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Abstract  

BACKGROUND: Untargeted mass spectrometry (MS)-based metabolomics data often contain missing 

values that reduce statistical power and can introduce bias in epidemiological studies. However, a 

systematic assessment of the various sources of missing values and strategies to handle these data 

has received little attention. Missing data can occur systematically, e.g. from run day-dependent 

effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of 

sample preparation. 

METHODS: We investigated patterns of missing data in an MS-based metabolomics experiment of 

serum samples from the German KORA F4 cohort (n = 1750). We then evaluated 31 imputation 

methods in a simulation framework and biologically validated the results by applying all imputation 

approaches to real metabolomics data. We examined the ability of each method to reconstruct 

biochemical pathways from data-driven correlation networks, and the ability of the method to 

increase statistical power while preserving the strength of established genetically metabolic 

quantitative trait loci.  

RESULTS: Run day-dependent LOD-based missing data accounts for most missing values in the 

metabolomics dataset. Although multiple imputation by chained equations (MICE) performed well in 

many scenarios, it is computationally and statistically challenging. K-nearest neighbors (KNN) 

imputation on observations with variable pre-selection showed robust performance across all 

evaluation schemes and is computationally more tractable. 

CONCLUSION: Missing data in untargeted MS-based metabolomics data occur for various reasons. 

Based on our results, we recommend that KNN-based imputation is performed on observations with 

variable pre-selection since it showed robust results in all evaluation schemes.  

Keywords: untargeted metabolomics, missing values imputation, limit of detection, batch effects, 

runday effects, MICE, K-nearest neighbor, mass spectrometry 
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Key messages 

 Untargeted MS-based metabolomics data show missing values due to both batch-specific 

LOD-based and non-LOD-based effects. 

 Statistical evaluation of multiple imputation methods was conducted on both simulated and 

real datasets. 

 Biological evaluation on real data assessed the ability of imputation methods to preserve 

statistical inference of biochemical pathways and correctly estimate effects of genetic 

variants on metabolite levels. 

 KNN-based imputation on observations with variable pre-selection and K = 10 showed robust 

performance for all data scenarios across all evaluation schemes. 
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Introduction  

In epidemiological studies, metabolomics is an established tool that provides insights into disease 

mechanisms (1), as metabolite profiles generate a molecular readout that is closely linked to the 

(patho-)phenotype (2,3). Recent metabolomics studies have identified many metabolites as 

candidate biomarkers for various health conditions, such as diabetes (4–6) and cardiovascular 

diseases (7,8). Mass spectrometry (MS)-based metabolomics measurements can be performed either 

in a targeted or untargeted manner (9). In the former, only a limited number of already known and 

biochemically annotated metabolites are captured. In the latter, the measurements are not limited 

to predefined signals and offer discovery of novel compounds. While missing values in targeted MS-

based data occur rarely, untargeted MS-based techniques typically produce 20-30% missing values, 

affecting more than 80% of the measured compounds (10–13). 

 There are various reasons why metabolite concentrations can be missing in an untargeted 

metabolomics dataset. First, it is possible that the molecules are truly absent from the sample, a 

situation that may occur e.g. for drug metabolites that only appear in a subset of people taking that 

medication. On the other hand, there are several technical reasons that could result in missing 

values, including: (i) instrument sensitivity thresholds, below which concentrations of a specific 

metabolite might not be detectable in a sample (i.e., below the limit of detection, LOD); (ii) matrix 

effects that impede the quantification of a metabolite in a sample through other co-eluting 

compounds and ion suppression; (iii) declining separation ability of the chromatographic column and 

increasing contamination of the MS instrument; and (iv) limitations in computational processing of 

spectra, such as poor selection and alignment of the spectral peaks across samples (14).  

 Commonly, observed patterns of missing data are categorized as either missing completely at 

random (MCAR), missing at random (MAR), or missing but not at random (MNAR) (15). In the MCAR 

category, the probability of missing values does not depend on observed or unobserved 

measurements. In contrast, the occurrence of MAR depends on other observed measurements (for 
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instance, resulting from technical effects, such as overlapping peaks). MNAR describes the 

occurrence of missing values that depend on unobserved measurements (for instance, due to issues 

with the performance of the machine). 

 Although it is clear that the handling of missing values affects all downstream analyses, it is 

less clear how to appropriately handle their occurrence statistically. A simple ad hoc approach is 

known as complete case analysis (CCA), which only considers samples that do not contain any missing 

values in the metabolites analyzed in each statistical analysis step. However, missing data may occur 

in some systematic way (i.e., they are dependent on external factors). For example, if all cases in a 

case-control study have more missing data than the controls, removing observations that are missing 

will lead to bias in biological interpretation (16). Furthermore, CCA can cause severe loss of 

information and statistical power by excluding a majority of observations if multivariate methods, 

such as principal component analysis or partial correlation networks, are to be performed.  

 A widely used and flexible class of missing data strategies is imputation, which involves the 

replacement of missing values by reasonable substitute values. The most commonly used imputation 

approaches for metabolomics data assume that missing data occur because they are below the limit 

of detection (left-censoring, a variant of MNAR). Therefore, all missing entries of a metabolite are 

replaced by a low constant value, such as the actual LOD (if known), zero, or the smallest value found 

in the dataset for that metabolite (13). Another LOD-based substitution strategy assumes a 

parametric left-truncated normal distribution and performs likelihood-based parameter estimation 

on the observed values to reconstruct the truncated part of the distribution. Missing values are then 

replaced by numbers drawn from this estimated part (16,17). Additional imputation-based 

substitution approaches assume MCAR and replace missing values by the mean or median per 

metabolite (12). Advanced approaches use multivariate statistical methods for imputation, including 

multiple imputation by chained equations (MICE) (18) and K-nearest neighbors (KNN) imputation 

(19,20). 
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 Several previous studies have investigated the occurrence and effects of different strategies 

for missing values in metabolomics data. Taylor et al. (21) reported that no single imputation method 

was universally superior, but constant substitution methods consistently showed poor performance. 

Gromski et al. (12) recommended imputation by Random Forests (RFs) for GC/MS metabolomics data 

after evaluating the outputs of supervised and unsupervised learning approaches. Di Guida et al. (15) 

investigated various combinations of different preprocessing steps to determine which were the 

most appropriate for univariate and multivariate analyses of UHPLC-MS metabolomics data. The 

authors recommended RF and KNN-based imputation for PCA and PLS-DA, respectively (15). 

Armitage et al. (10) studied missing values in CE/MS metabolomics data and reported KNN 

imputation to be more effective compared with simpler substitution-based imputation methods. 

Finally, in a study by Hrydziuszko and Viant (11), a KNN-based imputation approach also 

outperformed competing strategies in an investigation of direct infusion Fourier transform ion 

cyclotron resonance (DI-FTICR) MS-based metabolomics data. 

 Despite these advances in our understanding of the effects of imputation on metabolomics 

data analysis, several aspects have not been addressed by those previous studies. (i) A detailed 

statistical description of the patterns of missing values in MS-based metabolomics data has not yet 

been published. Most previous studies evaluated imputation strategies assuming only random or 

LOD-based missing values without assessing whether this applies to real metabolomics datasets. In 

particular, the influence of batch effects on the occurrence of missing values has not been 

investigated in any study. If a cohort comprises a large number of samples, the MS runs usually are 

spread across multiple days, which is known to influence metabolite measurements due to variation 

in instrument sensitivity. Here, the LOD itself is also expected to vary across run days, an assumption 

that has not been explicitly accounted for in any studies. (ii) In addition, a simulation framework that 

reflects realistic data situations is needed to provide an unbiased evaluation of strategies for handling 

missing values. Evaluation of previous studies has been biased in the sense that “complete” 

measured data (created by excluding all variables with missing values) with artificially introduced 
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missing values were simulated, which most likely does not mirror realistic missing value patterns. (iii) 

Finally, biological validation and biochemical interpretation of the data have not been addressed in 

the majority of papers. Only Hrydziuszko et al. evaluated the ability of different imputation strategies 

to preserve metabolic differences between biological groups, which then were related to KEGG 

pathways (11).  

 In the present study, we analyzed patterns of missing data and evaluated the performance of 

various imputation strategies for untargeted MS-based metabolomics data from serum samples of 

the German Cooperative Health Research in the Region of Augsburg (KORA) F4 cohort. Data were 

measured on a typical, widely used untargeted MS-based metabolomics platform (Metabolon, Inc., 

USA) and should be representative of many untargeted population-scale metabolomics studies. The 

study consisted of three steps: (i) We described and analyzed patterns of missing values and their 

possible underlying mechanisms in a real untargeted metabolomics dataset. In particular, we 

investigated the occurrence of missing values within and across batches of measurements. (ii) The 

insights gained from these analyses were used to introduce realistic patterns of missing data into 

simulated data. We applied 31 imputation methods to the datasets and evaluated them with respect 

to their ability to achieve correct statistical estimates and hypothesis test results in various data 

scenarios. (iii) Finally, the imputation methods were applied to real metabolomics data (KORA F4), 

followed by two biologically-driven evaluation schemes. First, we assessed how accurately real 

biochemical pathways were reconstructed in data-driven correlation networks inferred from the 

imputed data. Second, we verified whether imputation led to a gain in statistical power, while 

preserving effects of genetic variants on metabolite levels. The study workflow is visualized in Figure 

1. 
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Results 

Characterization of missing data patterns in KORA F4 untargeted metabolomics 

data 

We used an untargeted metabolomics dataset from the KORA F4 study, which was generated from 

fasting serum samples measured on three platforms: LC/MS in both positive (LC/MS+) and negative 

modes (LC/MS−), as well as a GC/MS platform. After log-transformation and outlier handling (see 

Methods), 1757 samples and 516 metabolites were available for analysis.  

 The dataset contained 19.41% missing values, with 416 (80.6%) metabolites and all 

observations showing at least one missing value. The majority (301) of these 416 metabolites had 

fewer than 10% missing values (Figure 2A). For only 9.9% (51) of the metabolites, more than 70% of 

the measurements were missing. The amount of missing values per observation ranged from 11.4% 

to 32.2%, with an average of 19.6% (Figure 2B).  

LOD-based missing values 

For metabolomics data, a common assumption is that missing values occur because of low 

concentrations that are below the limit of detection. To explore this assumption, we analyzed missing 

values of a metabolite using a second, strongly correlated metabolite, which we term the auxiliary 

metabolite. The auxiliary metabolite is defined as the metabolite with the highest correlation (𝑟) to 

the given metabolite. Due to its strong correlation, we assume that insights into the pattern of 

missing values of a metabolite can be gained from the corresponding non-missing observations of its 

auxiliary metabolite. For example, assuming that metabolite A has missing values in certain 

observations for which its auxiliary metabolite B has measurements. If these measurements in B are 

low then a missing value in A most likely occurred because the actual concentrations were below the 

LOD. We required a minimum correlation of 𝑟 =  0.3 for auxiliary metabolites, but other values gave 

qualitatively similar results (File S1). 
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 Overall, an auxiliary metabolite was available for 56.6% of the metabolites. Of those, 62.0% 

showed a clear tendency for missing values to below the LOD (see Methods and File S1). An example 

for a clear LOD-tendency is shown for 7-methylxanthine in Figure 2C. This compound is a metabolite 

of caffeine metabolism that is correlated with 3-methylxanthine. The majority of observations with 

missing data in 7-methylxanthine showed low values for 3-methylxanthine, indicating that the 7-

methylxanthine values were most probably below the LOD. An example for a metabolite pair that 

does not show an LOD-based missingness pattern is provided in Figure 2D for 1-

arachidonoylglycerophosphocholine (1-AGPC) and its auxiliary metabolite 1-

docosahexaenoylglycerophosphocholine (1-DGPC). Unlike the previous example, observations with 

missing data for 1-AGPC showed values varying over the whole range of 1-DGPC. Consequently, this 

suggests that LOD does not adequately explain the pattern of missing values for 1-AGPC. Scatterplots 

of investigated metabolites and their corresponding auxiliary metabolites, as well as boxplots of 

concentrations in the auxiliary metabolites for missing and non-missing observations in the 

investigated metabolites can be found in File S1. 

Although the LOD-tendency was observed for many metabolites, there was no clear LOD threshold 

separating missing and observed measurements across all metabolites (Figure 2C), which would have 

been the case if LOD was the only underlying mechanism for missing data. Instead, the values of the 

auxiliary metabolites with missing values in the investigated metabolites were spread broadly over a 

range of lower values, indicating a blurred rather than a single fixed LOD for all metabolites.  

Run day-dependent missing values 

Batch (run day) effects also can drive systematic patterns of missing data due to daily variation in 

instrument sensitivity. To examine whether missing data depended on overall run day quality, we 

examined the amount of missing values per run day for each platform (LC/MS+, LC/MS–, or GC/MS). 

Subsequently, we investigated whether metabolites were affected differently by runday quality. 
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 The KORA F4 samples were measured on 53 run days with 34 samples on average per day. If 

missing values were dependent on run day quality due to variation in instrument performance (e.g., 

caused by LC or GC column decline), we would expect there to be some days for which samples 

overall contained more (“bad” run day) or fewer (“good” run day) missing values compared with the 

average. Indeed, we observed such “bad” and “good” run days for all three platforms (Figure 3A). 

While the run day-specific amount of missing values tended to be correlated between LC/MS− and 

LC/MS+ (correlation of the run day-specific median of missing values between the two platforms was 

𝑟 = 0.36), there was no correlation between LC/MS+/− and GC/MS. This suggests that changes in 

instrument performance, rather than global effects (such as those that could originate from sample 

preparation) were responsible for differences in run day quality. 

 Although there was an overall effect of run day quality on the pattern of missing values, we 

observed considerable differences in the standard deviations (SD) of run day-specific missing values 

for metabolites with the same amount of missing data (Figure 3B). This suggests that metabolites 

were affected differently by run day quality. For example, the bile acid ursodeoxycholate (46% total 

missing data) showed relatively low variation in run day missing data (SD = 0.12) (Figure 3Figure 3C). 

However, for gamma-glutamylisoleucine (Figure 3D), a metabolite with a similar total amount of 

missing values (42%), the observed variation in missing data across run days was substantially larger 

(SD = 0.22). 

Run day-dependent LOD mechanism 

The observed run day-dependent pattern of missing data, together with the blurred LOD-based 

pattern, suggests that different run days may exhibit different LODs, which contributed to the blurred 

global LOD effect. To verify this, we calculated the correlation between run day mean and run day 

missingness for all metabolites. A histogram of the correlation coefficients is shown in Figure 4A. The 

majority of metabolites displayed a strong tendency for negative correlations. An example for run 

day-specific LODs is shown in Figure 4B–C: for 7-methylxanthine, the correlation of run day mean and 
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the run day-specific amount of missing values is 𝑟 = −0.68 (Figure 4B). Run days with low means 

tended to have a higher amount of missing values (Figure 4C). Density plots for all metabolites before 

and after run day normalization can be found in File S2. 

 

Taken together, we observed that batch (run day) effects on the limit of detection can result in a 

blurred LOD-effect after run day normalization, which can explain patterns of missing values in most, 

but not all, metabolites. 

 

Evaluation of imputation approaches in a simulation framework 

As shown in the previous analyses, not all of the missing data in MS-based metabolomics studies can 

be attributed to run day-dependent LOD-based missing data. Thus, the optimal imputation approach 

should perform well across all possible patterns. We conducted a simulation study to compare 

statistical estimates between imputed and complete data. We simulated incomplete data according 

to the patterns of missing values observed in the real metabolomics data and imputed these data 

using various imputation approaches. We then evaluated these approaches for recovering correct 

statistical estimates after conducting correlation and regression analyses. 

Simulation setup and evaluation criteria 

We simulated six mechanisms for missing data derived from observations in the real data (see 

Methods, File S3, and Figure 5A–E): (i) Fixed LOD, as an extreme form of systematic missing values 

below a global LOD; (ii) Probabilistic LOD, where the probability of a missing value increases at lower 

values, which should resemble the blurred LOD-based patterns observed in the real data; (iii) Run 

day-specific fixed LOD, where LOD is assumed to vary across run days; (iv) Run day-specific 

probabilistic LOD, where a probabilistic form of LOD is assumed to occur across run days; (v) 

Unsystematic (random) missingness, for missing data with an unknown reason; and (vi) Mixtures of 

LOD-based and unsystematic missingness. Based on these 6 mechanisms, we created various 
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parameter scenarios resembling realistic conditions. For each scenario, we conducted 250 

simulations to assess whether the imputation methods could reconstruct statistical estimates of 

Pearson correlation, partial correlation, linear regression (results shown in File S3), and logistic 

regression. To this end, we calculated type 1 error as the proportion of simulations in which a 

significant estimate was obtained when the true correlation was equal to zero. In addition, we 

calculated power as the proportion of significant estimates when the true correlation was unequal to 

zero. We also estimated bias, which is shown in File S3. A detailed description of the simulation and 

evaluation framework is also provided in File S3. 

Missing data handling strategies 

We applied 31 imputation approaches (see Figure 5F; detailed descriptions in Methods and File S4) 

on the simulated data. Some were adapted to account for run day-specific missing values. The 

imputation approaches followed different concepts, which could have one of the following four 

properties or combinations thereof: (i) approaches that explicitly assume LOD-based missing values, 

(ii) approaches that consider run day-specific missing values, (iii) multivariate procedures using 

correlations among variables, and (iv) multiple imputation (MI) strategies. The MI approaches usually 

comprise imputation, analysis, and pooling steps. In the first step, the incomplete data are imputed 

m times to produce m complete datasets. Subsequently, statistical analysis is performed on each of 

the m complete datasets and then the m analyses are combined to one final result.  

Simulation results  

In the following, we evaluate the performance of the four imputation properties (i)–(iv) introduced 

above. Simulation results from other data scenarios, all variations of the imputation approaches 

used, and the combination of parameter settings are available in File S5. 

 Property (i): Methods that explicitly assume LOD-based missing values and perform 

imputation globally without taking run day information into account (min, Richardson & Ciampi (RC), 

imputation by truncated sampling (ITS)), showed inflated type 1 error rates and low power for both 
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correlation and regression analysis. This was expected for three reasons. First, for a data scenario 

with run day-dependent probabilistic LOD-based missing values, these methods underestimate the 

LOD for most of the rundays and replace missing entries by too low values (Figure 6A). Second, for a 

data scenario with random missing values, they expectedly fail since the underlying assumption of an 

LOD is not met (Figure 6B). Finally, min and RC impute a metabolite by replacing all of its missing 

entries by a constant value, which substantially distorts the metabolite distribution (see File S5). 

Property (ii): The LOD-based methods that take run days into account (RC-R, ITS-R) were 

expected to perform well in a simulated data scenario with run day effects (Figure 6A). Unexpectedly, 

we observed an inflated type 1 error rate and decreased power for all three statistical analyses 

(Pearson correlation, partial correlation, and logistic regression). RC-R and ITS-R assume that the 

observed values of a metabolite follow a truncated normal distribution, which is parametrized by 

maximum likelihood estimation (MLE), in order to replace missing values with randomly drawn values 

from the truncated part. The instability of MLE due to small sample sizes available within run days 

could explain the poor performance of these approaches. The same poor performance was observed 

for scenarios with a mixture of run day-dependent LOD-based and random missing values (Figure 6C). 

For the dataset with only random missing values, LOD- or run day-based approaches showed the 

expected strong reduction in power since here the underlying assumption of a truncated normal 

distribution is false (Figure 6B). 

 Property (iii): Multivariate approaches (imputation based on chained equations (ICE) and 

KNN-based imputation) take into consideration the correlation between variables or observations. 

ICE approaches had high power, but an increased type 1 error rate when missing value proportions 

increased (Figure 6). KNN-based imputation on observations with variable pre-selection and K = 10 

(KNN-obs-sel(10)) was one of the best performing methods with high power and an overall marginal 

type 1 error rate, even for a high amount of missing values. The power for KNN-obs was also high, 

but it showed high type 1 error rate and therefore a poor ability to correctly identify truly absent 
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associations. In contrast, KNN-vars had a low type 1 error rate, but decreased power, which became 

more pronounced at higher amounts of missing values. 

 Property (iv): Single imputation procedures often underestimate the variability of statistical 

estimates, resulting in inflated type 1 error rates. This should be avoided by approaches performing 

multiple imputations (MI). MI versions based on LOD- (MITS) and run day-effects (MITS-R) indeed had 

decreased type 1 error rates, although power was low (Figure 6). MICE with Bayesian linear 

regression (MICE-norm) or predictive mean matching (MICE-pmm) as imputation model showed 

negligible type 1 error rates and high power for all scenarios with up to 50% missing values. At higher 

amounts of missing data, the power decreased considerably, but the type 1 error remained marginal 

(File S5). A slight modification of the MICE algorithm applied widely in the metabolomics field (here 

termed MICE-avg) was performed on each imputed data, and comprised the pooling of the imputed 

data with subsequent statistical analyses rather than pooling the statistical estimates after analysis. 

This approach showed high power, but increased type 1 error rates, in particular for >30% missing 

values. 

 Taken together, when considering all patterns of missing data and all evaluation criteria, 

KNN-obs-sel(10) and MICE-norm were the most robust approaches. For higher amounts of missing 

data (≥50%), MICE showed a strong decrease in power with marginal type 1 error, whereas KNN-obs-

sel(10) had only slightly increased type 1 error rates with high power. 

 

Evaluation of imputation approaches on real MS-based metabolomics data 

We conducted a biological evaluation of all approaches using the metabolomics data from the KORA 

F4 population study. An objective criterion for evaluation is challenging to construct, since the true 

values underlying the missing ones are unknown. We devised two indirect tests that assessed 

imputed values for biological validity. First, we assessed the ability of imputation methods to 

statistically reconstruct biochemical pathways in metabolomics data. Second, we evaluated the gain 
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in statistical power while preserving the true effect size of genetic variants (SNPs) on metabolite 

levels. 

Evaluation based on pathway modularity 

GGMs are based on partial correlations and reflect conditional dependencies in multivariate Gaussian 

distributions (5,22). When applied to metabolomics data, they reconstruct a precise picture of the 

metabolic network, showing a modular topology with respect to known pathways. In other words, 

metabolites will tend to be correlated with other metabolites from the same biochemical pathway 

(5,22,23). We used this pathway-based modularity in a metabolic network as a quality criterion to 

indicate whether the imputation methods generally were capable of maintaining biochemically valid 

edges.  

 Each imputation strategy was applied to the KORA F4 metabolomics data, and a GGM was 

estimated for each obtained dataset. Subsequently, we used a priori pathway annotations from 

Metabolon Inc., where each metabolite was assigned to one pathway (e.g., branched-chain amino 

acids, lysolipids, xanthines) to calculate pathway-based modularity (𝑄), according to (22,24). This 

measure reflects the ratio of metabolite correlations within versus across pathways. A high Q value 

indicates a dense within-pathway correlation compared with cross-pathways. Variability was 

estimated by bootstrap resampling (see Methods).  

 Across all datasets, we obtained modularity values ranging from 0.384 to 0.434 (Figure 7A). 

Imputation methods that explicitly considered the LOD-based mechanism and their run day-specific 

versions (Figure 5, property (ii)) did not outperform alternative approaches. Multivariate, single 

imputation methods (property (iii)) yielded low 𝑄 values, except for KNN-obs-sel, which achieved the 

overall third best result (𝑄 = 0.422 for K = 10) (Figure 5). The performance of KNN-based imputation 

methods strongly depended on the definition of neighbors (variables or observations) and on the 

number of these neighbors (K). The MI procedures (property (iv)) MITS, MITS-R, and MICE-avg 

performed poorly, whereas the networks generated on MICE imputed data showed the overall 
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highest modularity (𝑄 = 0.434 and 𝑄 = 0.424 for MICE-norm and MICE-pmm, respectively) (Figure 5). 

Overall, the three best performing approaches were MICE-norm, MICE-pmm, and KNN-obs-sel(10). 

Evaluation based on metabolite-SNP associations 

Using KORA F4 data (n = 1750), we determined the ability of imputation methods to gain statistical 

power compared with complete case analysis (CCA, deleting samples with any missing values) while 

preserving the effect of genetic variants on metabolite levels in human blood. For the evaluation, we 

selected a set of metabolite-SNP associations from a previous genome wide association study 

(GWAS) in the KORA F4 and TwinsUK cohorts, for which a functional connection between the gene 

and the metabolite was biologically evident (Table S8) (25). For example, GOT2 (rs4784054), which 

was associated with concentrations of phenyllactate, encoded an enzyme that catalyzes the 

conversion of phenylalanine to phenylpyruvate, which is then converted to phenyllactate (25,26).  

 We investigated the gain in statistical power when using imputed datasets compared with 

the power obtained with CCA for 18 of such metabolite-SNP pairs, where the metabolite had 

between 10% and 70% missing values. Statistical power gain was calculated as the negative log10 of 

the ratio of the p-values estimated for the imputed data to the p-values estimated for CCA in 

corresponding linear regression models (detailed results in File S8 and Table S8). A high ratio 

indicates greater power for imputed data. As a second evaluation criterion, we calculated the log2 

absolute ratio of the effect sizes obtained from the regression models for imputed data and those 

derived from CCA in KORA F4 (see Methods). A log2 ratio close to zero indicates that the imputation 

method was able to preserve effect sizes, whereas imputations yielding a highly negative or positive 

log2 ratios indicate underestimation or overestimation of the effect sizes, respectively. 

 Imputation with LOD-based methods (property (i)) yielded a gain in power for up to seven 

genetic associations of the 14 metabolites (Figure 7Figure 7). For two of these associations 

(tetradecanedioate and SLCO1B1; and hexadecanedioate and SLCO1B1), effect sizes were 

underestimated, and for the association between 1-methylurate and NAT2, the effect size was 
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overestimated across all methods, except for MITS-R. Run day-specific imputation methods (property 

(ii)) performed well, with ITS-R yielding the highest number of associations (12) with greater 

statistical power, of which seven showed effect sizes similar to effect sizes derived from CCA. The 

best methods among multivariate approaches (property (iii) and (iv)) were MICE-avg-norm, KNN-obs-

sel(10), and KNN-obs-sel(20), all three of which generated a gain in statistical power for 12 

associations. These methods also showed good performance in preserving genetic effects and did not 

show severe overestimation or underestimation of effect sizes. MICE-norm/-pmm/-adjR showed only 

moderate performance with a power gain for seven associations.  

 In an additional analysis, we used results from the EPIC-Norfolk cohort with n = 10 634 

subjects (27), to assess the ability of imputation methods to preserve effects of genetic variants on 

metabolites. We hypothesized that the effect sizes would be estimated more accurately in this much 

larger dataset, and effect sizes obtained with KORA F4 imputed data should approximate effect sizes 

derived from EPIC-Norfolk. Overall, we observed that the majority of SNP-metabolite pairs showed 

either an overestimation or an underestimation of effect sizes across all imputation methods. This 

tendency might reflect differences between the cohorts KORA F4 and EPIC-Norfolk rather than 

differences between imputation strategies (see detailed results in File S7 and Table S8). 

 Overall, for nearly all metabolite-SNP pairs, this analysis showed that statistical power was 

increased by imputing missing values and the effect sizes could be preserved. ITS-R, MICE-avg-pmm, 

KNN-obs-sel with K = 10 and K = 20 were the imputation methods that generated the highest number 

of associations (12) and resulted in a gain in statistical power compared with CCA. 
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Discussion 

In this study, we investigated patterns of missing data in a typical example of untargeted MS-based 

metabolomics data and their possible underlying mechanisms. Insights gained from these analyses 

were used to generate simulated data that reflected the real data situation for a comprehensive 

evaluation of 31 imputation methods. Finally, we applied the imputation strategies to real MS-based 

metabolomics data from the German KORA F4 study and evaluated them using biological validity 

measures. 

 For metabolomics data, an intuitive assumption is that missing data occur when metabolite 

concentrations fall below the machine’s LOD. Indeed, we found evidence for systematic patterns of 

missing data due to LOD- and batch-effects for a large proportion of the analyzed metabolites. 

Missing data were found to be influenced by run day quality, although metabolites varied in their 

susceptibility to this effect. Finally, we found a negative correlation between run day mean and 

missing data per run day, further confirming LOD-based mechanism within run days. The existence of 

multiple run day-dependent LODs possibly accounted for the blurred rather than fixed global LOD 

observed in the data. It has been suspected that multiple detection limits arise from factors such as 

batch (run day) effects (27). However, to the best of our knowledge, this is the first time that these 

effects have been systematically explored so far. 

 We evaluated 31 imputation methods in an evaluation framework consisting of three 

schemes: (i) unbiased estimation of statistical estimates and hypothesis test results based on 

simulated data, (ii) statistical reconstruction of biochemical pathways in metabolic networks, and (iii) 

the ability to preserve effects of genetic variants on metabolite levels while allowing for a gain in 

statistical power.  

MICE-norm was the best performing imputation method for evaluation scheme (i) and (ii), but it 

showed only moderate performances in the metabolite-SNP analysis. One major drawback of this 

method is that multiple imputations have to be performed, making these approaches statistically and 
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computationally challenging. For m imputations, the desired statistical analyses must be performed 

on each of the m imputed datasets, and then the resulting m estimates must be combined to one 

statistical result. A widely applied alternative is to perform m multiple imputations and then combine 

the m complete datasets to one final dataset containing the average of the imputed values (MICE-

avg). That is, MICE-avg does not require statistical estimates to be pooled, and therefore, it is much 

easier to apply. However, this simplicity is accompanied by an underestimation of metabolites' 

variances, resulting in poorer performance of statistical estimation (correlation and regression 

coefficients) and reconstruction of biochemical pathways. 

 A feasible, but better performing method was KNN-obs-sel(10), which uses KNN-based 

imputation on observations with variable pre-selection and K = 10. This method ranked highly in all 

evaluation schemes. Other KNN-based imputation schemes, including KNN-based imputation on 

variables (KNN-vars) and on observations without variable pre-selection (KNN-obs), consistently 

showed poor performance across all evaluation schemes. Our results are in line with observations 

from previous studies, where KNN-based imputation performed well (10,11,15,28). However, we also 

observed that variations of KNN imputation lead to substantially different results, as in previous 

studies (20,28).  

 Although we observed LOD- and run day-based effects in real metabolomics data, methods 

that explicitly consider this information did not outperform competing approaches in the first two 

evaluation schemes. This is likely due to the fact that they perform imputation in a univariate manner 

without taking the correlation between the variables into account. Moreover, all of these LOD-based 

methods include maximum likelihood estimation in their imputation process, which was found to 

perform well only for larger sample sizes in previous studies (27,29). In our study, the number of 

observations within run days is limited, resulting in considerable instability of the MLE. LOD-based 

run day-dependent methods performed well with respect to gain in statistical power in the analysis 

of metabolites–SNP associations.  
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 In summary, we have presented a detailed description of patterns of missing data in 

untargeted MS-based metabolomics data. In particular, we considered, for the first time, the effects 

of run days on systematic patterns of missing data. Our work showed that missing data occur in most 

cases due to LOD effects, which are moreover run day-dependent. Nevertheless, MICE and KNN-

based imputation, methods that do not explicitly consider LOD-based effects, performed best when 

tested in both statistical and biological evaluation schemes. This is most likely because these 

methods take into account multivariate dependencies within the data. For future studies, we 

recommend KNN-based imputation on observations with K = 10, since it consistently performed well 

across all data scenarios and all evaluation schemes, and is computationally non-demanding for daily 

data analysis.  
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Material and Methods 

Study cohort, metabolomics and genotype measurements 

Data from 1768 fasting serum samples of the German Cooperative Health Research in the Region of 

Augsburg (KORA F4) population cohort (30) was used, comprising 910 females and 858 males. Age 

distribution was 60.53 ± 8.79 years for females and 61.20 ± 8.78 years for males. Body mass index 

(BMI) distribution was 27.88 ± 5.24 kg/m² for females and 28.46 ± 4.29 kg/m² for males. 

 Serum metabolomics measurements were performed on three platforms, LC/MS− (negative 

mode), LC/MS+ (positive mode), and GC/MS by Metabolon, Inc. (Durham, NC, USA). The 1768 serum 

samples were measured on 53 different run days, with 34 samples on average per run day. A total of 

516 metabolites were quantified, of which 303 had an identified chemical structure. A more detailed 

description of sample acquisition, experimental procedures, and metabolite identification can be 

found in File S10.  

Each known metabolite was annotated with one of 68 pathways by Metabolon, Inc. A full list 

of all measured metabolites, including pathway annotations, can be found in Table S9. For correlation 

analysis, data were normalized for run day-effects by dividing each metabolite by run day median. 

Since metabolite measurements were assumed to follow a log-normal distribution, the data were 

log-transformed for all statistical analyses. The run day-corrected and log-transformed data were 

used to determine outlier samples. Eleven individuals with a Mahalanobis distance (calculated across 

the complete dataset) greater than four SD from the mean were considered outliers and excluded 

from the dataset. For the biological evaluation schemes, age, sex, and BMI were used as standard 

covariates. Seven samples were excluded due to incomplete information in these phenotypes, 

resulting in 1750 individuals in total.  
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 The KORA F4 cohort was genotyped using the Affymetrix Axiom platform. After quality 

control, genotype data (measured or imputed according to data from the 1000 genomes project, 

phase 1 version 3) were available for 1685 of the 1750 individuals.  

Missing data in KORA F4 

To explore the mechanism for the missing data of a given metabolite 𝑚, a second (auxiliary) 

metabolite 𝑚𝑎𝑢𝑥 was used. 𝑚𝑎𝑢𝑥 was defined as the metabolite with the strongest Pearson 

correlation to 𝑚 (at least 0.3). An LOD-tendency was assumed if the average value of 𝑚𝑎𝑢𝑥 in 

samples with missing values in 𝑚 was significantly lower than the average of 𝑚𝑎𝑢𝑥 in samples with 

measured values in 𝑚. Significance was assessed using Wilcoxon–Mann–Whitney tests with 𝛼 = 0.05 

after Bonferroni correction for multiple testing. 

 For all correlation analyses, only metabolites with more than 10% and less than 70% overall 

missing values were considered. 

 In order to explore whether missing values varied among run days, the normalized 

proportions of missing values among the 53 run days were compared within each platform. For a 

metabolite 𝑚 and a run day 𝑑, the normalized amount of run day-specific missing values was 

calculated as the number of missing values for 𝑚 in 𝑑 divided by the total number of samples 

measured in 𝑑, divided by the median value of missing data of 𝑚 over all run days. 

Simulation study 

Insights gained from the analyses of missing values in real MS-based metabolomics data were used to 

create artificial data that best mirror reflected patterns of missing data. A brief overview of the 

simulation framework is provided below, and a detailed description can be found in File S3. For each 

set of parameters corresponding to a certain data situation, 250 random datasets were generated. 

For each dataset, two variables were simulated by drawing from a multivariate normal distribution, 

with sample sizes ranging from 100 to 1000, and with means equal to zero and covariance chosen 

such that variances were equal to one (representing scaled variables). The Pearson correlation 
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between the two variables was ranged from 0 to 0.4. In addition, for the multivariate analyses and to 

evaluate imputation methods that apply to a multivariate strategy, auxiliary variables correlated with 

the two main variables were introduced. Their number and correlation strength were chosen to 

match the real data (for details, see File S3). 

 Simulated observations were randomly assigned to “run days” with the number of run days 

chosen such that each run day comprised 34 observations, according to the average number found 

for the real KORA F4 measurements. 

 A proportion of missing values (10%, 30%, 50%, and 70%) was introduced into the main 

variable pair according to different mechanisms derived from our observations in the KORA F4 

Metabolon data (Figure 5, File S3).  

We used the following parameter settings for the results in the main manuscript: moderate 

variability of missing data across run days (see File S3), uncorrelated run day-specific missing patterns 

of the metabolite pair, and varying association of the inverse relation between metabolite 

concentration and missing values, at 𝑛 = 250 and in the presence of informative auxiliary 

metabolites. For Pearson and partial correlation analysis, both main variables had the same degree of 

missing data. For logistic regression analysis, the predictor variable had a mixture of 50% run day-

dependent probabilistic LOD-based missing data and 50% non-systematic missing data. Results for 

more parameter settings can be found in File S5. 

Imputation approaches 

A variety of imputation methods (Figure 5Figure 5) were selected because they were reported in the 

context of metabolomics data or were developed and adopted to address characteristics in the 

current dataset.  

Mean imputation (mean): All missing values of each incomplete variable are replaced by the average 

of the observed values of that metabolite. Minimum imputation (min): All missing values of each 
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incomplete variable are replaced by the smallest observed value of that metabolite (5,13,16). 

Richardson & Ciampi (RC): Assuming that missing values occur due to LOD and the observed 

metabolite values follow a left-truncated normal distribution, maximum likelihood is used to 

estimate this distribution. A missing value 𝑥 is then replaced by the expected value of 𝑥 conditional 

on 𝑥 being below the LOD, 𝐸(𝑥|𝑥 ≤ 𝐿𝑂𝐷) (17). Imputation by truncated sampling (ITS): This is an 

extension of the RC method, where the missing values are replaced by randomly drawn values from 

the censored part of the estimated truncated normal distribution. Multiple imputation by truncated 

sampling (MITS): ITS is applied as described above, but multiple imputation is performed according 

to Rubin’s rules (31) using the R package mice, version 2.25. These rules include: (i) the datasets are 

imputed 𝑚 times, (ii) each of the 𝑚 completed datasets is analyzed separately, and (iii) the 𝑚 

resulting estimates are combined using established procedures (31–33). The number of imputations 

was set to 𝑚 = 20 for all methods. Runday-specific LOD-based methods (RC-R/ITS-R/MITS-R): The 

previously described methods RC, ITS, and MITS are applied within run days where at least 17 

observations are available. In RC-R, the remaining missing values are set to the mean of all available 

expected values. For ITS-R and MITS-R, the remaining missing values are replaced using ICE-norm (see 

below). Imputation by chained equations (ICE-norm/-pmm/-adjR) was performed using the R 

package mice, version 2.25. It uses a repeated chain of equations through the incomplete variables, 

where in each imputation model, the respective incomplete variable is modeled as a function of the 

remaining variables (34–36). In ICE-norm, a Bayesian linear regression is used as the imputation 

model, whereas in ICE-pmm (predictive mean matching as imputation model), missing values are 

replaced by a random draw of measured values from other observations with the closest predicted 

values. In ICE-adjR, a model is specified with random intercept per run day, which aims to better 

utilize run day information. This model assumes that variable values (i.e., metabolite concentrations) 

have a run day-specific component, which varies randomly following a normal distribution. Multiple 

imputation by chained equations (MICE-norm/-pmm/-adjR) was performed using the R package 

mice, version 2.25: MICE-norm, MICE-pmm, and MICE-adjR consisted of 𝑚 = 20 parallel imputation 
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runs of ICE-norm, ICE-pmm, and ICE-adjR, respectively. Subsequently, the estimates are combined 

using Rubin’s rules as described above for MITS. MICE average version (MICE-avg-norm/-pmm): ICE-

norm or ICE-pmm is applied multiple (𝑚 = 20) times in parallel, followed by combining the 𝑚 

imputed datasets to one final dataset as the average of the imputed values. K-nearest neighbor 

imputation (KNN-var(K)/KNN-obs(K)/KNN-obs-sel(K)): In KNN-var and KNN-obs, missing values of 

each variable are replaced by the weighted average of pre-specified K nearest variables and 

observations, respectively. Distances to neighbors were defined as Euclidean distance and weights 

were chosen as 𝑒−𝑑, where 𝑑 defines the distances between two variables or observations. In KNN-

obs-sel, KNN-obs is performed by selecting the strongest correlated variables with |𝜌|  ≥ 0.2, but it 

was constrained to a minimum of 5 and a maximum of 10 variables. The number of neighbors for K 

was set to 3, 5, 10, and 20. 

More detailed descriptions of RC, RC-R, ITS, MITS, ICE, and KNN-based methods can be found in File 

S4. 

Statistical evaluation of missing data handling strategies in the simulation study 

Pearson correlation, partial correlation, linear regression, and logistic regression analysis were 

performed, and the ability of imputation methods to reconstruct true associations and unbiased 

hypothesis test results was evaluated. For logistic regression, a dichotomized variable was simulated 

by discretizing one of the simulated continuous variables: all values above the median were set to 1 

and all values below the median were set to 0. This dichotomized variable was used as response and 

the remaining continuous variable as predictor. For MI strategies, the resulting (correlation or 

regression coefficient) estimates and their variances were combined using Rubin’s rules. The 

obtained point estimates were then compared with the true underlying values by assessing the 

validity of hypothesis tests. To this end, type 1 error was calculated as the proportion of significant 

estimates (at α= 0.05) after imputation when there was no true effect. Power was calculated as the 
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proportion of significant estimates (at α= 0.05) after imputation in the presence of a true effect. 

Detailed results can be found in File S5.  

Evaluation based on pathway modularity 

This analysis was based on pathway annotations from Metabolon Inc. (see Supporting Information 

S9). Each imputation strategy was applied to the KORA F4 metabolomics data, resulting in different 

imputed datasets. All unknown metabolites were excluded since these compounds were not assigned 

to a pathway. For each imputed dataset, a Gaussian graphical model (GGM) was estimated to infer a 

network using the R package GeneNet, version 1.2.12. In previous studies, we have demonstrated 

that these models correctly reconstruct biochemical pathways from the data (22,25,37). In the case 

of MIs, a GGM was estimated for each imputed dataset, followed by combining partial correlations 

using Rubin’s rules after a Fisher Z-transformation. The network was constructed using partial 

correlations that are significantly different from zero after Bonferroni correction for 𝑛 ∗ (𝑛 − 1)/2, 

where 𝑛 is the number of metabolites.  

The pathway-based network modularity measure 𝑄 (22,24) was calculated for each network as 

𝑄 =  ∑ [
𝐴(𝑉𝑖,𝑉𝑖)

𝐴(𝑉,𝑉)
− (

𝐴(𝑉𝑖,𝑉)

𝐴(𝑉,𝑉)
)

2

]
|𝑆|
𝑖=1 , 

where |𝑆| is the total number of pathways, 𝑉 is the set of all metabolites, and 𝑉𝑖 describes the subset 

of metabolites annotated with pathway 𝑖. 𝐴(𝑉𝑖, 𝑉𝑗) is the number of edges between any two node 

sets 𝑉𝑖 and 𝑉𝑗. The variance of 𝑄 was estimated non-parametrically using bootstrapping of the 

original dataset (R package boot, version 1.3-15) with 1000 runs. 

Evaluation based on metabolite-SNP associations 

Linear regression was performed using KORA F4 CCA and the results were compared with each other. 

For this analysis, we selected metabolite-SNP pairs for which (i) a genome-wide significant 

association could be identified in the meta-analysis of KORA F4 and TwinsUK cohorts in a previous 

GWAS (25) (summary statistics retrieved from http://www.gwas.eu); (ii) the proportion of each 
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metabolite’s missing values in KORA F4 was between 10% and 70%; (iii) the metabolite was 

measured in the EPIC-Norfolk cohort, which we used to further benchmark the preservation of effect 

sizes; and (iv) a functional connection between the genetic locus of the SNP and the metabolite (e.g., 

metabolite is a known substrate of the transporter) was evident according to manual curation of the 

GWAS results (Table S8). For each imputed dataset, 18 metabolite-SNP pairs were tested for genetic 

association using age- and sex-corrected linear regression models under the assumption of an 

additive genetic model (metabolite ~ 𝛽0 + 𝛽1 × SNP + 𝛽2 × age + 𝛽3 × sex). To avoid spurious 

associations, metabolic data points greater than four SDs from the mean were removed prior to 

computing linear models. For MI approaches, the regression coefficients were pooled using Rubin’s 

rules as provided by the R package mice, version 2.25. For each metabolite-SNP pair, the variance of 

the regression coefficients and p-values were estimated using bootstrapping.  

 To explore which imputation approaches increased statistical power, p-values obtained for 

the effect sizes based on imputed data were compared with p-values obtained from CCA by 

calculating their ratio as 𝑟𝑝 =  
− log10(

𝑝𝑖𝑚𝑝

𝑝𝐶𝐶𝐴
)

− log10(𝑝𝐶𝐶𝐴)
, where 𝑝𝑖𝑚𝑝 was the p-value obtained for imputed data 

and 𝑝𝐶𝐶𝐴 was the p-value derived from CCA. A ratio less than or equal to zero indicated either no 

power gain or a power loss, whereas a ratio greater than zero indicated a drop in p-value, which 

suggested that statistical power increased when imputation was performed.  

 In addition to statistical power gain, the imputation approaches should be able to preserve 

effect sizes compared to CCA. Standardized effect sizes obtained from the imputed data (𝛽𝑖𝑚𝑝) were 

compared with standardized effect sizes estimated for CCA (𝛽𝐶𝐶𝐴) based on the KORA F4 data (n = 

1750) and the EPIC-Norfolk data (n = 10 634), assuming estimates from the EPIC-Norfolk data to be 

close to true effects. We calculated the ratio 𝑟𝛽 = log2(|
𝛽𝑖𝑚𝑝

𝛽𝐶𝐶𝐴
|), with a low ratio indicating a similar 

effect size between the imputed data and CCA. A highly negative or positive 𝑟𝛽 indicates an 
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underestimation or overestimation of the effect sizes in imputed data, respectively. A well 

performing imputation method is assumed to obtain high 𝑟𝑝 and low absolute 𝑟𝛽. 
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Figures and Tables 
 

Figure 1. Flow chart of the study design. Pre-processed KORA F4 metabolomics data were 

used to analyze patterns of missing values in the dataset. Possible underlying mechanisms 

were inferred and implemented in a simulation framework to generate data resembling the 

observed patterns. Based on these simulated data, imputation methods with different 

characteristics were applied and evaluated. Finally, the same imputation approaches were 

evaluated using KORA F4 metabolomics and genomics data. 

Figure 2. Overall amounts of missing data and LOD effects. (A,B) The overall fraction of 

missing values across metabolites and observations, respectively. (C,D) Scatter plots and 

boxplots of selected metabolite pairs to illustrate missing data due to LOD and non-LOD 

effects, respectively. Blue - observed concentrations. Red - observed values of the auxiliary 

metabolite in observations with missing values of the investigated metabolite. Note that red 

data points are not part of the x-axis but were plotted in the same scatterplot for clarity. corr 

= correlation, p = p-value of correlation, 𝒑𝑾𝒔𝒕 = p-value of Wilcoxon–Mann–Whitney test. 

Figure 3. Run day-dependent effects on missing data. (A) Normalized amount of missing 

values per run day in each platform (LC/MS+, LC/MS−, GC/MS). For a given metabolite and 

run day, the normalized amount of missing data per run day was calculated as the number of 

missing values for the respective metabolite on the respective run day divided by the total 

number of observations for that run day, divided by the median amount of missing data of 

that metabolite over all run days. Thus, a normalized run day-missingness of 1 is the average 

run day-missingness for a given metabolite. Pearson correlation coefficients were calculated 

across all pairs of platforms. (B) Standard deviation of missing values across run days, 

depending on the total amount of missing data for each platform. Each dot in the plot shows 

the total proportion of missing values and the run day variation for one metabolite. (C)–(D) 

The distribution of the total amount of missing values is shown for a metabolite with 

moderate (ursodeoxycholate) and high (gamma-glutamylisoleucine) standard deviation. 

Figure 4. Run day-dependent LOD. (A) Histogram of Pearson correlation coefficients of the 

percent of missing values and run day means. (B) Scatterplot of run day mean versus percent 

missing values, with 7-methylxanthine as an example of a negative correlation. (C) Run day 

distributions of 7-methylxanthine before run day normalization. 

Figure 5. Mechanisms of missing data and imputation approaches used in the simulation 

study. (A)–(E) Mechanisms of missing values used in the simulation study, based on evidence 

from real metabolomics data. (F) Venn diagram of imputation methods showing different 

characteristics. Note that the figure contains complete case analysis (CCA), which is not an 

imputation method, and is noted in brackets. CCA and mean were placed outside the Venn 

diagram, as they do not comprise any of the four characteristics. LOD: limit of detection. 
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Figure 6. Simulation results for Pearson, partial correlation, and logistic regression analysis. 

Performance of imputation approaches in data scenarios where (A) both variables followed a 

run day-specific probabilistic LOD mechanism, (B) both variables showed non-systematic 

patterns of missing data, and (C) one variable with run day-specific probabilistic LOD-based 

missing data and the other variable showed non-systematic patterns of missing data. Type 1 

error and power reflect the false positive and true positive rate of hypothesis testing, 

respectively. Note that power = 1 - type 2 error rate. Note further that due to readability 

issues, only KNN-based imputation methods with K = 3, 10, and 20 were included, whereas 

KNN imputation with K = 1 and 5 can be found in File S5. 

Figure 7. Evaluation of imputation approaches on real data. (A) Pathway-based modularity 

for each imputation strategy. Modularity 𝑄 was calculated based on pathways. Vertical lines 

represent bootstrap-based confidence intervals (1000 times resampling). (B) The ability to 

gain statistical power and to preserve real metabolite-SNP associations after imputation. 

Circle color represents the ability of imputation methods to preserve effect sizes, with red 

and blue indicating possible overestimation and underestimation, respectively, and yellow 

corresponding to cases with good preservation of the association. Circle size depicts the gain 

in statistical power after imputation. The bigger the circle the higher the statistical power 

gain after imputation compared to CCA. Squares correspond to cases where no statistical 

power was gained. Note that due to readability issues, only KNN-based imputation methods 

with K = 3, 10, and 20 were included, whereas KNN imputation with K = 1 and 5 can be found 

in File S6 and Table S8. 
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