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Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for large scale 
calcium imaging datasets 

Abstract 

Advances in calcium imaging have made it possible to record from an increasingly 

larger number of neurons simultaneously. Neuroscientists can now routinely image 

hundreds to thousands of individual neurons. With the continued neurotechnology 

development effort, it is expected that millions of neurons could soon be simultaneously 

measured. An emerging technical challenge that parallels the advancement in imaging 

such a large number of individual neurons is the processing of correspondingly large 

datasets, an important step of which is the identification of individual neurons. 

Traditional methods rely mainly on manual or semi-manual inspection, which cannot be 

scaled to processing large datasets. To address this challenge, we have developed an 

automated cell segmentation method, which is referred to as Automated Cell 

Segmentation by Adaptive Thresholding (ACSAT). ACSAT includes an iterative 

procedure that automatically calculates global and local threshold values during each 

iteration based on image pixel intensities. As such, the algorithm is capable of handling 

morphological variations and dynamic changes in fluorescence intensities in different 

calcium imaging datasets. In addition, ACSAT computes adaptive threshold values 

based on a time-collapsed image that is representative of the image sequence, and 

thus ACSAT provides segmentation results at a fast speed. We tested the algorithm on 

wide-field calcium imaging datasets in the brain regions of hippocampus and striatum in 

mice. ACSAT achieved precision and recall rates of approximately 80% when compared 

to individual neurons that are verified by human inspection. Additionally, ACSAT 

successfully detected low-intensity neurons that were initially undetected by humans. 
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Significance 

ACSAT automatically segments cells in large scale wide-field calcium imaging datasets. 

It is based on adaptive thresholding at both global and local levels, implemented in an 

iterative process to identify individual neurons in a time-collapsed image from an image 

sequence. It is therefore capable of handling variation in cell morphology and dynamic 

changes between different calcium imaging datasets at a fast speed. Based on tests 

performed on two datasets from mouse hippocampus and striatum, ACSAT performed 

comparable to human referees and was even able to detect low-intensity neurons that 

were initially undetected by human referees. 

Introduction 

The ability to record from a large population of single neurons during behavior greatly 

facilitates the investigation of the contribution of individual neurons to neural network 

dynamics. The extracellular single-unit recording technique has traditionally been a 

method of choice in neurophysiological analysis of single neurons in the brain. Recent 

improvements in single-cell imaging techniques using activity indicators have offered 

new alternatives. Voltage sensors (Ghitani et al., 2015, Gong et al., 2015, Chamberland 

et al., 2017, Inagaki et al., 2017) and calcium sensors (Chen et al., 2013, Sun et al., 

2013) have made it possible to observe hundreds to thousands of individual neurons 

simultaneously (Ohki et al., 2005, Andermann et al., 2010, Huber et al., 2012, Ziv et al., 

2013, Issa et al., 2014, Mohammed et al., 2016). Though indirect, calcium indicators, 

especially the newest generation of the genetically encoded calcium sensor GCaMP6 

(Chen et al., 2013), have been sensitive enough to monitor neural activity with high 

spatiotemporal precision in behaving animals, allowing researchers to examine the 
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activity of populations of a specific cell type (Hofer et al., 2011, Wachowiak et al., 2013, 

Pinto and Dan, 2015, Allen et al., 2017), or the same cell over an extended period of 

time (Poort et al., 2015).  

As the signal-to-noise ratio of the genetically encoded calcium indicators improved, 

wide-field microscopy has become a feasible choice for recording the activity of a large 

population of neurons over an extended anatomical area. Although lacking the spatial 

subcellular resolution of a multiphoton microscope, wide-field microscopes can operate 

at a higher speed and allow the simultaneous recording of a larger population, (Ghosh 

et al., 2011, Ziv et al., 2013, Kim et al., 2016, Mohammed et al., 2016). Advanced 

microfabrication techniques further miniaturized the wide-field microscope to an 

microendoscope, capable of monitoring neural activity in freely-moving animals (Ghosh 

et al., 2011, Ziv et al., 2013). 

An emerging technical challenge that parallels advances in imaging of increasingly 

more neurons is the processing of large datasets. During data analysis, an important 

step is to identify regions of interest (ROIs) corresponding to individual neurons. As data 

grows rapidly both spatially and temporally, the traditional labor-intensive approach of 

manual inspection has to be replaced by semi- or fully-automatic procedures. Principal 

component analysis (PCA) (Mukamel et al., 2009), as one such approach, requires 

significant computational resources and CPU processing time, limiting its use in larger 

datasets. 

Alternatively, threshold-based methods are simple, intuitive, and fast, and thus are 

expected to be useful for processing large datasets. However, before applying 
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threshold-based methods to calcium-imaging datasets, several challenges need to be 

overcome, including: inhomogeneity across the imaging field, variations in recording 

condition, recording subjects, and fluorescence signal strength. For example, one of the 

most referenced thresholding methods, Otsu’s method, which automatically selects the 

optimal threshold value that minimizes the intra-class variance among ROI pixels and 

among background pixels, would only successfully segment some of the highest-

intensity ROIs (Otsu, 1979, Sezgin and Sankur, 2004). Additionally, the multi-class 

Otsu’s method is limited when identifying ROIs with different pixel intensities due to the 

uneven lighting of the background.  A recent machine learning-based algorithm uses 

image gradients and pixel traces to automatically optimize the threshold value 

(Fantuzzo et al., 2017). However, the method still requires a user’s subjective input in 

selecting a background removal factor based on the dataset. Other approaches based 

on edge detection have trouble due to weak fluorescence signal strength in comparison 

with the background pixels (Sadeghian et al., 2009). Even if edges were detected, it 

remains difficult to objectively determine which edges belong to which ROIs because of 

the high density of neurons in the image. In general, most segmentation methods 

require a high level of tuning to each individual dataset and individualized calibration to 

establish thresholds, e.g. for gradient values or for pixel intensity values. Thus, 

thresholding methods have shown promise for automatic cell segmentation if the above 

discussed technical challenges can be addressed to overcome variability among and 

within datasets.  

We introduce a new Automated Cell Segmentation by Adaptive Thresholding (ACSAT) 

algorithm, which dynamically and automatically determines global and local threshold 
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values based on pixel intensity levels within a time-collapsed image of a recorded image 

sequence. We applied ACSAT to two datasets collected from mice hippocampus and 

striatum, which have distinct cell morphology, calcium dynamics, and fluorescence 

intensity levels. ACSAT achieved precision and recall rates of approximately 80% when 

compared to ROIs that can be verified by human referees manually, and was successful 

at identifying low-intensity neurons that were initially undetected by human referees. 

Materials and Methods 

Mouse preparation 

All animal procedures were approved by Boston University Institutional Animal Care and 

Use Committee. Female C57BL/6 mice (8-12 weeks old, Taconic, Hudson, NY) were 

first injected with 250nL AAV9-Syn-GCaMP6.WPRE.SV40 virus (titer: ~6e12 GC/ml, 

University of Pennsylvania Vector Core). AAV was delivered either into the dorsal CA1 

(AP: -2, ML: 1.4, DV: -1.6), or into the dorsal striatum (AP: 0.5, ML: 1.8, DV: -1.6) 

regions. Injections were performed with a 10 μL syringe (World Precision Instruments, 

Sarasota, FL) coupled with a 33 gauge needle (NF33BL, World Precision Instruments, 

Sarasota, FL) at a speed of 40 nL/min, controlled by a microsyringe pump 

(UltraMicroPump 3-4, World Precision Instruments, Sarasota, FL). Upon complete 

recovery, a custom imaging chamber with glass coverslip was surgically implanted on 

top of the viral injection site by removing the overlying cortical tissue. The imaging 

chamber was assembled by fitting a circular coverslip (size 0; OD: 3 mm) to a stainless 

steel cannula (OD: 0.317 mm, ID: 0.236 mm) using a UV-curable optical adhesive 
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(Norland Products). During surgery, a custom aluminum headplate was also attached to 

the skull, which allows head-fixation during the imaging session.  

The hippocampus dataset was previously reported by Mohammed et al. (2016). In this 

dataset, the mouse was trained to perform a trace conditioning task known to involve 

hippocampal neural activity (Solomon et al., 1986, Moyer et al., 1990, Tseng et al., 

2004, Sakamoto et al., 2005). In this task, the animal was trained to associate a 

conditioned stimulus (a 350 ms long tone) with an unconditioned stimulus (a gentle 

100ms air puff to one eye). There was a 250 ms trace interval between two stimuli. 

During each recording session, the animal was head-fixed and performed 40 trials with 

a randomized 31-36 second inter-trial interval. The hippocampus dataset (1024 x 1024 

pixels/frame, 2047 frames, ~4 GB size) analyzed in this study was part of a larger 

recording session (~ 50GB size). 

The striatum dataset was collected from a head-fixed animal running on a spherical 

treadmill system. The treadmill system consisted a styrofoam ball floated by air 

pressure in a 3D-printed bowl designed as described in (Dombeck et al., 2007) that 

allowed the animal to move its limbs freely while head-fixed. The mouse was first 

handled for several days before being headfixed to the spherical treadmill. Habituation 

to running on the spherical treadmill while headfixed occurred over 3-4 days/week at the 

same time of day as subsequent recording sessions (8-12 hours after lights-on), for 

several weeks. Single imaging sessions took approximately 25 minutes. Sampling 

occurred at approximately 20Hz and exposure time was fixed at 20ms. The striatum 
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dataset (~4 GB size) contains 2047 frames with 1024 x 1024 pixels per frame and was 

also part of a larger dataset (~25GB size). 

Calcium imaging data acquisition  

Imaging data were acquired with a custom wide-field microscope coupled with a 

scientific CMOS camera (ORCA-Flash 4.0, C11440-42U, Hamamatsu, Boston MA), 

controlled by the commercial software package HCImageLive (Hamamatsu, Boston 

MA). The wide-field microscope consisted of a Leica N Plan 10×0.25 PH1 objective 

lens, an excitation filter (HQ 470/50), a dichroic mirror (FF506-Di02), an emission filter 

(FF01-536/40), a commercial SLR lens as the tube lens (Nikon Zoom-NIKKOR 80–200 

mm f/4 AI-s), and a 5W LED (LZ1-00B200, 460 nm; LedEngin, San Jose CA). Data 

acquisition was performed at 20 Hz, at a resolution of 1024 x 1024 pixels, with 16-bits 

per pixel. With 10x objective lens, the microscope provided a field of view of 1.343 x 

1.343 mm2 (1.312 x 1.312 μm2/pixel) of brain tissue. During data acquisition, head-fixed 

animals were either performing the trace conditioning task (the hippocampus dataset) or 

moving on the spherical treadmill (the striatum dataset). Imaging data was streamed 

from the camera to RAM of a custom computer (dual Intel Xeon processors, 128 GB 

RAM, and a GeForce GTX Titan video card) to ensure temporal precision. After each 

imaging session, data was moved from RAM to hard drive and saved in multi-page 

tagged image file format. 
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Automated Cell Segmentation by Adaptive Thresholding (ACSAT) Overview 

Fluorescence imaging data obtained in the form of image sequences is processed 

offline using a custom MATLAB algorithm. Image sequences were first motion-corrected 

as described in Mohammed et al. (2016) to remove micromotion of the imaged area 

caused by breathing and other slight movements of the animal. Our Automated Cell 

Segmentation by Adaptive Thresholding (ACSAT) method (Figure 1a) is then applied to 

the image sequences. The overall goal is to automatically identify individual neurons as 

regions of interest (ROIs) from the image sequence so that the activity of each neuron 

can be approximated by the fluorescence intensity within that ROI. 

To increase time efficiency of the ACSAT algorithm without sacrificing segmentation 

performance, the inputted image sequence is first collapsed in time into one 

representative two-dimensional image (�� in Figure 1a), where each pixel in �� is thus 

represented by the maximum intensity value of that pixel across the entire image 

sequence with the mean value removed. This image is then used for the rest of the 

algorithm. Pixels with low intensity values would correspond to static background, 

whereas pixels with high intensity values would correspond to neurons with GCaMP6 

expression. Because we define a ROI as a non-trivial cluster of adjacent pixels with high 

intensity values in ��, it is unlikely for a significant cluster of background pixels to all 

have high intensity values due to random noise. Thus, the time-collapsed image �� is 

expected to contain sufficient information to separate neurons from the background. 

Next, ACSAT iteratively generates ROIs ������� from the time-collapsed image �� for 

iterations � � 1, 2, …, starting with �� � ��. Prior to each subsequent iteration, �� is 

generated by cumulatively clearing previously segmented ROIs, ���������, from ���� by 
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setting each ROI’s pixels in ���� to blank values of 0 and dilating the cleared area. As 

described later, each iteration consists of both adaptive thresholding at the global level 

(Global FIBAT in Figure 1a), using the automatically selected threshold value �
�  (Figure 

1b), and adaptive thresholding at the local level (Local FIBAT in Figure 1a). When the 

change in global threshold value |���
� � �

� | is insignificant, further iterations are likely to 

contribute more false positives than true positives. Thus, the ACSAT algorithm 

terminates at iteration � if 
|����
� ���

� |

�
�

�
� � where �

� acts as a normalizing factor. In this 

study, we chose � � 10%. Accordingly, the final output of ACSAT is the union of the 

segmented ROIs from each iteration, ������� ��� �������. 

Global and Local Adaptive Thresholding in ACSAT 

Each iteration � of ACSAT contributes a set of newly segmented ROIs ������� from �� 

by applying our Fluorescence Intensity Based Adaptive Thresholding (FIBAT) algorithm, 

at the global and local levels (Global/Local FIBAT in Figure 1a). Briefly, FIBAT (Figure 1b) 

takes an inputted image � and outputs the optimal threshold value � which results in 

optimally segmented ROIs �����|��. 

Global adaptive thresholding is the first step in the �th iteration of ACSAT (Figure 1a). 

This step applies FIBAT directly to the whole image (�� � �) to identify potential ROIs 

(�����|�� � �������
	 ). 

These potential ROIs �������
	  may include groups of adjacent neurons or overlapping 

neurons simply because neurons physically are located in a 3D space during in vivo 

imaging. The local adaptive thresholding step (Figure 1c) recursively separates any 

potentially overlapping ROIs within �������
	  in order to output �������. Specifically, each 
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ROI in ��������  is individually inputted to FIBAT (ROI � �) in (Figure 1b) to obtain a set of 

separated ROIs �����|	��. If any outputted set �����|	�� contains more than one 

separated ROIs, then each ROI in the set �����|	�� is further separated using the same 

procedure, thus forming a recursive loop. Otherwise, if any outputted set �����|	�� 

contains only one ROI, then the recursion terminates. The final output of the local 

thresholding step ������� is the union of all such sets containing one ROI that cannot 

be further separated. 

Fluorescence Intensity Based Adaptive Thresholding (FIBAT)  

As described, FIBAT (Figure 1b) is used in both the global and local adaptive 

thresholding steps of each iteration of ACSAT to identify potential ROIs in the time-

collapsed image � 
 �� or to separate potentially overlapping neurons within � which is 

an element of �������� , respectively. In either case, an optimal pixel intensity threshold 

value 	� separates ROIs from the background. FIBAT selects 	� by searching for the 

threshold value that maximizes the number of resulting ROIs that are larger in area than 

���� and smaller in area than ����. For the global adaptive thresholding step, we chose 

���� 
 50�� � 86��� and ���� 
 300�� � 516���. For the local adaptive 

thresholding step, we chose ���� 
 20�� � 34��� and ���� 
∞ because ROIs tend 

to shrink in size after repeatedly applying FIBAT. 

The search is performed recursively over a pixel intensity range �		, 	
�, where initially 

		 is the minimum pixel intensity value in � and 	
 is the maximum pixel intensity value 

in �. From this search range, � test threshold values 		, 	�, … , 	
�	, 	
 are uniformly 

selected. A larger � will decrease the probability of skipping the optimal threshold value, 
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but it will result in more computation time that may not be necessary. We chose � 
 12. 

Each of these test threshold values 		, … , 	
 is applied to the image � by assigning each 

pixel a 1 (a true calcium event) if its value is greater than the threshold or a 0 (a false 

calcium event) otherwise. Morphological operations are then performed to refine the 

thresholded images. Specifically, these operations fill in holes (0s surrounded by 1s) 

and remove spur pixels which may be due to noise. The operations also break H-

connected ROIs prior to splitting overlapping cells. ROIs are finally collected with 8-

connectivity (MATLAB function bwlabel or bwconncomp) to generate a set of 

segmented ROIs for each test threshold value: �����|		�, … , �����|	
�. 

Since ROIs represent real neurons that are roughly spherical in shape and are about 5 

μm - 20μm in diameter, some realistic criteria can be used to eliminate false ROIs that 

are not possibly actual neurons. Accordingly, FIBAT removes ROIs from 

�����|		�, … , �����|	
� if their centroid is outside the ROI, or if their area is less than 

���� or greater than ����, or if their solidity (i.e. the area ratio between the convex hull 

of a ROI and the ROI itself) is greater than approximately the golden ratio. 

The next search range is selected based on the results of the test thresholds. A 

relationship of the test threshold values 		, … , 	
 vs the numbers of resulting ROIs 

|�����|		�|, … , |�����|	
�| can be generated (Figure 1b). If the test threshold value 	� 

resulted in the most ROIs i.e. � 
 arg max
�
|�����|	��|, then the next search range is set 

to �	���	,��	�, 	���
,��	�� in order to include 	� inside the search range. If more than one 

test threshold value 	�� , 	�� , … resulted in the same maximum number of ROIs, then the 

next search range is similarly set to �	���	,�����,��,… ��	�, 	���
,�����,��,… ��	�� in order to 
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contain all 	�� , 	�� , …. This search is terminated when further refinement of the search 

range produces little improvement in the number of detected ROIs: either the new 

search range |	��	 � 	��	| is less than   or the new range overlaps the previous range 

by at least !. We chose ! 
 90% and  
 the smallest non-zero intensity difference 

between every pair of adjacent pixels in whole image �. As such,   is determined 

automatically and does not require user input. Upon termination, the optimal threshold 

value is set to 	� 
 	

�
%min)	�� , 	�� , … * + max)	�� , 	�� , … *., and the segmented ROIs 

�����|	�� includes ROIs whose area exceeds ����. 

Code accessibility 

The code/software described in the paper is freely available online at 

www.github.com/sshen8/acsat. The code is available as Extended Data. 
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Results 

We used the ACSAT algorithm (Figure 1a) to automatically segment ROIs from two 

datasets recorded with a custom wide-field microscope in the hippocampus and in the 

striatum of mice. The imaging area is 1.343x1.343 mm2, with a spatial resolution of 

1024x1024 pixels (1.312x1.312μm2/pixel). Each dataset of approximately 4 GB was a 

continuous segment of a long image sequence acquired at 20 Hz with scientific CMOS 

camera for about 40 minutes. Each of the two datasets contained 2047 frames of 16 

bits image corresponding to a recording duration of approximately 100 seconds.  

Prior to the application of the ACSAT, the image sequences were time-collapsed as 

shown in Figure 2 and Figure 3 (top rows) for the hippocampal and the striatum datasets, 

respectively. These time-collapsed images show high intensity areas resembling neural 

morphology. The final segmented ROIs outputted by ACSAT are illustrated in Figure 2 

and Figure 3 (bottom row), respectively. Time-collapsed images can be taken from 

longer sessions, but we found, in general, dynamic calcium events could be reasonably 

expected within this time window. A single calcium event from any given cell would yield 

a high intensity value in the time-collapsed images. 

ACSAT is based on adaptive thresholding on a time-collapsed image, and thus it 

provides segmentation results at very fast speed. Specifically, to obtain the results as 

shown in Figure 2 and Figure 3, it took approximately one minute per iteration on a Xeon 

E5-1650 v4 at 3.6GHz with 128 GB DDR4 RAM, but it used less than 30 MB RAM. As 

such, the RAM size had little effect on the speed.  

ACSAT Accuracy Compared to Human-Generated Truth 
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To assess the accuracy of the ACSAT algorithm, we compared the ACSAT 

segmentation results with ROIs generated by human inspection (human-generated 

truth). Two human referees manually segmented ROIs from the raw image sequences. 

This human-generated truth contained 423 ROIs for the hippocampus dataset and 91 

ROIs for the striatum dataset. We first compared the ACSAT-generated ROIs for the 

hippocampus and striatum datasets with the ROIs in the human-generated truth. We 

consider a pair of ROIs to correspond to the same neuron if they had centroids that 

were less than 50�� � 65.6�� apart and had a mutual overlap greater than 60%. We 

calculated the mutual overlap as the average of the percentages of the overlapping area 

against the areas of both ROIs. When there were multiple ROIs sharing overlapping 

areas, we selected the pair with highest mutual overlap as the matched ROIs. 

For the hippocampus dataset, ACSAT identified 445 ROIs after three iterations. Among 

these 445 ROIs, 317 ROIs were matched in the human-generated truth (true positive), 

and 128 ROIs were not in the human-generated truth (false positive). Additionally, 106 

ROIs in human-generated truth were not identified by ACSAT (false negative). This 

result gave us a precision rate of 71.2% (317 out of 445) and a recall rate of 74.9% (317 

out of 423). For the striatum dataset, ACSAT was terminated after one iteration and 

identified a total of 135 ROIs: 69 true positives, 66 false positives, and 22 false 

negatives (precision rate: 51.1%, recall rate: 75.8%). 

ACSAT Accuracy beyond Human-Generated Truth 

After a further examination of the individual ROIs identified by ACSAT that are false 

positives, our secondary manual inspection found that some of the false positive ROIs 
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were actually true neurons that were missed in the initial human-generated truth due to 

human error. This means that ACSAT was able to segment ROIs that were not easily 

detectable by human experts. Specifically, for the hippocampus dataset, 70 (54.7%) out 

of 128 ROIs initially labeled as false positives were later determined to be actual 

neurons, and for the striatum dataset, 31 (47%) ROIs were true neurons. After 

correction, out of the total 445 ACSAT ROIs from the hippocampus dataset, 387 

segmented ROIs corresponded to true neurons (true positive), and 58 segmented ROIs 

did not correspond to true neurons (false positive). Additionally, 106 true ROIs were not 

segmented (false negative). This corresponds to a precision rate of 87% and a recall 

rate of 78.5%. Similarly, for the striatum dataset, which resulted in 135 ACSAT ROIs, 

there were 100 true positives, 35 false positives, and 22 false negatives after correction. 

This corresponds to a precision rate of 74.1% and a recall rate of 82%. Even though 

neurons in the hippocampus and striatum have different morphology and dynamics, 

ACSAT was able to achieve the performance comparable to human referees for both 

datasets, and it was able to detect low-intensity neurons that were initially undetected 

by human referees. As such, our results demonstrate the robustness and effectiveness 

of the algorithm. 

The result from the hippocampus dataset shows that ACSAT successfully identified true 

ROIs of diverse sizes (Figure 4, red). In general, the false positive ROIs had relatively 

smaller areas (Figure 4, yellow), similar to the ROIs missed by human referees (Figure 4, 

green). This indicates that ACSAT is more likely to recognize intensity changes in small 

areas thereby outperforming human referees under such challenging detection 
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conditions. In the meantime, ACSAT missed a small portion of true ROIs, which shares 

similar sizes with those identified (Figure 4, blue). 

Number of Iterations in Using ACSAT 

For the hippocampus dataset, ACSAT was terminated at iteration 0 
 3 when the 

change in global threshold value 
|��
���

�

� |

�
�

�

 5.12% 1 2 
 10%. For the striatum dataset, 

ACSAT was terminated at iteration 0 
 1 when the change in global threshold value 

|�
�

����
� |

�
�

�

 4.53% 1 2 
 10%. 

To evaluate how ACSAT performs when terminated at different iteration numbers, we 

ran ACSAT up to 9 iterations on both datasets, and calculated several major 

performance indicators after each iteration (Figure 5): cumulative number of ROIs, global 

threshold value, recall, false negative rate, and false discovery rate (which is equal to 1 

– precision) compared to the human-generated truth prior to secondary manual 

inspection of false positives. The cumulative number of ROIs, recall, and false 

discovery rate increased with the iteration number, but at different paces. While the 

cumulative number of ROIs and the false discovery rate increased steadily, recall rose 

steeply and reached its plateau within approximately three iterations for the 

hippocampus dataset and after the first iteration for the striatum dataset. Both the global 

threshold value and the false negative rate dropped as iterations progressed, indicating 

ACSAT dynamically adjusted the threshold to capture potential ROIs with lower intensity 

in later iterations. This dynamic adjustment of the threshold value was only possible 

because of the removal of segmented ROIs prior to each iteration. Overall, the changes 
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in these performance indicators over iterations suggested that most true ROIs were 

identified during the early iterations: 0 3 3 for the hippocampus dataset and 0 
 1 for 

the striatum dataset, which are consistent with when the ACSAT termination criterion 

described by 2 was met. ROIs segmented during later iterations were mostly false 

positive. 

FIBAT Global and Local Thresholding 

In Figure 6, we demonstrate how FIBAT (Figure 1b) determines the threshold value that 

achieves optimal segmentation results by sampling the distribution of threshold value vs 

number of ROIs. Each trace of Figure 6 plots the number of ROIs that result from each 

sampled threshold value in the global thresholding step during the first four iterations of 

ACSAT (Figure 1a) on the hippocampus dataset. In each iteration, FIBAT (Figure 1b) first 

samples the threshold values across the entire intensity range at coarse resolution to 

identify the potential search range that may result in the maximum number of ROIs. 

FIBAT further re-samples threshold values within the new search range with a finer 

resolution, until it reaches a threshold value that gives the maximum number of ROIs. 

This design allows FIBAT to determine the optimal threshold value with a fine resolution 

without actually sampling the whole intensity range at the fine scale, and, as a result, 

reduces the processing time. 

After performing global thresholding to identify potential ROIs ��������  (Figure 1a), 

ACSAT further applies FIBAT locally to each identified ROI in ��������  to refine the 

segmentation results (Figure 7). When neurons are densely labeled with GCaMP6, using 

the global thresholding step alone may lead to one or more large clusters of adjacent 
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neurons being segmented as a single ROI (Figure 7a). For each such cluster, FIBAT 

(Figure 1b) determines and applies a new threshold value to the local ROI area. With 

local thresholding, the example cluster is further segmented into 5 ROIs (Figure 7b), 

which would not otherwise be separated by applying the global threshold. Because 

further local thresholding produces the same result (Figure 7c), the local thresholding 

step of ACSAT concludes that these 5 ROIs cannot be further separated, exits the 

recursive loop, and outputs these ROIs. 

To evaluate the efficacy of local thresholding, we examined the hippocampus dataset at 

each iteration before and after the local thresholding step (Figure 8, left and right bars, 

respectively). Local thresholding refined the ROIs detected by global thresholding and 

captured more true ROIs at every iteration. It is also worth noting that, at later iterations, 

local thresholding was still able to identify true ROIs that were missed by global 

thresholding alone (Figure 8, iteration 4). 

Discussion 

In this study, we presented our Automated Cell Segmentation by Adaptive Thresholding 

(ACSAT) method that adaptively selects threshold values based on image pixel intensity 

with two iterative steps at the global and local levels of time-collapsed image 

representing an image sequence. As such, the algorithm is capable of handling 

morphological and dynamic changes in neurons and is robust against luminance 

condition changes. When applied to two datasets collected from the hippocampus and 

the striatum in mice, ACSAT resulted in approximately 80% recall rate of regions of 

interest (ROIs) containing individual neurons (78.5% for the hippocampus dataset and 

82% for the striatum dataset), and approximately 80% precision rate (87% for the 
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hippocampus dataset and 74.1% for the striatum dataset). ACSAT was also able to 

detect low-intensity ROIs that were initially undetected by human referees.  

The ACSAT algorithm is innovative because it is an intuitive thresholding method that 

uses global and local schemes to address variations in fluorescence intensity levels of 

GCaMP even within the same image field. Simply applying a lower global threshold 

value would result in few large ROIs containing multiple neurons within one ROI. On the 

other hand, with a high global threshold value, only a small number of neurons with high 

intensity would be found. As such, applying a single high or low threshold value would 

generate inadequate results with fewer or excessive ROIs, which is a universal 

limitation of thresholding methods. Our algorithm efficiently addresses this challenge in 

two ways. First, it cumulatively excludes previously segmented ROIs from the time-

collapsed image �� after each iteration so that in the following iteration, ACSAT could 

detect new ROIs that require distinct thresholds to separate but were missed with 

previous thresholds. Therefore, the global threshold value 	��  (Figure 1) used by ACSAT 

usually decreases after each iteration, and ROIs with high intensity were segmented 

before those with low intensity, as shown in Figure 2 and Figure 3. Because ACSAT is 

based on adaptive thresholding, it allows us to objectively and robustly segment ROIs 

with low intensity relative to the background. These low-intensity areas often pose 

challenges to human experts when manually detecting ROIs, as our results showed that 

about half of the ROIs initially labeled as false positive were actually true neurons 

(Figure 8). 

Second, ACSAT uses FIBAT locally to separate overlapping ROIs one-by-one. This 

local approach directly addresses the issue that the intensities of pixels surrounding an 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/260075doi: bioRxiv preprint 

https://doi.org/10.1101/260075
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

ROI can vary. This heterogeneity of recorded neural signals is characteristic and 

common in biological data. However, because a higher thresholding value is usually 

required to separate adjoining neurons, the outputted sub-ROIs are often smaller than 

the corresponding true neurons. Because ROIs generally have pixel intensity 

decreasing radially, this shrinking effect is expected to be uniform around an ROI and 

thus can be corrected by a simple dilation. 

Another major advantage of the ACSAT algorithm is its use of a time-collapsed image 

instead of the full image sequence during iterations. This makes our algorithm fast, less 

memory-demanding, and accurate as demonstrated by segmenting real recordings from 

mouse hippocampus and striatum. The global thresholding step generally took 

approximately 5 seconds to apply FIBAT to our full 1024×1024 pixels images ��. 

Because the local thresholding step uses FIBAT to separate sub-ROIs from ROIs that 

are usually much smaller than a full image, the local thresholding step is also relatively 

fast, taking approximately one minute per ACSAT iteration for the datasets reported. 

Neither of these two steps requires large memory because only the time-collapsed 

image is processed. 

ACSAT has three sets of free parameters that can be objectively chosen or are not 

sensitive: 2 which describes the termination condition for ACSAT, ! which describes a 

termination condition for FIBAT, and ���� and ���� which describe the allowed sizes of 

ROIs. The latter set of parameters ���� and ���� are only determined by the 

experiment and data collection instrument, and should be chosen based on 

characteristics of the data acquisition conditions determined by, for example, image 
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resolution and objective lens. The selection of other parameters should have minimal 

effect on ACSAT’s final segmentation results as discussed below. 

The neuron ROI size criteria ���� and ���� should be chosen based on how large 

neurons are expected to be using information including image resolution, magnification, 

etc. The presence of these area criteria in our algorithm is consistent with the literature 

(Fantuzzo et al., 2017). 

The termination condition for ACSAT, described by 2, can be explained by the 

tendencies of ACSAT. Specifically, running ACSAT for more iterations increases the 

number of ROIs segmented, especially the number of low-intensity ROIs, as the global 

threshold value 	��  gradually decreases (Figure 5). While many of the added ROIs are 

true ROIs, the proportion of false positive ROIs added increases as iteration number 

increases (Figure 5). This increasing proportion of outputted false positives in later 

iterations can be attributed to the higher probability of a spurious collection of adjacent 

background pixels meeting the criteria to be an ROI. Also, the added false positives can 

be related to the step which clears previously segmented ROIs from the time-collapsed 

image at the start of each iteration of ACSAT. Due to the scattering of light in brain 

tissue, ROI removal may leave a few small fragments of brighter pixels around removed 

areas, which could be identified as ROIs during the next iteration. Most of the time, 

these misidentified ROIs were discarded either because of their small size or because 

they do not meet the solidity criteria; however, occasionally they may pass the size 

criteria and become the false positive ROIs. As a result, the majority of false positives 

tend to have small size (Figure 4, yellow). 
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In order to balance the effects of simultaneous increase in true ROIs and false positive 

ROIs, ACSAT stops when a decrease of global threshold value becomes relatively 

small between iterations i.e. 
|����
� ���

� |

�
�

�
1 2. At that stage, most true ROIs have been 

detected and removed from the time-collapsed image. Thus, the global threshold values 

	��  of any further iterations are similar, so most ROIs detected at this stage are false 

positives. For the hippocampus dataset, iteration 0 
 3 is when the increase in false 

positives begins to outweigh the increase in true positives, and for the striatum dataset, 

nearly all true ROIs segmented by ACSAT were outputted at iteration 0 
 1 (Figure 5). 

Qualitatively, the time-collapsed image �� for hippocampus has a higher density of 

neurons with a greater variety of pixel intensities than the �� for striatum, so it may take 

more iterations for ACSAT to perform at the same rate on the hippocampus dataset 

than on the striatum dataset. ACSAT’s performance under the diverse conditions of 

these two datasets suggests that our choice of 2 
 10% provides a robust and objective 

termination condition for ACSAT that can be generalized to other datasets as well. 

Additionally, the final segmentation results outputted by ACSAT are not very sensitive to 

the termination conditions for FIBAT described by ! and  . FIBAT is terminated if the 

threshold search range has minimal change over an iteration, which we determine in 

two ways. One way this condition would be satisfied is when all threshold values within 

the search range result in the same, optimal number of ROIs. This is equivalent to 

setting the criteria ! 
 100%. For the practical purpose of reducing FIBAT run time, we 

allow termination if the change in the search range is less than 1 � ! 
 10%. This 

condition is also trivially satisfied when FIBAT is used in the local thresholding step 

because, by definition, ROIs that cannot be separated by FIBAT will return exactly one 
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ROI no matter what threshold value is used. Additionally, we terminate FIBAT if the 

search range is smaller than  , the smallest difference between any pair of adjacent 

pixels in �, which can be objectively and automatically determined from �. If FIBAT were 

to continue refining the threshold value, then the gained precision beyond that defined 

by   would be useless due to the discrete step in pixel intensity values in �. 

The images �� used by ACSAT are time-collapsed across whole time series, and 

therefore do not contain any temporal information. With the flexibility of ACSAT, the 

framework of ACSAT can be used with any other images that contain temporal 

information. A simple example is to define another input image ���  where the value of 

each pixel represents the time of its maximum intensity. This image ���  would allow 

ACSAT to separate adjoined ROIs that have similar intensity values in �� but reach their 

maximum intensity at different time points, which is described by ��� . Other ways to 

generate the inputted image include correlations between nearby pixels, intensity 

dynamics such as standard deviation or variance, and/or combine them all. Overall, by 

taking advantage of adaptively determining the threshold value at both the global and 

local levels, ACSAT can theoretically perform segmentation on any image containing 

ROIs with non-homogenous intensity. 

In this study, we evaluated the ACSAT’s performance with two GCaMP datasets; 

however, it is plausible to apply ACSAT on any imaging data, such as time-series data 

from voltage imaging, or even a regular static image, to identify neurons in the data. 
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Figure Captions 

Figure 1. Automated Cell Segmentation by Adaptive Thresholding (ACSAT) 

algorithm flowchart. (A) The input is the time-collapsed image ��, and the output is a 

collection of automatically segmented ROIs. In each iteration, the "Global FIBAT" step 

identifies potential ROIs ��������  by applying FIBAT, described in part B, to the entire 

image ��; and the "Local FIBAT” step, described in part C, splits overlapping ROIs. (B) 

Fluorescence Intensity Based Adaptive Thresholding (FIBAT) algorithm flowchart. The 

inputted image is segmented using each of the test threshold values 		, 	�, … , 	
. The 

search range for the optimal threshold value (		, 	
) is iteratively narrowed to contain the 

test threshold value which resulted in the maximum number of ROIs. (C) Local FIBAT 

procedure. FIBAT, described in part B, is recursively applied to each individual inputted 

ROI until the resulting ROI(s) can no longer be separated by FIBAT.  

Figure 2. Hippocampus ROIs identified by ACSAT. (A) The aggregated image of 

hippocampus dataset and zoom-in detail images (Ai, Aii, and Aiii, corresponding to the 

grey boxes). (B) ACSAT ROIs from multiple iterations overlying on the aggregated 

image (red, yellow, green, and blue outline: iteration 1, 2, 3, and 4, respectively). The 

fourth iteration (blue) is shown for comparison although ACSAT terminated at iteration 3 

(red, yellow, and green). 

Figure 3. Striatum ROIs identified by ACSAT. (A) The aggregated image of striatum 

dataset and zoom-in detail images (Ai, Aii, and Aiii, corresponding to the grey boxes). (B) 

ACSAT ROIs from multiple iterations overlying on the aggregated image (red, yellow, 

green, and blue outline: iteration 1, 2, 3, and 4, respectively). The second (yellow), third 
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(green), and fourth (blue) iterations are shown for comparison although ACSAT 

terminated at iteration 1 (red). 

 

Figure 4. Distribution of ROI size. ACSAT identified true ROIs (red) with various size. 

The false positive ROIs (yellow) and those missed by human experts (green) tend to 

have small areas, while the areas of false negative ROIs (blue) leaned on the larger 

side. 

Figure 5. Cumulative performance of ACSAT over iterations. For both (A) 

hippocampus and (B) striatum datasets, the cumulative number of identified ROIs (blue 

line) increased steadily over iterations. The global threshold (dash blue line) tended to 

decrease with each iteration, allowing ACSAT to capture the ROIs with low intensity. 

Both recall (solid red line) and false discovery rate = 1 – precision (dotted red line) 

increased with iterations, while the false negative rate (dashed red line) decreased. All 

results reported here are based on human-generated truth prior to secondary manual 

inspection of false positives. 

Figure 6. Convergence of the FIBAT optimal global threshold value for the 

hippocampus dataset. FIBAT first sampled at a coarse scale across a wide intensity 

range, and then focused on a small potential intensity range with a fine scale to identify 

the optimal global threshold value that generates most ROIs. The vertical lines indicate 

the final optimal global threshold value determined by FIBAT for each iteration. 

Figure 7. Improved ROI identification by local thresholding. (A) With global 

thresholding alone, a cluster of hippocampal neurons was identified as a single ROI. (B) 
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After application of local thresholding, ACSAT successfully separated five ROIs from the 

single ROI. (C) Zoom-in of each ROI separated by local thresholding. 

Figure 8. Local thresholding improves ACSAT performance. The ROIs identified by 

ACSAT at each iteration, before local thresholding (left) and after (right). Local 

thresholding separates overlapping ROIs and thus helped identify more ROIs, including 

those identified by human (black) or missed by human (red). 

Extended Data 1. ZIP file contains eleven MATLAB files. 
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