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Abstract

Motivation: Whole-genome alignment is an important problem in genomics for comparing different
species, mapping draft assemblies to reference genomes, and identifying repeats. However, for large
plant and animal genomes, this task remains compute and memory intensive.
Results: We introduce an approximate algorithm for computing local alignment boundaries between long
DNA sequences. Given a minimum alignment length and an identity threshold, our algorithm computes the
desired alignment boundaries and identity estimates using kmer-based statistics, and maintains sufficient
probabilistic guarantees on the output sensitivity. Further, to prioritize higher scoring alignment intervals,
we develop a plane-sweep based filtering technique which is theoretically optimal and practically efficient.
Implementation of these ideas resulted in a fast and accurate assembly-to-genome and genome-to-
genome mapper. As a result, we were able to map an error-corrected whole-genome NA12878 human
assembly to the hg38 human reference genome in about one minute total execution time and < 4 GB
memory using 8CPU threads, achieving more than an order of magnitude improvement in both runtime and
memory over competing methods. Recall accuracy of computed alignment boundaries was consistently
found to be > 97% on multiple datasets. Finally, we performed a sensitive self-alignment of the human
genome to compute all duplications of length ≥ 1 Kbp and ≥ 90% identity. The reported output achieves
good recall and covers 5% more bases than the current UCSC genome browser’s segmental duplication
annotation.
Availability: https://github.com/marbl/MashMap.
Contact: adam.phillippy@nih.gov, aluru@cc.gatech.edu

1 Introduction
Algorithms for inferring homology between DNA sequences have
undergone continuous advances for more than three decades, mainly in
the direction of achieving better accuracy to compare distant genomes,
as well as better compute efficiency to scale with growing data. Up
until the last decade, reconstruction of a complete reference genome
through sequencing and assembly was deemed a major landmark in
genomics (Lander et al., 2001; Venter et al., 2001). However, it did not
take long for high-throughput sequencing technologies to fuel population-
wide genomics projects through low-cost genome assemblies (e.g., the
Genome 10K project, Haussler et al., 2009). Analysis of these new

genome assemblies, for both population-scale biological studies and timely
diagnosis in clinical settings, requires faster algorithms for facilitating
whole-genome comparisons.

It is well-known that computing local alignments using an
exact dynamic programming algorithm at the whole-genome scale is
computationally prohibitive. This bottleneck motivated the development
of seed-and-extend based genome aligners. Within the seed-and-extend
paradigm, the two common approaches adopted to compute exact matches
are either implemented using a hash table for k-mers (e.g., Altschul et al.,
1997; Ma et al., 2002; Schwartz et al., 2003) or suffix trees and its
variants (Delcher et al., 1999; Brudno et al., 2003; Bray et al., 2003;
Vyverman et al., 2013; Marçais G et al., 2018). A third category includes
cross-correlation based algorithms (e.g., Satsuma by Grabherr et al., 2010).
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However, these approaches still remain computationally intensive. For
instance, Nucmer (Kurtz et al., 2004) and LAST (Kiełbasa et al., 2011),
two widely used genome-to-genome aligners, require 10 or more CPU
hours to align a human genome assembly to a human reference genome.

The primary motivation behind this work is to significantly accelerate
genome-to-genome mapping while maintaining accuracy on par with
sensitive aligners. We seek a problem formulation that also provides a
convenient handle for users to specify how diverged the input genomes
are, based on their knowledge of which organisms are being compared,
expected quality of genome assembly, and sensitivity requirements of any
further downstream biological analysis.

The inspiration behind our algorithmic strategy stems from recent
developments in techniques for long-read analyses. MinHash-based
estimation of Jaccard similarity of k-mer sets between DNA sequences
has been adopted for state-of-the-art long read genome assembly (Koren
et al., 2017), whole-genome distance computation (Ondov et al., 2016;
Jain et al., 2017b), and long read mapping (Jain et al., 2017a). Through
our previous work Mashmap (Jain et al., 2017a), we demonstrated that a
MinHash-based approximate mapping algorithm can compute long-read
mapping boundaries with accuracy on par with alignment-based methods,
while exhibiting two orders of magnitude speedup. Mashmap operates by
assuming an error-distribution model, links alignment identity to Jaccard
similarity, and provides sufficient probabilistic guarantees on output
sensitivity. However, this algorithm is limited to end-to-end mapping of
input sequences, which makes it impractical for contig mapping or split-
read mapping. Here, we introduce new algorithmic strategies to compute
local alignment boundaries for both whole-genome and split-read mapping
applications.

Given minimum identity and length requirements for local alignments,
we formulate the characteristics of output we intend to compute. Our new
algorithm internally makes use of our previous end-to-end approximate
read mapping framework (Jain et al., 2017a) by applying it to non-
overlapping substrings of the query sequence. We mathematically show
that all valid local alignment boundaries, which satisfy the user-
specified alignment identity and length thresholds are reported, with
high probability. Further, we formulate a heuristic to prioritize mappings
with higher scores. We leverage the classic plane-sweep technique from
computational geometry to develop an O(n logn) algorithm to solve the
filtering problem, with n being the count of total mappings.

We demonstrate the practical utility of our algorithm Mashmap2
by evaluating accuracy and computational performance using real data
instances, which include mapping human genome assemblies and ultra-
long reads to the human reference genome, and sensitive self-alignment
analysis of the human genome. We compared the performance of
Mashmap2 against a recent fast alignment-free method Minimap2 (Li,
2017) and the widely used alignment-based method Nucmer (Kurtz
et al., 2004). Mashmap2 operates in about a minute and 4 GB memory,
including both indexing and mapping stages, to map human genome
assembly to a reference when given minimum alignment identity and
length requirements of 95% and 10 Kbp respectively. This makes it
the fastest software for genome-to-genome mapping with an order of
magnitude improvement in execution time and memory-usage. This
performance is achieved while maintaining output sensitivity percentage
in the high 90s. We also demonstrate its ability to compute all ≥ 1 Kbp
long segmental duplications in the human genome with high accuracy.
We expect the performance and sensitivity guarantees provided by our
algorithm will allow fast evaluation of draft assemblies versus a reference
genome, scalable construction of whole-genome homology maps, and
rapid split-read mapping of long reads to large reference databases.

2 The Mashmap2 Algorithm
We designed Mashmap2 to enable fast computation of homology maps
between two sequences or a sequence and itself. It consists of two
algorithmic components. The first computes approximate boundaries
and alignment scores for all pairs of substrings that exceed a user
specified length and identity threshold. The second applies a novel filtering
algorithm to optionally weed out redundant, paralogous mappings.

2.1 Computing Local Alignment Boundaries

Consider all local mappings of the form Q[i..j] between sequences
Q (query) and R (reference) of length l0 or more, such that Q[i..j]

aligns with a substring of R with per-base error-rate ≤ εmax and
|j − i+ 1| ≥ l0. Alignment algorithms have quadratic time complexity,
therefore an exact evaluation of the local mappings between all possible
substring combinations will require O(|Q|3|R|3) time. As such, solving
this problem exactly is computationally prohibitive for typical sizes of
real datasets. Instead of explicitly computing all such structures, we seek
at least one seed mapping of length l0/2 along the path of each optimal
alignment. Doing so, while maintaining high sensitivity and sufficient
specificity will allow computation of the local alignments efficiently using
an appropriate alignment algorithm.

In our approach, we leverage our previous alignment-free end-to-end
read mapping algorithm, designed for mapping noisy long reads (Jain et al.,
2017a). This allows us to benefit from its attractive properties including
probabilistic guarantees on quality, and algorithmic and space efficiency.
We continue to assume the same error model that was used in this work,
also restated here. We assume that alignment errors, i.e, substitutions
and indels in a valid alignment occur independently and follow a Poisson
distribution. We also simplify by assuming that k-mers are independent
entities in sequences. For a given per-base error rate threshold εmax,
the read-mapping algorithm reports all target mapping coordinates and
identity estimates of a read in the reference, where it aligns end-to-end
with ≤ εmax per-base error rate, with high probability. This is achieved
by linking Jaccard coefficient between the k-mer spectra of the read and
its mapping region to the alignment-error rate, under the assumed error
distribution model.

Proposed Algorithm
We first split the query sequence Q into l0/2 sized non-overlapping
fragments. If a substring of Q, say Qsub, of length ≥ l0 aligns against a
substring of R with ε ≤ εmax per-base error rate, then there is at least
one l0/2 sized fragment that maps end-to-end along the optimal alignment
path with ε · l0/2 expected errors. Accordingly, the read mapping routine
in Mashmap can be used to map each fragment with εmax error-rate
cutoff. Note that at least b(|Qsub| − l0/2 + 1) /(l0/2)c ≥ 1 query
fragments completely span Qsub (Figure 1). Let p be the probability
that a fragment is mapped to the desired target position on the reference,
computed as described by Jain et al. (2017a). Probability of reporting
at least one seed mapping along the optimal alignment is given by
1 − (1 − p)b(|Rsub|−l0/2 +1)/(l0/2)c. We show that these probability
scores are sufficiently high, between 0.92 and 1.00 for alignment error rate
thresholds εmax 10% and 20% respectively (Figure 2).

The above seed matches and their alignment identity estimates are
further processed to compute approximate local boundaries and their
scores. After computing all seed matches, matches which involve
consecutive query sequence fragments are merged together if they are
mapped closely in the same order on the reference sequence. Suppose
mappings from the consecutive query fragments qi, qi+1, . . . , qj are
mapped to reference positions with begin positions p0, p1, . . . , pj−i
respectively, then they are grouped together as a local alignment segment
if p0 ≤ p1 ≤ . . . ≤ pj−i, and pk+1 − pk ≤ l0, [0 ≤ k < j − i]. The

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/259986doi: bioRxiv preprint 

https://doi.org/10.1101/259986
http://creativecommons.org/licenses/by/4.0/


Algorithm for Computing Whole-Genome Homology Maps 3

Query sequence

Reference sequence

l0/2

Qsub

seed

Fig. 1. A local alignment depicting the inclusion of a length l0/2 fragment of
the query sequence.
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Fig. 2. Probability of mapping at least one seed fragment for two different error-rate
thresholds εmax = 10%, 20%. As true error rate ε decreases, the probability values
accordingly improve as expected. Similarly, longer alignments spanning more fragments
are more likely to be reported. Most importantly, all the sensitivity scores are consistently
above 90%. To compute the probability values, sketch size for Minhash based Jaccard
estimation was assumed as 200, and the k-mer size was set to 16. These parameters are
internally set by Mashmap (Jain et al., 2017a).

alignment boundaries are estimated as the first and last mapping offsets
of the group. The corresponding alignment scores are estimated as their
average identity estimate multiplied by the sum of the fragment lengths.
We use these alignment boundaries and the scores as input to a subsequent
filtering algorithm.

2.2 A Geometric Algorithm for Filtering Alignments

Large mammalian genomes and plant genomes have abundant repetitive
sequences. As a consequence, a large fraction of inferior mappings are
reported due to paralogous genomic segments or false positive mappings
resulting from simple sequence repeats. Furthermore, from a biological
perspective, closely examining all alternative mappings may not be
feasible. Therefore, different strategies are adopted to identify biologically
relevant outputs. We formulate a filtering heuristic for our mapping
application, and develop an optimal O(n logn) algorithm to solve it. We
also prove that Ω(n logn) runtime is necessary to solve this problem. The
effectiveness of this algorithm on real genomic data is demonstrated later,
in the Results section.

2.2.1 Problem Formulation
Suppose all output mappings of a query sequence are laid out as weighted
segment intervals, with the alignment scores used as weights (Figure 3). We
propose the following filtering heuristic: a segment is termed redundant if
and only if it is subsumed by higher scoring segments at all of its positions.
In practice, there can be multiple alignments with equal scores. Therefore,
segment scores are allowed to be non-unique.

A sub-optimalO(n2) algorithm for solving the above problem can be
readily developed by doing an all to all comparison among the segments.
However, it would lead to practically slow implementation for typical
input sizes. The formulated filtering problem bears resemblance to the
line segment intersection test problem for which Shamos and Hoey
(1976) gave a classicO(n logn) algorithm using plane-sweep technique.
Accordingly, we summarize their algorithm next, and subsequently
describe the modifications made to solve the above filtering problem.

2.2.2 The Shamos-Hoey Algorithm
Similar to the filtering problem, the problem of detecting whether n
segments have an intersecting pair has a trivial O(n2) solution. Shamos
and Hoey solved this problem using a plane-sweep based O(n logn)

algorithm. The algorithm defines an ordering between segments in the
2D plane. The main loop of the algorithm conceptually sweeps a vertical
line from left to right, and while doing so, the sweep-line status data-
structure L dynamically holds segments which intersect the sweep-line.

The sweep-line halts at 2n endpoints of the input segments, and the order
of segments in L is evaluated to detect any intersection. For efficiency,
this algorithm chooses a balanced tree to implement the sweep-line status
L . As such, it spends O(logn) time at each halting point, and therefore,
the total runtime is bounded by O(n logn). This algorithm is popular
not only for its theoretical and practical efficiency, but also for ease of
implementation.

In our problem as well, evaluating segments which intersect the
vertical sweep-line at 2n endpoints is sufficient to identify all good (non-
redundant) segments. However, evaluating all intersecting segments at
each endpoint is inefficient, and again leads to a quadratic algorithm.
Therefore, we devise a new ordering scheme among segments which will
enable us to evaluate only a subset of intersecting segments at each endpoint
to bound the runtime.

2.2.3 Proposed Algorithm for Alignment Filtering
The Shamos-Hoey algorithm requires several modifications for solving
the filtering problem. We define an order between segments as following:
Between two segments, the segment with higher score is considered as
greater, but if the scores are equal, then the segment with the larger starting
position is considered as greater. This particular ordering helps avoid
redundant computations, and will be crucial for bounding the runtime
later.

Similar to the Shamos-Hoey algrithm, we also use a height-balanced
Binary Search Tree (BST) as the data-structure for the sweep-line status
L , which tracks the segments that intersect the vertical sweep line. L is
required to support the following operations in our algorithm:

1. insert(s). Insert segment s into L .
2. delete(s). Delete segment s from L .
3. mark_good(). Mark all segments with highest score as good in L .

Note that the insert and delete operations are naturally supported
in O(logn) time in BSTs, whereas the mark_good function can be
realized as a sequence of maximum and predecessor operations. If
there are k segments with equal and highest scores in L , the function
mark_good uses O(k logn) time. With the data-structures and the
operations defined above, we give an outline of the complete filtering
procedure in Algorithm 1. The main loop of the algorithm iterates over
the 2n segment endpoints, which is analogous to the sweep line moving
from left to right, halting at the 2n points. In each iteration, we update the
sweep-line status L so that it holds the segments which intersect the sweep
line, and mark the highest-scoring segments as good using the mark_good
function.
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Fig. 3. Left figure is a toy example to illustrate line segments corresponding to multiple local alignments obtained between query and reference sequence, similar to a dot-plot. Each
alignment segment is labeled with an alignment score. Now, suppose we wish to filter best mappings for the query sequence. These segments can be considered as weighted intervals over
the query sequence (right figure). In the above case, two intervals marked with a cross are completely subsumed by higher scoring intervals, and therefore, will be labeled as redundant by
our filtering heuristic.

Lemma 1. Algorithm 1 solves the filtering problem correctly.

Proof. Consider a function S : N → {0, 1}N from positions in the
query sequence to subsets of segments {1, 2, . . . , N}. A segment si ∈
{S(pos)} if and only if it is among the highest scoring segments which
overlap with the query sequence at position pos. Clearly, a union of all
subsets in the domain of function S equals the set of good segments. If
we perform a linear scan on the domain, from begin to end position of the
query sequence, then value of S can change only at the 2n endpoints of
the segments. Therefore, the highest scoring segments overlapping at the
2n endpoints constitute the set of good segments, which is precisely what
Algorithm 1 computes. �

Algorithm 1: Plane-sweep based alignment filtering algorithm
Input: segments {1…n}
Sort the 2n segment endpoints and place them in the array E

Initialize the sweep-line status structure L

Initially mark all the segments as redundant
for i← 1 to 2n do

p = E [i]

set_beg = set of segments of which p is a left endpoint
for s ∈ set_beg do

L .insert(s)
end
set_end = set of segments of which p is a right endpoint
for s ∈ set_end do

L .delete(s)
end
L .mark_good()
i = i+ |set_beg|+ |set_end|

end

We make a minor modification to the above described algorithm for
efficiency, specifically in the mark_good function. In this function, we
mark the highest scoring segments in the tree L as good. We execute this
by traversing the segments in decreasing order in L , starting from the
maximum. However, we terminate the traversal if a segment is observed
as marked good already. This helps avoid redundant computations, and
the algorithm still remains correct due to the following property:

Lemma 2. Consider all the segments with equal and highest scores in
L : s1, s2, . . . , sj , . . . , sk , ordered in non-increasing manner. Suppose
segment sj has been marked good in one of the previous iterations of the
algorithm, then the segments sj+1, sj+2, . . . sk must have already been
marked good as well.

Proof. The aforementioned property is satisfied by default during the first
iteration of the algorithm because there cannot be any previously marked

segments. Suppose this property remains true till iteration i, and we are
currently executing iteration i + 1. Segments s1, s2, . . . sk ∈ L , so we
know that the sweep line intersects these segments. Also, the ordering of
the segments is maintained based on their scores and begin positions, and
since the scores of these segments are equal, therefore begin_pos(s1) ≥
begin_pos(s2) ≥ . . . ≥ begin_pos(sk). Now consider the iteration
when segment sj was marked good. Then, the sweep line must have
intersected the segments sj+1, sj+2, . . . sk as well. Therefore, if the
segment sj was marked, then the segments sj+1, sj+2, . . . sk must have
been marked within or before the same iteration. �

The total cost of sorting, insert and delete operations in Algorithm 1 is
clearly O(n logn). Because the revised mark_good function marks at
most n segments throughout the algorithm, its runtime is also bounded
by O(n logn). Thus, we conclude that the runtime complexity of our
alignment filtering algorithm is bounded by O(n logn) which is restated
as a theorem below.

Theorem 1. Given n alignment segments, Algorithm 1 solves the
alignment filtering problem in O(n logn) time.

Theorem 2. The above proposed filtering algorithm is optimal.

Proof. The INTEGER ELEMENT UNIQUENESS problem (given n
integers, decide whether they are all unique) is known to have a lower
bound of Ω(n logn) assuming the algebraic decision-tree model (Lubiw
and Rácz, 1991). A simple transformation can be designed to show that

INTEGER ELEMENT UNIQUENESS ∝N ALIGNMENT FILTERING

Let {x1, x2, . . . , xn} be a set of n integer elements. For each element
xi, construct a segment with begin position, end position, and score as xi,
xi, and i respectively. Because each segment is assigned a unique score,
all the n elements are unique if and only if the filtering algorithm reports
all the segments as good. �

2.3 Related Work for Filtering Alignments

There can be many alternative formulations of the filtering criteria. For
instance, BLAST (Altschul et al., 1997) filters out alignments if they are
fully contained in≥ K alignments of higher scores (Berman et al., 1999).
Berman et al. also discussed a weaker alternative filtering condition where
a match is filtered out if each position in a segment is covered by ≥ K

segments of higher score. Note that our filtering formulation is its special
case with K = 1. They discussed a different O(n logn) algorithm to
solve the problem based on interval-tree of all input segments. Although
a direct performance comparison is not possible due to unavailability of
their implementation, note that the tree size in our plane-sweep based
algorithm is limited by the number of overlapping segments which intersect
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Table 1. List of datasets used for evaluation. Datasets D1-D3 are included to
evaluate Mashmap2 for genome-to-genome mapping application, and D4 for
long read mapping application. We discarded a small fraction of contigs and
reads which were shorter than 10 Kbp.

Id
Query sequences (≥ 10 Kbp)

Reference genome
Source # Sequences N50 (bp)

D1 E. coli O157 genome 2 5.5M E. coli K12 MG1655
D2 Human genome

assembly
(ONT+Illumina)

2,269 7.7M human (hg38)

D3 Human genome
assembly (ONT)

2,263 7.4M human (hg38)

D4 Ultra-long Human ONT
reads

7,656 129K human (hg38)

the vertical sweep-line, which can be (and typically is) orders of magnitude
smaller than the total count for large datasets. As such, even with the same
theoretical complexity, we expect our algorithm to perform faster with less
memory usage in practice.

2.4 Execution for Mapping Applications

The above filtering criteria is useful to identify the promising alignments
between query and reference genomes. For the genome-to-genome
mapping application, we execute the filtering algorithm twice, once
to filter best alignments for query sequence, followed by filtering best
alignments for reference sequence. Mappings which pass both filters
constitute the orthologous matches, required for building a one-to-one
homology map. For read mapping however, filtering on just the query
sequence is appropriate. Accordingly, Mashmap2 provides two filtering
modes: one-to-one and map for the two applications respectively.

3 Results
We assess the performance of Mashmap2 for genome-to-genome and
split-read mapping in comparison to recent versions of state-of-the-art
software Minimap2 (Li, 2017) and Nucmer (Marçais G et al., 2018).
Results indicate that Mashmap2 provides output of comparable quality,
and can yield more than an order of magnitude gain in run-time and
memory-usage. Subsequently, we demonstrate the utility of Mashmap2 in
accurately computing all 1 Kbp long duplications in the human genome.

3.1 Genome-to-Genome Mapping

3.1.1 Datasets
To evaluate and compare Mashmap2 for mapping genome assemblies,
we used four datasets D1-D4 listed in Table 1. Dataset D1 includes
comparison between microbial genomes E. coli O157:H7 and E. coli
K12. The two instances D2 and D3 require mapping of NA12878 human
reference genome assemblies to the hg38 human reference genome. Query
genome assemblies in both instances D2 and D3 are the recently published
assemblies by Canu (Koren et al., 2017) using ultra-long Oxford Nanopore
Technology (ONT) reads (Jain et al., 2017c). Dataset D3 includes a
long-read only Canu assembly whereas assembly in dataset D2 is also
error-corrected using Illumina reads. Additionally, to evaluate Mashmap2
for the split-read mapping task, D4 includes ultra-long human ONT reads,
generated using a single flowcell (Jain et al., 2017c).

Table 2. Total execution time and memory usage comparison of
Mashmap2 against Minimap2 and alignment-based tool Nucmer4.
All software were run in parallel using 8 CPU threads.

Id
Mashmap2 Minimap2 Nucmer4

Time Memory Time Memory Time Memory

D1 0.5s 16M 0.8s 114M 5.2s 138M
D2 1m 26s 3.5G 36m 43s 50G 5h 1m 53G
D3 6m 33s 3.6G 35m 21s 39G 2h 10m 53G
D4 2m 6s 5.0G 3m 16s 10.0G 25m 2s 53G

3.1.2 Defining Baseline and Methodology
For the purpose of evaluating output accuracy, we used MUMmer
package (v4.0.0.beta2), which includes the Nucmer4 alignment program
for comparing DNA sequences (Marçais G et al., 2018). Nucmer4 is
sensitive enough to report alignments for both assembly and read mapping
tasks, therefore we considered its output as truth while evaluating accuracy.
Note that computing truth using an exact alignment algorithm is not
feasible for the datasets used. We also used Minimap2 (v2.7-r659) (Li,
2017) as a baseline for various performance metrics. Minimap2 executes
chaining algorithm on fixed-length exact matches to compute alignment
boundaries. To our knowledge, it is among the fastest tools available to
map DNA sequences in an alignment-free fashion.

Each software, including ours exposes many parameters (e.g., k-mer
or seed length). Default k-mer size in Mashmap2 is 16. We mostly
conform to default parameters with all software tested, except as noted
below. Mashmap2 mainly requires a minimum length and identity for the
desired local alignments. In this analysis, we targeted long alignments,
and accordingly fixed the minimum alignment length requirement as 10

Kbp. We set the minimum alignment identity requirement for the four
datasets based on their input characteristics as {D1: 95%, D2: 95%,
D3: 90%, D4: 85%}. Accordingly, we tested Mashmap2 for reporting
the alignment boundaries as per the provided requirements. Filtering
modes were set to one-to-one and map for datasets D1-D3 and D4
respectively. Nucmer4 was run with default parameters, followed by
running delta-filter, both components of the MUMmer package. Following
its user documentation, delta-filter was executed with -1 parameter to
construct one-to-one alignment map in datasets D1-D3 and -q parameter
for read mapping in D4. Finally, Minimap2 supports genome-to-genome
mapping mode using -x asm5 flag, and nanopore read mapping mode
using -x map-ont. We executed all three software in multi-threaded
mode using 8 CPU threads. All comparisons were done on an Intel Xeon
E5-2680 platform with 28 physical cores and 256 GB RAM.

3.1.3 Runtime and Memory Usage
The wall-clock runtime and memory-usage of Mashmap2, Minimap2
and Nucmer4 using datasets D1-D4 are shown in Table 2. The runtimes
represent end-to-end time, from reading input sequences to generating
the final output. Minimap2 can report base-to-base alignments but does
not by default. Thus, the final output of Mashmap2 and Minimap2 are
alignment boundaries and scores, whereas Nucmer4 outputs base-to-base
alignments. We observe that Mashmap2 used significantly less time and
an order of magnitude less memory than Minimap2 for datasets D1-D3.
It achieves 1.6x, 26x, 5.4x speedups, and improves memory-usage by
7.1x, 14x, 11x for the three datasets respectively. The improvement gap
against Nucmer4 is even wider. Mashmap2 can also be used for mapping
long reads, although performance gains are not as dramatic. Compared
to Minimap2, Mashmap2 improves runtime and memory-usage by 36%

and 50% respectively on dataset D4. Minimap2 is well tuned for mapping
nanopore reads, and therefore achieves competitive performance.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/259986doi: bioRxiv preprint 

https://doi.org/10.1101/259986
http://creativecommons.org/licenses/by/4.0/


6 Jain et al.

Table 3. Accuracy evaluation of Mashmap2 and Minimap2 to do an alignment-
free computation of mapping boundaries. Recall was measured while assuming
Nucmer4 output alignments as truth.

Id
Recall scores Fraction of query bases

mapped uniquely
Mashmap2 Minimap2 Count of Nucmer4

alignments
Mashmap2 Minimap2

D1 100% 100% 144 74.0% 78.9%
D2 97.5% 98.3% 35,186 96.8% 96.3%
D3 97.1% 98.1% 37,807 96.9% 96.2%
D4 99.3% 99.5% 4,349 81.2% 84.6%

The primary contributors to the performance obtained by Mashmap2
are its efficient mechanism to estimate Jaccard similarity and auto-tuning
of the internal parameters (e.g., k-mer sampling rate, Jaccard similarity
threshold) based on the local alignment identity and length requirements
provided by user. These results demonstrate that auto-tuning can help
achieve faster performance with increasing identity and length thresholds.
It is also intuitive to expect better performance on dataset D2 than D3
because the error-rate of input sequences in D2 is lower due to the error-
correction using Illumina reads. Based on results of Jain et al. (2017c),
the error-correction phase improved average alignment identity from 95%

to 99.3% w.r.t. the hg38 reference. The competing methods, however,
do not follow this trend (Table 2). The parameters for k-mer sampling
in Minimap2 can be tuned manually to achieve better runtime for these
datasets, but it does not provide minimum length and identity threshold
parameters like Mashmap2. It is important to maintain high accuracy while
being fast, therefore we next evaluate the quality of output.

3.1.4 Accuracy
Accuracy evaluation of Mashmap2 and Minimap2 in comparison with
alignments produced by Nucmer4 is shown in Table 3. Recall was
measured against Nucmer4 output alignments which satisfy the alignment
requirements in terms of minimum length and identity provided to
Mashmap2. We also expected Minimap2 to report these alignments
because it is designed to compute matches in these identity ranges.

A reported local alignment boundary estimate by Mashmap2 or
Minimap2 was assumed to recall a Nucmer4 alignment if it overlapped
with the alignment on both query and reference sequences, and if the
mapping strand matched. From Table 3, we observe that both Mashmap2
and Minimap2 consistently achieved high recall scores, with Minimap2
performing slightly better. Obtaining high recall scores by itself is not
sufficient, because it can be achieved by mapping a query sequence to
all possible positions. In parallel to achieving high recall scores, both
Mashmap2 and Minimap2 mapped a large fraction of query genome
assemblies to unique mapping positions in the reference genomes. To show
this, we computed the fraction of base-pairs of the query sequence that are
mapped to a single position on the reference genome (Table 3). Finally,
Mashmap2 provides a script to visualize its output as dot-plots, similar
to MUMmerplot. These dot-plots when visually inspected, appeared
similar to Nucmer4’s output. Here we show homology maps computed
by Mashmap2 using datasets D1 and D2 (Figure 4).

3.1.5 Efficacy of The Filtering Algorithm
Eukaryotic genomes tend to contain a lot of repetitive sequences, therefore,
the motivation behind our plane-sweep based filtering heuristic is to discard
noisy mappings, and compute promising matches between the query and
reference genomes. We show the importance and effectiveness of our
filtering strategy in Table 4. Note that a large fraction of mappings was

Table 4. Effectiveness of the filtering algorithm in Mashmap2. A large fraction
of mappings were filtered out by the algorithm, while the recall scores against
the Nucmer4 alignments remained largely unaffected. Last column in this table
is copied from Table 3 for convenience.

Id
Count of output mappings Recall scores

Without filter With filter Ratio
(without/with)

Without filter With filter

D1 145 82 1.77 100.0% 100.0%
D2 6,541,930 3,985 1,642 99.9% 97.5%
D3 53,331,538 3,137 17,001 99.7% 97.1%
D4 3,881,667 15,311 254 99.9% 99.3%

pruned out by the filter. While doing so, high recall scores against Nucmer4
alignments were maintained (see Table 4). Although we do not present the
contribution of this phase to the total runtime, our plane-sweep algorithm
is fast in practice; it used an insignificant fraction of the total runtime.

3.2 Computing Duplications in the Human Genome

Soon after the publication of the human genome, it was realized that
the genome is replete with repetitive sequences (International Human
Genome Sequencing Consortium, 2004). Intra- and inter-chromosomal
duplications have been found to play a vital role in genome evolution,
its stability, and diseases (Emanuel and Shaikh, 2001), and knowing the
location of such repeats can be important for many genomic analyses. Yet,
fully annotating all repeats in a genome can be computationally intensive.
To demonstrate the scalability of Mashmap2, we computed all ≥ 1 Kbp
duplications in the human genome (GRCh38, Schneider et al., 2017) with
≥ 90% alignment identity. Due to probabilistic guarantees, we expect
Mashmap2 to estimate the boundaries of all such duplications with a high
recall value. The importance of these duplications has been known for a
long time (Emanuel and Shaikh, 2001; Bailey et al., 2002); accordingly
the UCSC genome browser (Kent et al., 2002) also maintains them in a
database (named as segmental duplications) for the human genome. We
summarize our method below and contrast our output with this database.

3.2.1 Methodology
We used 24 chromosome sequences (1-22, X,Y) and mitochondrial DNA
from the hg38 version of the human genome as our input sequence set. To
compute all≥1 Kbp,≥90% identity duplications, we executed Mashmap2
with the same length and identity requirements, with filtering disabled.
Mashmap2 reported 8.4 billion alignment boundaries for all duplications
after finishing its run. The count of reported mappings is high due to several
high-copy repeat families in the genome, not all of which exceed our
minimum thresholds. To remove the shorter or lower identity mappings,
each of the approximate alignments was processed using LAST (Kiełbasa
et al., 2011) to compute a base-level alignment. This resulted in 213.9

million validated alignments ≥1 Kbp in length and ≥90% identity.
Finally, we filtered out trivial duplications (i.e. regions matching with
themselves), and were left with 213.8 million alignments. This experiment
took 120 CPU hours for executing Mashmap2 and 175, 000 CPU hours
for validating all reported mappings using LAST. We converted these
alignments into BED format to compare against the UCSC database using
Bedtools (Quinlan and Hall, 2010); the results are discussed below.

3.2.2 Accuracy Evaluation and Insights
The UCSC Segmental Duplications database for the hg38 human genome
was computed using a method proposed by Bailey et al. (2001), and
was last updated in 2014. It is important to note that prior to computing
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Fig. 4. Dot plots for genome to genome mappings for datasets D1 and D2 generated using Mashmap2. Mashmap2 supports visualization using MUMmerplot tool, modified to be compatible
with its output format.
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Fig. 5. Recall scores of duplications computed using Mashmap2 against the UCSC
segmental duplication database. Above 90% recall scores are achieved on each
chromosome consistently. The red dotted line shows the aggregate recall score of
97.2% for the complete genome.
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Fig. 6. Comparison of genomic coverage between the UCSC Segmental Duplication
database and Mashmap2 output alignments. Both methods reported equal coverage
83% on mitochondrial chromosome (not shown above to keep the plot legible).
Coverage of duplications computed using our method is significantly higher, owing
to its exhaustive search of all repeats with≥1 Kbp length and≥90% identity without
repeat masking.

genomic duplications, their method removed high-copy repeat elements
(e.g., LINEs, Alus) from the genome. Therefore, this database does
not constitute all ≥1 Kbp, ≥90% identity duplications in the genome,
but a significant fraction of them. Nevertheless, we should expect our
output to have high recall against this database. To measure recall on
each chromosome, we computed coverage of those UCSC duplication
annotations that have overlap with Mashmap2 duplications, and divided
it by the coverage of all UCSC duplication annotations. Therefore, a
100% recall score would imply that all base-pairs which are annotated
as segmental duplication in the UCSC database are part of one or more
Mashmap2 alignments. We show these recall scores for each chromosome
as well for the complete genome in Figure 5. Recall is consistently observed
to be above 90% for each chromosome, and the aggregate recall for the
complete genome is 97.2%. High recall scores achieved here, as well as
in our prior experiments, demonstrate high sensitivity of our algorithm in
practice.

Finally, we compared the coverage of our alignments versus the UCSC
database. Since our method did an exhaustive search of all duplications
with ≥ 1 Kbp length and ≥ 90% identity without masking any genomic

repeats, we observe that our algorithm attains either equal or higher
coverage on each chromosome (Figure 6). For the complete genome,
coverage of our alignments is 10.4%; 5% higher than the coverage of
UCSC annotations. We examined the subset of our duplications which do
not overlap with UCSC segmental duplications. Indeed a large coverage
fraction (81%) comprises of high-copy repeats (i.e, coverage depth >
50), potentially due to common repeat elements. However, a significant
coverage (1.03% of complete genome) is composed of low-copy repeats,
with coverage depth ≤ 50 indicating the potential to uncover novel
segmental duplications. Validating this possibility requires a more careful
inspection of the output, and will be our future work.

4 Discussion
In this work, we presented a fast algorithm for computing homology
maps between whole genomes. We have given both theoretical and
experimental evidence of the sensitivity provided, in terms of computing
local alignment boundaries based on the minimum alignment length and
identity parameters. This formulation grants a convenient mechanism
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for users to execute this algorithm based on the underlying applications,
which can be (but not limited to) mapping genome assembly of variable
quality, aligning long reads to reference genomes, or computing segmental
duplications in large genomes. Additionally, we formulated a filtering
heuristic, and proposed an optimal plane-sweep based filtering algorithm
for prioritizing alignments based on their scores and locations. The filtering
algorithm is practically fast, accurate, and easy to implement in few
lines of code using standard libraries. When mapping a human genome
assembly to the human reference genome, Mashmap2 takes only about
a minute from reading input sequences to generating the final alignment
boundaries, identity estimates, and a dot-plot for visualization. Because
of the underlying auto-tuning mechanism in Mashmap2, performance
depends on the sensitivity requirements provided to the algorithm. As the
pace of whole-genome sequencing continues to increase, faster practical
algorithms and theoretical advances will help analyze available and
forthcoming data.

Although our algorithm accelerates mapping of a single genome
assembly to a single reference genome, its runtime would scale linearly
when mapping to multiple reference genomes. Future work will include
development of sub-linear algorithms using existing ideas of non-linear
reference genome representations. We also plan to evaluate biological
novelty of the human segmental duplications computed in this work.
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