the statistical significance of the phase difference through the Rayleigh test for non-uniformity of 294 

circular data (p < 0.05, FDR-corrected for multiple comparison over electrodes). The Rayleigh test 295 
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assesses the null hypothesis that the phase differences are uniformly distributed around the circle. 296 

However, it does not inform on the value of the phase differences. Therefore, we derived 95% 297 

confidence intervals for the mean phase difference by pooling the data across all electrodes that 298 

exhibited significant phase clustering. All circular statistics were performed using the Circular Statistics 299 

Toolbox for Matlab (Berens, 2009). Finally, we compared the latency of peak amplitude between the 300 

attended and ignored models using a Wilcoxon signed rank test. 301 

In order to enable a direct comparison with our previous related work, we also computed the 302 

difference between the TRF at electrode CPz and the average TRF of the two mastoids to produce one 303 

dipolar response (Forte et al., 2017). CPz was selected due to its central location, similar to the one used 304 

in our previous study, and because it emerged in our present study as one of the central electrodes that 305 

displayed a significant response to speech in quiet (Figure 1-C). We then computed the ratio of this 306 

dipolar response between the attended and the ignored condition. 307 

Decoding of auditory attention 308 

We investigated how attention could be decoded from short segments of neural data that were obtained 309 

in response to competing speakers. We first trained and assessed the performances of the two pairs of 310 

speaker-specific linear backward models (MA, MI, FA, FI, as described above) using five-fold cross-311 

validation. For all the attention decoding procedures presented hereafter, the normalised regularisation 312 

coefficient of the backward models was fixed to the value that yielded the best reconstruction for speech 313 

in quiet, 𝜆" = 10>Q.R. 314 

The testing fold was divided into testing segments with a duration of 0.5, 1, 2, 4, 8, 16 and 32 315 

s. For each testing segment we therefore obtained four different correlation coefficients: the correlation 316 

coefficient rMA between the fundamental waveform of the male speaker and its reconstruction based on 317 

the MA model, the correlation coefficient rMI between the fundamental waveform of the male speaker 318 

and its reconstruction based on the MI model, as well as the correlation coefficients rFA and rFI between 319 

the fundamental waveform of the female speaker and its reconstruction based on the FA and  FI model, 320 
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respectively. The computed correlation coefficients were then employed to decode attention on each 321 

segment. We thereby explored two different avenues (Figure 6-A). 322 

First, we based the decoding on the attended models MA and FA only. To this end, we 323 

compared the correlation coefficients from both models. If rMA exceeded rFA we concluded that the male 324 

speaker was attended, and otherwise that the female speaker was the focus of attention. Second, we 325 

considered the ignored models MI and FI only. If rMI was larger than rFI attention was decoded as having 326 

been directed at the female speaker, and vice versa if rMI was smaller than rFI. 327 

The decoding of attention using these two different methods was performed using all 64 EEG 328 

channels as well as based on three EEG channels only (vertex and mastoids: Cz, TP9, TP10). The 329 

decoding of attention based on the attended models was also performed using the fundamental 330 

waveform obtained by band-pass filtering. 331 

We sought to compare the performance of the obtained attentional decoding to that of a random 332 

classifier. A random binary classifier can achieve a high accuracy by chance. This is especially true 333 

when the number of testing data is small, which in our case occurs when the duration of the testing 334 

segments is long. To account for this effect, we determined the 95% chance level, that is, the highest 335 

accuracy that a random classifier would achieve in at least 95% of cases. This 95% chance level was 336 

computed using a binomial distribution (Combrisson and Jerbi, 2015). 337 

Subject-independent attention decoding 338 

In real-life situations, the decoding of auditory attention may be required for a subject for whom training 339 

data is not available. This situation requires to train a decoder on other people for whom training data 340 

is at hand, and to then apply it to the subject under consideration. We refer to such decoders as out-of-341 

the-box models since, once trained on the data from a set of volunteers, they can be readily applied to 342 

other subjects. To assess how well these out-of-the-box models decode auditory attention, we trained 343 

linear backward models on the pooled data from all subjects and quantified their performances using a 344 

leave-one-subject-out cross-validation coupled with a five-fold cross-validation regarding the auditory 345 

stimuli (i.e. testing on data from a subject and from a part of the stimulus unused during training). To 346 
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train the model, the testing data from all-but-one participants was concatenated and used to obtain the 347 

model coefficients. The unseen part of the data from the remaining subject was used to assess the 348 

performance of the model. In particular, we assessed the classifier that compared the performances of 349 

the MA and the FA model. Its classification accuracy was evaluated as described above. 350 

Speaker-averaged attention decoding 351 

We also wondered how well selective attention could be decoded from the brainstem response if the 352 

specific models of the brainstem responses to the individual voices were not available. We therefore 353 

followed a similar analysis as used for decoding auditory attention based on the speech envelope 354 

(O'Sullivan et al., 2014). For each subject, we computed a single backward model for an attended voice, 355 

irrespective if it was the male or the female one. This model was accordingly trained on the data from 356 

both the condition when the subject attended the male voice and the condition when they listened to the 357 

female speaker. The male fundamental waveform was used as the reconstruction target when the male 358 

speaker was attended, and the female fundamental waveform was the target when the female voice was 359 

attended. An equal proportion of data from each attention condition was included in each cross-360 

validation fold. To determine the focus of attention, we then considered short testing segments as 361 

described above. For each testing segment we computed the correlation coefficient between the 362 

reconstructed fundamental waveform and the actual ones of the two speakers. If the reconstruction 363 

matched the fundamental waveform of the male speaker more closely than that of the female one, we 364 

concluded that the subject had attended the male speaker. Otherwise we determined that the focus of 365 

attention was on the female voice. The performance of the classifier was evaluated as described above. 366 

 367 

Results 368 

Response to a single speaker 369 

 We first measured neural responses to a single non-repetitive speech signal from 64-channel EEG. We 370 

employed empirical mode decomposition to obtain a fundamental waveform from the speech signal 371 
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(Forte et al., 2017), and linear regression with regularization to reconstruct the fundamental waveform 372 

from the multi-channel EEG data for each individual subject (linear backward model, Methods). The 373 

performance of the reconstruction was assessed through the mean Pearson’s correlation coefficients 374 

over ten-second segments of the reconstructed fundamental waveform to the actual one (Figure 1-A). 375 

We verified that the linear backward models did extract a significant brainstem response to 376 

speech. To this end we also constructed models based on the fundamental waveform of unrelated speech 377 

signals from the neural data. For almost all subjects that we assessed (15 out of 18), the model that 378 

reconstructed the actual fundamental waveform significantly outperformed the one that attempted to 379 

reconstruct an unrelated fundamental waveform, showing that the former was able to extract a 380 

meaningful brainstem response (Figure 1-A, two-tailed Wilcoxon signed-rank test). 381 

To investigate the spatio-temporal characteristics of the brainstem response we computed a 382 

generic linear forward model that estimated the EEG recordings from the fundamental waveform using 383 

the data from all the subjects that yielded significant reconstructions in the previous test presented in 384 

Figure 1-A (Methods). The average over channels of the magnitude of the obtained complex coefficients 385 

peaked at 8 ms, and only the latencies around this peak (3 to 14 ms) yielded statistically-significant 386 

neural responses (Figure 1-B). This finding demonstrated the subcortical origin of the neural activity 387 

and was in agreement with previous recordings of speech-evoked brainstem responses (Skoe and Kraus, 388 

2010; Reichenbach et al., 2016; Forte et al., 2017; Maddox and Lee, 2018). The magnitude of the 389 

coefficients at that latency showed major contributions from the mastoids as well as moderate 390 

contributions from the central scalp areas (Figure 1-C). Both the mastoid channels as well as the 391 

channels near the midline of the scalp yielded significant responses. The coefficients at the central area 392 

were approximately in antiphase to those near the mastoids, reflecting the direction of the brainstem's 393 

dipole sources (Figure 1-D).  394 

We also computed linear forward models for single subjects (Figure 2). We find that they 395 

yielded peak responses at similar latencies, and showed similar topographies, although these were 396 

noisier than the ones obtained from the average over all subjects. 397 
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Absence of stimulation artifacts 398 

To determine if stimulus artifacts were present in the recordings, we computed a cross-correlation 399 

between the EEG data and the broadband speech signal. Broadband speech elicits neural responses from 400 

the brainstem to the cortex, at latencies ranging from 5 ms to a few hundred ms (Maddox and Lee, 401 

2018). A stimulus artifact would arise, in contrast, instantaneously, at a delay of -1 ms. This delay 402 

reflects the fact that, in our analysis, we compensated for the earphone's 1 ms delay of delivering the 403 

sound to the ears. The responses that we recorded contained, however, only significant contributions 404 

between 9 and 12 ms delays, firmly in the range of subcortical neural activity (Figure 3). We could 405 

accordingly not detect stimulus artifacts in our EEG recordings. 406 

Attentional modulation of the response to competing speakers 407 

 We then investigated how attention modulates the brainstem response. Following a classic auditory 408 

attention paradigm we presented subjects with a male and a female voice diotically and simultaneously, 409 

instructing them to attend to either the male or the female speaker, while recording their neural activity 410 

from 64-channel EEG (Ding and Simon, 2012; Forte et al., 2017). For each subject, we computed four 411 

linear backward models. The first model, MA, reconstructed the fundamental waveform of the male 412 

voice when the subject attended to it. The second model, MI, reconstructed the fundamental waveform 413 

of the male speaker when the subject ignored it. Analogously, a third and fourth model, FA and FI, 414 

reconstructed the fundamental waveform of the female voice when it was attended or ignored, 415 

respectively. We observed that the performance of the two models that reconstructed the fundamental 416 

waveform of a speaker when they were attended was, in most subjects, significantly better than that of 417 

the corresponding model for the ignored voice (Figure 4, two-tailed Whitney-Mann rank test). The 418 

average ratio between the reconstruction performance of the model for the attended male voice to that 419 

for the ignored male voice was 1.22, significantly larger than one (Z(17) = 7, 𝑝 < 0.001, two-tailed 420 

Wilcoxon signed-rank test). The ratio was 1.15 in the case of the female voice, which was significantly 421 

above one as well (Z(17) = 38, p = 0.039, two-tailed Wilcoxon signed-rank test).  The two ratios did 422 

not differ significantly (Z(17) = 69, p = 0.47, two-tailed Wilcoxon signed-rank test). The better 423 

reconstruction performance of the fundamental waveform of an attended speech signal demonstrates 424 
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the attentional modulation of the brainstem response to speech that we described previously (Forte et 425 

al., 2017). 426 

We wondered if the difference between the attended and the ignored brainstem response 427 

reflected merely a difference in the strength of the response, or if there were other differences as well. 428 

To investigate the nature of these differences, we compared the coefficients of the attended forward 429 

models to those of the ignored models, at the peak delay of their average amplitude (9 ms). We found 430 

that the ratio of the magnitude of the coefficients did not differ statistically from unity, neither for the 431 

male nor for the female voice (Figure 5-A,C; Wilcoxon sign-rank test, FDR correction for multiple 432 

comparison over electrodes). However, we found a statistically significant clustering of phase 433 

differences between the attended and the ignored models at several electrodes near the midline as well 434 

as near the mastoids (Figure 5-B,D; Rayleigh test for non-uniformity of circular data, FDR correction 435 

for multiple comparison over electrodes). For the male voice, the mean phase difference was found to 436 

be -0.51 π  (95 % confidence interval: [-0.56 π ; -0.47 π]), while it was -0.12 π for the female voice (95 437 

% confidence interval: [-0.17 π ; -0.08 π]). This shows that the ignored models were not merely a scaled 438 

version of the attended models, but that the brainstem response to ignored speech occurred at a different 439 

phase from that to attended speech. 440 

Due to the range of frequencies that constitute the fundamental waveform, the phase shift 441 

between the attended and the ignored models did not equate to a consistent temporal shift. We did 442 

indeed not find a statistically-significant difference in the timing between the peak amplitude of the 443 

attended and the ignored models across the different subjects, for the male or female voice (p = 0.17 444 

and p = 0.69 respectively, two-tailed Wilcoxon signed rank test). 445 

To facilitate comparison with previous work we also computed the difference of the mastoid 446 

electrodes and the electrode at CPz, yielding a dipolar response (Forte et al., 2017). We found that the 447 

response's ratio between the attended and ignored condition was significantly greater than unity, for 448 

both the male and female voices (p = 0.016, and p = 0.003 respectively, Wilcoxon sign-rank test). 449 

Decoding of auditory attention 450 
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 Having verified the attentional modulation of the brainstem response to speech using high-density EEG 451 

recordings and linear backward models, we sought to investigate whether this approach could be used 452 

to decode auditory attention. We expected the focus of attention to emerge, for instance, from the 453 

difference in the performances of the models MA and FA. This difference should typically be positive 454 

when the subject attended to the male voice and be negative otherwise (Figure 6-A). Similarly, attention 455 

could potentially be decoded from the difference of the reconstruction performance of the models FI 456 

and MI. A subject's attention to the male voice should mostly lead to a positive difference, and a focus 457 

on the female voice to a negative difference. 458 

We tested the accuracy of the decoding on samples of a duration that varied from half a second 459 

to over 30 seconds (Figure 6-B). The averaged decoding accuracy based on the attended models (MA, 460 

FA) remained significantly above chance even for very short samples that lasted only half a second. It 461 

was, for instance, 59% and 69% for two-second and sixteen-second samples, respectively. In contrast, 462 

the models MI and FI by themselves did not allow for a decoding of the attentional focus with an 463 

accuracy that was better than chance. In the following we therefore discuss decoding obtained from the 464 

attended models only. 465 

Practical applications of the decoding of auditory attention benefit from a small number of 466 

required recording channels. We therefore investigated how well the developed decoding works if the 467 

linear backward models use only three EEG channels, the left and right mastoid as well as the central 468 

channel Cz. Strikingly, the subject-averaged decoding accuracy was barely smaller than that of the 64-469 

channel model; for instance, it remained at 69% for a sixteen-second sample when the classifier based 470 

on the attended models was used (Figure 6-C).  471 

Both for the 64-channel as well as for the 3-channel decoding we observed variation in the 472 

decoding accuracy from subject to subject (Figure 7-A). For a duration of 16 s, for instance, some 473 

subjects showed decoding accuracy close to 90%, whereas other subjects exhibited significantly lower 474 

decoding accuracies that did not exceed the change level. However, even for short testing segments and 475 

for the majority of subjects, the decoding remained above chance level. We note in addition that the 476 
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subjects that did not allow for significant decoding include those for whom we did not obtain significant 477 

brainstem responses to speech in quiet (Figure1-A). 478 

Because of the complexity of empirical mode decomposition (EMD), the computation of the 479 

fundamental waveform through this method cannot typically be performed online. We therefore 480 

wondered if attention could be decoded based on a similar waveform obtained through band-pass 481 

filtering the audio signal in the range of the fundamental frequency. Band-pass filtering is indeed a 482 

comparatively simple operation that can run in real time. We found that decoding based on the band-483 

pass filtered audio has a similar accuracy as the one based on the waveform obtained from EMD, which 484 

is encouraging for real-time applications (Figure 7-B). 485 

Real-world settings will often feature voices that have not been encountered before and for 486 

which no speaker-specific model of the brainstem response is available. In an attempt to generalise our 487 

results, we computed a speaker-averaged backward model for any attended speaker, irrespective of 488 

whether it was the male or the female one. We then decoded attention from the performance of this 489 

speaker-averaged model in reconstructing the fundamental waveform of either the male of the female 490 

speaker. The averaged decoding accuracies that we obtained were slightly lower than those from the 491 

speaker-specific models but were above chance level for durations down to 0.5 s (Figure 7-C). 492 

The decoding described above utilized linear backward models that were subject specific and 493 

hence required prior training from EEG recordings for each individual. Such subject-specific training 494 

may, however, not always be available. We thus assessed the performance of a linear backward model 495 

that was trained on the whole population of subjects, and thus represented an average model that could 496 

be used out-of-the-box to decode attention. As expected, the decoding accuracies were then lower than 497 

those for the subject-specific models. While the decoders based on the attended models with all 64-498 

channels remained above the chance level for all the tested durations, the 3-channel setup yielded worse 499 

performance only slightly exceeding the chance level for all but the longest duration. For duration of 500 

16 s, for instance, the 64-channel setup yielded 65% accuracy, while the 3-channel only 63% (Figure 501 

7-D). Although the accuracy of this decoding when averaged across subjects was not very high, we note 502 

that this average was significantly reduced by a few subjects that showed particularly poor accuracies 503 
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of around 50%, reflecting poor brainstem recordings from these subjects. The majority of the subjects, 504 

in contrast, yielded decoding accuracies that exceeded the chance level. 505 

 506 

Discussion 507 

We showed that the brainstem response to the fundamental frequency of speech can be measured 508 

reliably from high-density EEG recordings in most subjects through a statistical modelling approach. 509 

The response is most evident in the differences between the electrodes near the mastoids and those close 510 

to the vertex, in agreement with the dipolar structure of scalp-recorded auditory brainstem activity (Ono 511 

et al., 1984; Grandori, 1986; Norrix and Glattke, 1996; Bidelman, 2015). Moreover, the response 512 

latency of 8 ms evidenced a subcortical origin. 513 

The frequency-following response (FFR) to simpler acoustic signals such as long vowels has 514 

recently been found in an MEG study to contain cortical contributions (Coffey et al., 2016). However, 515 

when measured through EEG, the cortical contributions emerge earliest at a latency of 20 ms, are 516 

smaller than the subcortical ones, and mostly apparent for frequencies up to about 100 Hz (Bidelman, 517 

2018). The response to the fundamental frequency of running speech that we have measured here does 518 

not show a measurable signal at latencies longer than 14 ms and was recorded in response to a 519 

fundamental waveform high-pass filtered above 100 Hz. While contributions from cortical structures 520 

cannot be entirely ruled out, we did not observe any within our measurement accuracy. 521 

When subjects switched attention from one to another of two competing speakers, we found 522 

that the fundamental frequency of each speaker was better encoded in the brainstem response when that 523 

speaker was attended rather than ignored. These results align with those that we obtained previously 524 

from different recording equipment and with a different analysis procedure that did not involve 525 

statistical modelling and that did not address attention decoding (Forte et al., 2017).  Here we found, 526 

however, that the ratio of the attended to the ignored temporal response functions, as obtained from the 527 

forward models, did not differ significantly between the male and the female voice. Indeed, although 528 
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the scalp maps that we derived largely showed a larger response to the attended than to the ignored 529 

speaker (Figure 5-A, C), the modulation was not statistically significant. This presumably reflected the 530 

inclusion of all electrodes in the forward model, including many electrodes that displayed a poor signal-531 

to-noise ratio. The backward models, in contrast, employed a weighting of the contribution from each 532 

electrode which boosted those with a large signal-to-noise ratio and thus led to a more significant result. 533 

To further investigate this issue, we also computed the response at a single channel that was obtained 534 

as the difference between the electrodes at the mastoids and at CPz, mimicking our previous bipolar 535 

recordings (Forte et al., 2017). The amplitude of this response was significantly modulated by selective 536 

attention, in agreement with our previous results. 537 

The modelling work that we developed here allowed us to further investigate the origin of the 538 

difference in the brainstem response to attended and to ignored speech. We thereby found a significant 539 

difference between the phases of the response to attended versus ignored speech. Such a phase shift 540 

could in principle emerge from a difference in latency between the attended and ignored model. 541 

However, we found no statistically significant difference in peak latency of the attended and ignored 542 

responses. The phase shift might instead signify different relative contributions of different parts of the 543 

brainstem to the scalp-recorded response. The different values of the phase shift that we obtained for 544 

the male and female voice may reflect the differences in the fundamental frequencies of both stimuli.  545 

Most importantly, we developed a procedure to decode the attentional focus of a subject to 546 

speech based on her or his brainstem response as measured from as few as three recording channels. 547 

This will enable the future characterization and investigation of the subcortical mechanisms through 548 

which the brain solves the cocktail party problem. Potential practical applications include brain 549 

computer interfaces, such as neuro-steered auditory prostheses, as well as clinical assessments of supra-550 

threshold hearing impairments that cannot be identified from pure-tone audiometry. Any of these 551 

applications will benefit from a decoding method that is fast and requires only a small number of 552 

recording channels. 553 

We showed that the best decoding is achieved when linear models that relate the neural 554 

recording to the speech signal are computed for each subject individually. Such subject-specific models 555 
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may cause difficulty in practice as sufficient training data per subject may not always be obtainable. 556 

The out-of-the-box models reflect the generalized version of the models obtained from the data pooled 557 

over many subjects and can be readily applied to other subjects for which no training data is available. 558 

We have shown that while the decoding performance of the out-of-the-box models is below those of 559 

the subject-specific models, the average decoding accuracy still exceeds the noise level for the high-560 

density EEG setup. This suggests a consistency of the brainstem responses to speech across the 561 

participants. We also note that the out-of-the box models were fitted using the data from all subjects, 562 

including those that did not yield a significant reconstruction of the fundamental waveform in the 563 

speech-in-quiet condition. 564 

Potential real-world applications will also often require the decoding of attention to a speaker 565 

that has not been encountered before. As an important step in this direction, we showed that speaker-566 

averaged models that are trained on both attended speech signals, thereby computing an attended model 567 

that was averaged over the different voices, still performed well and allowed to decode attention. Future 568 

work could investigate how well these models generalise to speakers for which no training data is 569 

available. 570 

Another important feature for real-time attention decoding is that the whole computational 571 

pipeline – from the processing of the audio signal to the computation of reconstructed waveforms and 572 

the attention decoding – can run online. Our reconstruction of the fundamental waveform through a 573 

backward model, the assessment of its performance as well as the subsequent attention decoding were 574 

all based on linear operations that can easily run in real time. However, the EMD that we employed for 575 

the computation of the fundamental waveform comes with large computational costs. We therefore 576 

explored how a computationally much simpler operation, band-pass filtering of the audio signal, 577 

performed regarding the decoding of attention. Promisingly we found that this method still allowed to 578 

decode attention from very short segments of data, evidencing the potential for real-time decoding. 579 

While two bandpass filters with different corner frequencies were applied to the male and female voice, 580 

this approach could be extended to use filterbanks or use online pitch estimation algorithms. 581 
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The decoding procedure that we developed relies on the correlation between the reconstructed 582 

fundamental waveform from the brainstem response and the actual fundamental waveform of the speech 583 

signal. The obtained correlation coefficients are small, typically between 0.05 and 0.1 (Figure 1-A, 584 

Figure 2). Cortical responses allow to reconstruct the brainstem response from EEG recordings and 585 

yield somewhat higher correlation coefficients. However, the attentional decoding based on the 586 

brainstem responses that we show here is comparable to the decoding based on the reconstructed speech 587 

envelope, obtained from 64 EEG channels. A 16-s trial, for instance, yields an average decoding 588 

accuracy of about 69% when based on the fundamental waveform, which is similar to the corresponding 589 

decoding accuracy that was reported in several previous studies (O'Sullivan et al., 2014; Biesmans et 590 

al., 2016; Bleichner et al., 2016). We attribute this similarity of the attention decoding accuracies to the 591 

rapidness of the brainstem response: because the brainstem response to speech occurs at the 592 

fundamental frequency of a voice, it is ten- to hundredfold faster than the cortical response to the speech 593 

envelope. This rapidness appears to compensate for the smaller magnitude of the response. 594 

Although brainstem responses and cortical responses allow for similarly efficient attention 595 

decoding when high-density EEG is available, the decoding based on the brainstem response to speech 596 

may have advantages when only a few channels are available. The accuracy of attention decoding based 597 

on the speech envelope drops indeed below 80% for a trial of at least 20 seconds when relying on 598 

subject-specific five-electrode montages (Mirkovic et al., 2015; Fuglsang et al., 2017). Similarly, the 599 

attention decoding based on the brainstem response that we have developed here achieves an averaged 600 

accuracy of 69% when based on three electrodes (TP9, TP10 and Cz) and on 16 seconds of data, and 601 

reaches 72% when 32 seconds of data are available (Figure 5-B). This good decoding performance from 602 

a few EEG channels may be due to the effective capturing of the brainstem response by sparse 603 

montages, as well as due to a consistent dipole orientation across subjects (Dale and Sereno, 1993). 604 

Importantly, we employed only band-pass filtering as a pre-processing step for the EEG data. The 605 

simplicity of this attention decoding method and its good accuracy when based on a few EEG channels 606 

may make this method attractive for practical applications. 607 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 15, 2019. ; https://doi.org/10.1101/259853doi: bioRxiv preprint 

https://doi.org/10.1101/259853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

The mixed-speaker stimuli that we employed were obtained by superimposing two speech 608 

signals, and our decoding was based on the knowledge of these separate voices. The individual 609 

components of a complex acoustic scene are, however, in general not available and need to be estimated 610 

from the acoustic mixture. The application of our method for decoding attention to steer an auditory 611 

prosthesis towards an attended voice, for instance, will thus require to first segregate the different voices 612 

that are present in the acoustic space, and to then determine the focus of the user's attention. The 613 

segregation of the different individual speakers may be achieved through multi-microphone arrays 614 

together with methods such as beamforming (Gannot et al., 2001) or non-negative blind source 615 

separation (Van Eyndhoven et al., 2017). 616 

Certain applications may, however, not require the separation of the individual voices from an 617 

acoustic mixture but have them already available. Many locked-in patients, for instance, cannot 618 

communicate overtly, not even through eye motion (Giacino et al., 2002). Current brain-computer 619 

interfaces for them are mostly based on the P300 response, an evoked cortical potential that arises 300 620 

ms after the occurrence of an oddball stimulus. It is typically elicited through visual or through sound 621 

stimuli and requires a few seconds to achieve a single binary response (Piccione et al., 2006; Nijboer et 622 

al., 2008; Schreuder et al., 2011). A brain-computer interface based on auditory attention, in contrast, 623 

could present a mixture of two auditory streams to the patient. The patient could then answer a question 624 

with yes or no through attending to a particular stream. Because the stimuli are merely used as a locus 625 

of attention, they would be available individually beforehand, and could be engineered to enhance 626 

decoding speed. Similarly, clinical assessments of the brainstem response to speech and its modulation 627 

through selective attention can employ predefined acoustic mixtures.  628 

The decoding that we have described here is based on linear backward models that reconstruct 629 

the fundamental waveform of the speech signal from the EEG recordings. This method determined the 630 

brainstem response to the voiced parts of speech, and in particular to its pitch, but did not measure the 631 

brainstem response to the voiceless speech components (Maddox and Lee, 2018). Improved 632 

performance may be obtained through canonical correlation analysis that relates the neural recording to 633 
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more speech features in an optimized space (de Cheveigné et al., 2018) or through an artificial neural 634 

network that is able to extract highly nonlinear relations between the two datasets (Yang et al., 2015). 635 

Finally, decoding of auditory attention could leverage both cortical and sub-cortical responses 636 

as they can be obtained from the same EEG recordings. The framework for attentional decoding based 637 

on the brainstem response to running speech presented here could be readily extended to include cortical 638 

responses to the speech envelope, which could boost the overall decoding accuracy. Moreover, 639 

measuring both subcortical and cortical responses to speech from the same EEG data will be useful for 640 

fundamental auditory research and clinical assessment of hearing impairments. 641 
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Figure captions 754 

Figure 1. The brainstem response to natural speech detected from high-density EEG recordings using 755 

complex linear models. (A) The performance of the linear backward model is quantified through the 756 

Pearson’s correlation coefficient of the reconstructed fundamental waveform and the actual one. For 757 

each subject the presented result is the averaged correlation coefficient obtained from 10-seconds long 758 

segments of the EEG and the fundamental waveform (white bars). In almost all subjects, the 759 

performance is significantly better than that of a model estimating the noise-level reconstructions. 760 

Subjects have been ordered by increasing performances. (B) The channel-averaged magnitude of the 761 

complex coefficients of the generic forward model obtained from the pooled data from all the 762 

participants that yielded significant reconstructions, peaks at a latency of 8 ms. Only latencies ranging 763 

from 3 to 14 ms yield a statistically-significant response (black bar, p < 0.05, Bonferroni correction), as 764 

compared to noise models. (C) At the delay of 8 ms, a significant neural response emerges from the 765 

mastoid channels as well as from the channels near the midline (white disks, p < 0.05, FDR correction, 766 

population average). (D) The phase of the complex coefficients at the delay of 8 ms shows a phase 767 

difference of around π between the temporal areas and the central one (population average).  768 

 769 

Figure 2. Brainstem responses to speech from two single subjects.  The top row shows the brainstem 770 

response from subject 9 that yielded the median reconstruction of its brainstem response to speech 771 

(Figure 1). The bottom row presents the results from subject 18 that had the best reconstruction of the 772 

brainstem response to speech. (A) The channel-averaged magnitude of the complex coefficients of the 773 

forward model peaks at a latency of 9 ms (subject 9) and 10 ms (subject 18). (B) The topographic maps 774 

of the coefficient magnitudes at the peak latency are consistent with those of the generic model, although 775 

more noisy in the case of subject 9. Channels located at the mastoids show the highest magnitudes. (C) 776 

The phase of the complex coefficients at the peak latency. The phases differ between the two subjects 777 

since they have been taken at different latencies (9 and 10 ms, respectively). Consistent with the generic 778 

model, the topographic plots show a phase difference of around  π  between the temporal areas and the 779 

central area. 780 
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 781 

Figure 3. Absence of stimulus artifacts. Magnitude of the cross-correlation between the EEG data and 782 

the broadband speech stimulus averaged over channels and participants. The only time lags for which 783 

the cross correlation is significantly greater than the estimated noise floor are between 9 - 12 ms. In 784 

particular, the model shows no significant response at the delay of -1 ms, the delay of the earphones, 785 

evidencing the absence of stimulus artifacts. 786 

 787 

Figure 4. Attentional modulation of the auditory brainstem response to natural speech. The order of the 788 

subjects is as in Figure 1A. (A) The performance of the linear backward model for the male voice is 789 

better when the male speaker is attended (black) then when he is ignored (red). The two performances 790 

differ significantly in most subjects, and so do the two average performances (avg). The average ratio 791 

between the two performances is 1.22 and is significantly larger than one (p = 0.01). (B) The 792 

performance of the linear backward model that reconstructs the fundamental waveform of the attended 793 

female voice is likewise significantly better than that for the ignored female voice in most subjects, as 794 

well as on average (avg). The average ratio of the two performances is 1.15 and is significantly larger 795 

than one (p = 0.039). The ratios for the male and female voices do not differ significantly (p = 0.47). 796 

 797 

Figure 5. Differences in the brainstem response to attended and to ignored speech. (A, C) The subject-798 

averaged ratio of the magnitude of the complex coefficients of the attended forward model to those of 799 

the ignored model, at the average peak latency of 9 ms. None of these ratios are statistically different 800 

from unity (FDR correction). (B, D) The subject-averaged phase difference between the coefficients of 801 

the attended and the ignored forward models, at the average peak latency of 9 ms. Channels close to the 802 

midline as well as at channels near the mastoids yielded a significant phase difference (p < 0.05, FDR 803 

correction). The male models exhibit a phase difference of -0.51 π (95 % CI: [-0.56 π ; -0.47 π]) , while 804 

the female model phase difference is -0.12 π (95 % CI: [-0.17 π ; -0.08 π]). 805 

 806 
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Figure 6. Decoding of auditory attention. (A) Testing data of a duration of 32 s that were obtained from 807 

a subject listening to the male speaker (black) can potentially be discriminated from those obtained 808 

when a subject listened to the female voice (red) through the performances r from four linear backward 809 

models (MA, MI, FA, FI; Methods). The classification can employ the difference in the performances 810 

between the models MA and FA (green) or the difference between the models FI and MI (orange). (B) 811 

The subject-averaged decoding accuracy obtained from the models MA and FA reaches 73% at a 812 

duration of 32 seconds and remains above chance level (grey) for very short durations of 500 ms. 813 

Decoding based on the models FI and MI remains below chance level (average over all subjects). (C) 814 

Employing only three recording channels to decode attention reduces the performance of the classifiers 815 

only slightly, if at all. 816 

 817 

Figure 7. Different types of attention decoding and intra-subject variability. The two rows of panels 818 

correspond to the 64-channel and to the 3-channel decoders, respectively. (A) The attention decoding 819 

accuracies from the speaker-specific models achieved per individual subject (coloured lines, consistent 820 

across panels) varies by up to approximately 50% around the average (bold black line). However, for 821 

each individual subject the decoding based on 64 channels (top) is similar to that achieved from three 822 

channels (bottom). Here, the decoding is based on the difference between the attended models (same 823 

data as presented on the population level in Figure 6-B,C by the green lines). (B) Instead of using 824 

empirical mode decomposition (EMD), a fundamental waveform can be estimated by band-pass 825 

filtering the speech signal, which can be implemented in an online fashion. Attention decoding based 826 

on the band-pass filtered audio achieves a similar performance as the one based on the EMD. (C) 827 

Attention can be efficiently decoded using a single attended model for both speakers as well. (D) The 828 

use of the out-of-the-box backward models for reconstructing the fundamental waveforms, leads to 829 

reduced, yet better than chance, decoding accuracies for most subjects. 830 
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