Vasohibin1, a new IRES trans-acting factor for induction of (lymph)angiogenic factors in early hypoxia

Fransky Hantelys ${ }^{1{ }^{1 *}}$, Anne-Claire Godet ${ }^{1{ }^{*}}$, Florian David ${ }^{1 *}$, Florence Tatin ${ }^{1}$, Edith RenaudGabardos ${ }^{1}$, Françoise Pujol ${ }^{1}$, Leila Diallo ${ }^{1}$, Isabelle Ader ${ }^{2}$, Laetitia Ligat ${ }^{3}$, Anthony K. Henras ${ }^{4}$, Yasufumi Sato ${ }^{5}$, Angelo Parini ${ }^{1}$, Eric Lacazette ${ }^{1}$, Barbara Garmy-Susini ${ }^{1}$, and AnneCatherine Prats ${ }^{1 \S}$
${ }^{1}$ UMR 1048-I2MC, Inserm, Université de Toulouse, UPS, Toulouse, France.
${ }^{2}$ UMR 1031-STROMALAB, Inserm, CNRS ERL5311, Etablissement Français du SangOccitanie (EFS), National Veterinary School of Toulouse (ENVT), Université de Toulouse, UPS, Toulouse, France.
${ }^{3}$ UMR 1037-CRCT, Inserm, CNRS, Université de Toulouse, UPS, Pôle TechnologiquePlateau Protéomique, Toulouse, France.
${ }^{4}$ UMR 5099-LBME, CBI, CNRS, Université de Toulouse, UPS, Toulouse, France.
${ }^{5}$ Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan

* Equal contribution
${ }^{\text {§ }}$ Corresponding author.
Contact information: Anne-Catherine Prats, Institut des Maladies Métaboliques et Cardiovasculaires, 1, Avenue Jean Poulhes, BP 84225, 31432 Toulouse cedex 4, France (email: Anne-Catherine.Prats@inserm.fr)

Running title: IRES regulation during hypoxia

Hantelys, Godet, David et al, July 2019

Abstract

Hypoxia, a major inducer of angiogenesis, is known to trigger major changes of gene expression at the transcriptional level. Furthermore, global protein synthesis is blocked while internal ribosome entry sites (IRES) allow specific mRNAs to be translated. Here we report the transcriptome and translatome signatures of (lymph)angiogenic genes in hypoxic HL-1 cardiomyocytes: most genes are not induced at the transcriptome-, but at the translatome level, including all IRES-containing mRNAs. Our data reveal activation of (lymph)angiogenic mRNA IRESs in early hypoxia. We identify vasohibin1 (VASH1) as an IRES trans-acting factor (ITAF) able to activate FGF1 and VEGFD IRESs in hypoxia while it inhibits several IRESs in normoxia. Thus this new ITAF may have opposite effects on IRES activities. These data suggest a generalized process of IRES-dependent translational induction of (lymph)angiogenic growth factors expression in early hypoxia, whose pathophysiological relevance is to trigger formation of new functional vessels in ischemic heart. VASH1 is not always required, indicating that the IRESome composition is variable, thus allowing subgroups of IRESs to be activated under the control of different ITAFs.

Key words: cardiomyocyte/ hypoxia / IRES/ translational control/ vasohibin

INTRODUCTION

Hypoxia constitutes a major stress in different pathologies including cancer, as well as ischemic pathologies where artery occlusion leads to hypoxic conditions. In all these pathologies, hypoxia induces a cell response that stimulates angiogenesis to re-feed starved cells with oxygen and nutrients (1). Recently it has been shown that lymphangiogenesis is also induced by hypoxia (2). Hypoxia-induced (lymph)angiogenesis is mediated by strong modification of gene expression at both transcriptional and post-transcriptional levels (1,3). A major way of gene expression regulation is mediated at the transcriptional level by the hypoxia inducible factor 1 (HIF1), a transcription factor stabilized by oxygen deprivation, that activates transcription from promoters containing hypoxia responsive elements (HRE). One of the well-described HIF1 targets is vascular endothelial growth factor A (VEGFA), a major angiogenic factor (4, 5). However, two other major angiogenic or lymphangiogenic growth factors, fibroblast growth factor 2 (FGF2) and VEGFC, respectively, are induced by hypoxia in a HIF-independent manner by a translational mechanism, indicating the importance of the post-transcriptional regulation of gene expression in this process $(2,6)$.
Translational control of gene expression plays a crucial role in the stress response. In particular, translation of most mRNAs, occurring by the classical cap-dependent mechanism, is silenced whereas alternative translation mechanisms allow enhanced expression of a small group of messengers involved in the control of cell survival $(3,7,8)$. One of the major alternative mechanisms able to overcome this global inhibition of translation by stress depends on internal ribosome entry sites (IRESs) that correspond to RNA structural elements allowing the direct recruitment of the ribosome on mRNA. As regards the molecular mechanisms of IRES activation by stress, several studies have reported the involvement of RNA binding proteins, called IRES trans-acting factors (ITAFs), able to stabilize the adequate RNA conformation allowing ribosome recruitment (9-13). Interestingly, subcellular relocalization of ITAFs plays a critical role in IRES-dependent translation (14). Indeed, many RNA-binding proteins are known to shuttle between nucleus and cytoplasm, and it has been reported that cytoplasmic relocalization of ITAFs such as PTB, PCBP1, RBM4 or nucleolin is critical to activate IRESdependent translation ($10,13,14$). In contrast, other ITAFs such as hnRNPA1, may have a

Hantelys, Godet, David et al, July 2019

negative impact on IRES activity when accumulating in the cytoplasm (15). However, how ITAFs participate in the regulation of the hypoxic response remains a challenging question to address.
IRESs are present in the mRNAs of several (lymph)angiogenic growth factors in the FGF and VEGF families, suggesting that the IRES-dependent mechanism might be a major way to activate angiogenesis and lymphangiogenesis during stress ($2,10,13,16-19$). However, most studies of the role of hypoxia in gene expression regulation have been performed in tumoral hypoxia, while it has been reported that tumoral angiogenesis leads to formation of abnormal vessels that are non functional, which strongly differs from non tumoral angiogenesis that induces formation of functional vessels (20). This suggests that gene expression regulation in response to hypoxia may be different in cancer versus ischemic pathologies. In particular, the role of IRESs in the control of gene expression in ischemic heart, the most frequent ischemic pathology, remains to be elucidated.
Here we analyzed the transcriptome and the translatome of (lymph)angiogenic growth factors in hypoxic cardiomyocytes, and studied regulation of IRES activities in early and late hypoxia. Data show that in cardiomyocyte, (lymph)angiogenic growth factors are mostly regulated at the translational level. Interestingly, FGF and VEGF mRNA IRESs are sequentially activated at different times of early hypoxia in contrast to IRESs of non angiogenic messengers. We also looked for ITAFs governing IRES activation in hypoxia and identified vasohibin1 (VASH1) as a new ITAF specific of the earliest activated FGF1 IRES in cardiomyocytes. VASH1 knockdown strongly down-regulates the earliest-induced FGF1 IRES but not the other IRESs, revealing that this protein is a new IRES trans-acting factor (ITAF) in cardiomyocytes, specific of early hypoxia.

RESULTS

Most (lymph)angiogenic genes are not induced at the transcriptome level of hypoxic cardiomyocytes.
In order to analyze expression of angiogenic and lymphangiogenic growth factors in hypoxic cardiomyocytes, the HL-1 cell line was chosen: although immortalized, it keeps the beating phenotype specific to cardiomyocyte (21). HL-1 cells were submitted to increasing times of hypoxia, from 5 minutes to 24 hours and their trancriptome was analyzed on a Fluidigm Deltagene PCR array targeting 96 genes of angiogenesis, lymphangiogenesis and/or stress (Fig. 1, EV Fig. 1, EV Table 1). Data showed a significant increase of Vegfa, PAI-1 and apelin (Apln) mRNA levels, with a peak at 8 h of hypoxia for Vegfa and PAIl and 24 h for Apln. These three genes are well described HIF1 targets (4, 22, 23). However, only $5-8 \%$ of the genes were induced, while the mRNA levels of several major angio- or lymphangiogenic factors, such as FGF2 and VEGFC, were strongly decreased after 4 h or 8 h of hypoxia. These data indicate that the transcriptional response to hypoxia in cardiomyocytes is not the major mechanism controlling expression of (lymph)angiogenic factors, suggesting that post-transcriptional mechanisms are involved.

Transcriptome regulation in hypoxic cardiomyocytes

Figure 1. Most (lymph)angiogenic genes are not induced at the transcriptome level in hypoxic cardiomyocytes.
Total RNA was purified from HL-1 cardiomyocytes submitted to increasing times from 5 min to 24 h of hypoxia at $1 \% \mathrm{O}_{2}$, as well as from normoxic cardiomyocytes as a control. cDNAs were synthesized and used for a Fluidigm deltagene PCR array dedicated to genes related to (lymph)angiogenesis or stress (EV Table 6). Relative quantification (RQ) of gene expression during hypoxia was calculated using the $2^{-\Delta \Delta C T}$ method with normalization to 18 S and to normoxia. mRNA levels are presented by histograms for the times of $4 \mathrm{~h}, 8 \mathrm{~h}$ and 24 h , as the fold change of repression (red) or induction (green) normalized to normoxia. Non-regulated mRNAs are represented in blue. When the RQ value is inferior to 1 , the fold change is expressed as $-1 / R Q$. The percentage of repressed, induced, and non-regulated mRNAs is indicated for each time. For earlier times of 5 min to 2 hr , the percentages are shown in EV Fig. 1. The detailed values for all the times of the kinetics are presented in EV Table 1.

Hantelys, Godet, David et al, July 2019

mRNAs of most (lymph)angiogenic genes are recruited into polysomes in hypoxic cardiomyocytes.

Based on the fact that mRNA present in polysomes are actively translated, we tested the hypothesis of translational induction by analysing the recruitment of mRNAs into polysomes. This experiment was performed in early and late hypoxia. The polysome profile showed that translational activity in normoxic $\mathrm{HL}-1$ cells was low but decreased after 4 h of hypoxia, with a shift of the polysome to monosome ratio from 1,55 to 1,40 (Fig. 2A). 4E-BP1 appeared as a single band and its phosphorylation profile did not change upon hypoxia, suggesting that it is already hypophosphorylated in normoxia in these cells (EV Fig. 2A and 2B). In contrast, translation blockade was confirmed by the strong phosphorylation of eIF2 α (Fig. 2B, EV Fig.2C). 94% of the genes of the (lymph)angiogenic array showed a more sustained recruitment into polysomes under hypoxic conditions (Fig. 2C, EV Table 2). This translational induction not only targets major angiogenic factors and their receptors (Vegfa, Fgfl, Pdgfa, Fgfr3, Vegfr2...), but also genes involved in cardiomyocyte survival in ischemic heart (Igf1, IgflR) or in inflammation (BAI1, Tgfb). These data suggest that in cardiomyocytes, the main response to early hypoxia of (lymph)angiogenic genes is not transcriptional, but translational.

Peak	P/M	80 S $($ AUC $)$	1rst (AUC)	$2^{\text {nd }}$ (AUC)	$3^{\text {rdd }}$ $($ AUC $)$	$4^{\text {rth }}$ (AUC) $)$
Normoxia	1,55	63,42	36,68	23,18	22,36	15,90
Hypoxia	1,40	54,45	29,90	16,73	16,40	13,25

B

C
 Translatome regulation in hypoxic cardiomyocytes

Fold change of polysomal mRNA (hypoxia/normoxia)

Hantelys, Godet, David et al, July 2019

Figure 2. mRNAs of most (lymph)angiogenic genes are mobilized into polysomes in hypoxic cardiomyocytes.
A-C In order to isolate translated mRNAs, polysomes were purified on sucrose gradient from HL-1 cardiomyocytes in normoxia or after 4 hr of hypoxia at $1 \% \mathrm{O}_{2}$, as described in Materials and Methods. P/M ratio (polysome/monosome) was determined by delimiting the 80s and polysome peaks by taking the lowest plateau values between each peak and by calculating the area under the curve (AUC). Then the sum of area values of the four polysome peaks was divided by the area of the 80s peak (A). Translation blockade was measured by eIF2 α phosphorylation quantification by capillary Simple Western using normalization against total protein as described in Mat. \& Meth. (B).
RNA was purified from polysome fractions and from cell lysate before loading. cDNA and PCR array were performed as in Figure 1. Polysomes profiles are presented for normoxic and hypoxic cardiomyocytes. Relative quantification (RQ) of gene expression during hypoxia was calculated using the $2^{-\Delta \Delta C T}$ method with normalization to 18 S and to normoxia. mRNA levels (polysomal RNA/total RNA) are shown as fold change of repression (red) or induction (green) in hypoxia normalized to normoxia as in Figure 1 (C). When the RQ value is inferior to 1, the fold change is expressed as $-1 / \mathrm{RQ}$. The detailed values are available in EV Table 2.

IRES-containing mRNAs are more efficiently mobilized into polysomes under hypoxic conditions.

IRES-dependent translation has been reported to drive translation of several mRNAs in stress conditions ($2,3,6,24$). Thus we focused onto the regulation of the different IRES-containing mRNAs present in the Fluidigm array (Fig. 3). Interestingly, the only IRES-containing mRNA to be significantly induced at the transcriptome level by hypoxia was Vegfa (Fig. 3A and EV Fig. 3). Expression of the apelin receptor (Aplnr), presumably devoid of IRES but transcriptionally induced during hypoxia, is also shown for comparison.
Polysome recruitment of these IRES-containing mRNAs is shown in figure 3B. Clearly, Fgfl, Vegfa, Vegfd, Cyr61, Hifla and Igflr mRNAs were recruited into polysomes under hypoxia 2 to 3 times more than in normoxia, suggesting an important induction in terms of translation. In contrast, Aplnr mRNA recruited into polysomes decreased about three times. The data are not available for $F g f 2$ and Vegfc mRNAs, which were not detectable. These results indicate that hypoxia in cardiomyocytes, although blocking global cap-dependent translation, induces translation of all detectable IRES-containing angiogenic factor mRNAs. This mechanism occurs as soon as 4 hours after oxygen deprivation, thus corresponding to an early event in the hypoxic response.

Figure 3. IRES-containing mRNAs are more efficiently associated to polysomes in hypoxic conditions.
A-B RQ values for IRES-containing mRNA transcriptome (A) and translatome (B) extracted from the PCR arrays shown in Figures 1 and 2. The gene Aplnr (apelin receptor) was chosen as a control without an IRES. Vegfc and $F g f 2 \mathrm{mRNAs}$, repressed in the transcriptome, were below the detection threshold in polysomes (ND).
Histograms correspond to means \pm standard deviation, ${ }^{*} \mathrm{p}<0.05$, ${ }^{* *} \mathrm{p}<0.01,{ }^{* * *}<0.001,{ }^{* * * *} \mathrm{p}<0.0001$ compared to normoxia.

IRESs of (lymph) angiogenic factor mRNAs are activated during early hypoxia.

To confirm that the polysome recruitment of IRES-containing mRNAs actually corresponds to a stimulation of IRES-dependent translation, IRESs from FGF and VEGF mRNAs were introduced into a bicistronic dual luciferase gene expression cassette (Fig. 4A). As controls, two IRESs from non angiogenic mRNAs, c-myc and EMCV IRESs, were used. A negative control without IRES was provided by an hairpin inserted between the two cistrons (25). The well established bicistronic vector strategy, previously validated by us and others, allows to measure IRES activity revealed by expression of the second cistron, LucF (2, 25). The bicistronic cassettes were subcloned into lentivectors, as HL-1 cells are not efficiently transfected by plasmids but can be easily transduced by lentivectors with an efficiency of more than 80% (not shown). HL-1 cardiomyocytes were first transduced with the lentivector containing the FGF1 IRES and a kinetics was performed from 1 to 24 hours of hypoxia. Luciferase activities were measured from cell extracts and IRES activities reported as the LucF/LucR luminescence ratio. Data showed an increase of IRES activity between 4 to 8 hours whereas it decreased from 16 h to 24 h (Fig. 4B). Expression of endogenous FGF1 was analyzed after 8 hours of hypoxia. FGF1 protein quantification normalized to total proteins showed that IRES induction correlates with an increased expression of FGF1 protein (Fig. 4C). This is also consistent with the increase of FGF1 mRNA recruitment into polysomes observed above (Fig. 3C, EV Table 2). To determine whether this transient induction could affect other IRESs, HL1 cells were then transduced by the complete series of lentivectors described above (Fig. 4A) and submitted to 4,8 or 24 hours of hypoxia. Results showed an increase of all FGF and VEGF IRES activities in early hypoxia (4 hours and/or 8 hours), while the c-myc IRES was activated only in late hypoxia after 24 hours (Fig. 4D). The viral EMCV IRES was activated in both early (4 hours) and late (24 hours) hypoxia. The hairpin control was not induced (EV Table 3J). These data revealed two waves of IRES activation in response to hypoxia: a first wave concerns IRESs from (lymph)angiogenic growth factor mRNAs that are activated during early hypoxia, while a second wave concerns "non-angiogenic" c-myc and EMCV IRESs, that are activated in late hypoxia.

Figure 4. IRESs from (lymph)angiogenic factor mRNAs are activated in early hypoxia.
A-D To measure IRES-dependent translation during hypoxia, HL-1 cardiomyocytes were transduced with bicistronic dual luciferase lentivectors (termed "Lucky-Luke") containing different IRESs cloned between the genes of renilla (LucR) and firefly (LucF) luciferase (A). In bicistronic vectors, translation of the first cistron LucR is cap-dependent whereas translation of the second cistron LucF is IRES-dependent (25). Cardiomyocytes transduced by the CRF1AL+ lentivector Lucky-Luke reporter containing FGF1 IRES were submitted to an hypoxia time-course ($0 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 6 \mathrm{~h}, 8 \mathrm{~h}, 16 \mathrm{~h}$ and 24 h) and each time point compared to 0 h point with onetailed t -test (B). Endogenous FGF1 protein expression was measured by capillary Simple Western, from extracts of cardiomyocytes in normoxia or submitted to 8 h of hypoxia (C). HL-1 cardiomyocytes transduced by different Lucky-Luke constructs were submitted to $4 \mathrm{~h}, 8 \mathrm{~h}$ or 24 h of hypoxia and luciferase activities measured. IRES activities during hypoxia, expressed as LucF/LucR ratio, are normalized to normoxia. Three groups of activation were identified: FGF IRESs, VEGF IRESs, non-angiogenic IRESs at 4h, 8 h or 24 h of hypoxia, respectively. Histograms correspond to means \pm standard deviation of the mean, with a one-tailed t -test ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01$, $* * *<0.001, * * * * \mathrm{p}<0.0001$, compared to normoxia. For each IRES the mean has been calculated from three independent experiments with three biological replicates ($\mathrm{n}=9$). All detailed values are presented in EV Table 3. A no-IRES control was also performed and values are presented in EV Table 3 J .

Identification of IRES-bound proteins in hypoxic cardiomyocytes reveals vasohibin1 as a new RNA-binding protein.

Early activation of angiogenic factor IRESs during hypoxia suggested that specific ITAFs may be involved between 4 and 8 hours. In an attempt to identify such ITAFs, we used the technology of biomolecular analysis coupled to mass spectrometry (BIA-MS), validated for ITAF identification in two previous studies (13, 26). Biotinylated RNAs corresponding to FGF1 (4 hours activation), VEGFAa (8 hours activation) and EMCV IRESs (24 hours activation) were used as probes for BIA-MS. Hooked proteins from normoxic and hypoxic HL-1 cells were then recovered and identified (Fig. 5A-B, EV Table 4). Surprisingly, except for nucleolin bound to VEGFAa and EMCV IRES in normoxia, no known ITAF was identified as bound to these IRESs in normoxia or in hypoxia. Interestingly, besides several proteins unrelated to (lymph)angiogenesis, we detected the presence of vasohibin1 (VASH1), a protein described as an endothelial cell-produced angiogenesis inhibitor, but also for its role in stress tolerance and cell survival (Fig. 5C) (27, 28). However, this secreted protein has never been reported for any RNA-binding activity. VASH1 bound to the FGF1 IRES under 4 hours or 8 hours of hypoxia, but not under normoxia (EV Table 4). This protein also bound to the EMCV IRES both in normoxia and hypoxia but not to the VEGFA IRES. In order to address the RNA binding

Hantelys, Godet, David et al, July 2019

potential of VASH1, we performed an in silico analysis of VASH1 protein sequence that predicted two conserved RNA-binding domains (RBD) in the N- and C-terminal parts of the full length protein, respectively (Fig. 5C, EV Fig. 4A and 4B). The direct interaction of VASH1 with FGF1, VEGFAa and EMCV IRESs was assessed by surface plasmon resonance using the full length recombinant 44 kDa protein, resulting in the measurement of affinity constants of $6.5 \mathrm{nM}, 8.0 \mathrm{nM}$ and 9.6 nM , respectively (Fig. 5D-5F). These data indicate that VASH1 exhibits a significant RNA binding activity.

Figure 5. Identification of IRES-bound proteins in hypoxic cardiomyocytes reveals vasohibin1 as a new RNA-binding protein.
A-F Biotinylated IRES RNAs were transcribed in vitro and immobilized on the sensorchip of the BIAcore T200 optical biosensor device (A). Total cell extracts from normoxic or hypoxic HL-1 cardiomyocytes were injected in the device. Complex formation and dissociation were measured (see Mat. \& Meth) (B). Bound proteins were recovered as described in Mat. \& Meth. and identified by mass spectrometry (LC-MS/MS) after tryptic digestion. The list of proteins bound in normoxia and hypoxia to FGF1, VEGFAa and EMCV IRESs is shown in EV Table 4. VASH1 protein was identified bound to FGF1 (hypoxia) and EMCV IRESs (hypoxia and normoxia), but not to VEGFA IRES. A diagram of VASH1 RNA-binding properties is shown, with VASH1 isoforms described by Sonoda et al (37) (C). The predicted RNA binding domains (RBD1 and RBD2) shown in EV Figure

4, conserved in mouse and human, are indicated (C). Recombinant full-length 44 kDa VASH1 was injected into the Biacore T200 device containing immobilized FGF1 (D), VEGFAa (E) or EMCV (F) IRES as above. The affinity constants (KD) were calculated (D, E, F) with a Single Cycle Kinetics (SCK) strategy.

Vasohibin1 is translationally induced and nuclearized in early hypoxia.

VASH1 has been previously described for its expression in endothelial cells but never in cardiomyocytes (27). The present BIA-MS study provides evidence that it is expressed in HL1 cardiomyocytes (EV Table 4). We analyzed the regulation of VASH1 expression during hypoxia: Vashl mRNA level strongly decreases after 4 hours of hypoxia whereas it is slightly upregulated after 8 hours (EV Table 1, Fig. 6A). In contrast, analysis of Vash1 mRNA recruitment into polysomes showed a strong increase at 4 hours of hypoxia (about 7 times)(Fig. 6B), whereas it was not detectable in polysomes at 24 hours (EV Table 2). This indicates that Vash1 mRNA translation is strongly induced in early hypoxia. VASH1 immunodetection confirmed a strong expression of VASH1 at 4 hours of hypoxia, despite the decrease of its mRNA. VASH1 appeared as foci in both cytoplasm and nucleus (Fig. 6C). The number of foci did not change, but their size significantly increased in hypoxia (Fig. 6D and 6E).

Figure 6. Vasohibin1 is translationally induced and nuclearized in early hypoxia.
A-D VASH1 expression was analyzed by RT-qPCR in HL-1 cardiomyocytes in response to hypoxia at the transcriptome and translatome levels. Total RNA was purified from cardiomyocytes in normoxia, or submitted to $4 \mathrm{~h}, 8 \mathrm{~h}$ or 24 h of hypoxia (A). Polysomal RNA was purified from cardiomyocytes in normoxia or after 4 h of hypoxia (B). Histograms correspond to mean \pm standard deviation of the mean, with two-tailed t-test, *p<0.05, $* * \mathrm{p}<0.01, * * *<0.001$, compared to normoxia. Experiments have been reproduced 3 times independently and a representative triplicate experiment is shown.
VASH1 was immunodetected in HL-1 cardiomyocytes in normoxia or after 4h of hypoxia (C). DAPI staining allows to detect VASH1 nuclear localization (MERGE). VASH1 foci in the nucleus are shown in purple and in the cytoplasm in green using Imaris software. The number of VASH1 foci was quantified in the nucleus and in the cytoplasm in normoxia and after 4 h of hypoxia ($\mathrm{n}=4-5$ images with a total cell number of 149 in normoxia and 178 in hypoxia) (D). Boxplots of volume of vasohibin foci in normoxia and hypoxia (E). All foci above 0,5 $\mu \mathrm{m}^{3}$ were counted. Whiskers mark the 10% and the 90% percentiles with the mean in the center. One-way Anova with Tukey's comparisons test was applied.

Vasohibin1 is a new ITAF selectively active in early hypoxia.

The putative ITAF function of VASH1 was assessed by a knock-down approach using an siRNA smartpool (siVASH1). Transfection of HL-1 cardiomyocytes with siVASH1 was able to knock-down VASH1 mRNA with an efficiency of 73% (Fig. 7A). The knock-down of VASH1 protein measured by capillary Western was only 59% (Fig. 7B). This moderate knockdown efficiency was probably due to the long half-life of VASH1, superior to 24h (EV Fig. 5). The effect of VASH1 knock-down was analyzed in HL-1 cells transduced with different IREScontaining bicistronic lentivectors in normoxia or after 8 h of hypoxia. In normoxia, VASH1 knock-down generated a moderate increase of activity for several IRESs (13-16\%), significant for VEGFD and EMCV IRESs (Fig. 7C). In contrast, in hypoxia, VASH1 knock-down resulted in a significant decrease of FGF1, VEGFD and EMCV IRES activities, by $64 \%, 12 \%$ and 5%, respectively (Fig. 7D). These data showed that VASH1 behaves as an activator ITAF in hypoxia, limited to FGF1, VEGFD and EMCV IRESs, while it has an inhibitory role on the activities of these IRES in normoxia (Fig. 7C).

Hantelys, Godet, David et al, July 2019

Figure 7. Vasohibin1 is a new ITAF selectively active in early hypoxia.
A-B VASH1 knock-down was performed in HL-1 cardiomyocytes using siRNA smartpools targeting VASH1 (siVASH1) or control (siControl). VASH1 mRNA level was measured by RT-qPCR (A) and VASH1 protein expression analyzed by capillary Simple Western method using an anti-VASH1 antibody and quantified by normalization to total proteins. The experiments have been reproduced three times and representative results are shown (B).
Knock-down experiment of VASH-1 performed on cardiomyocytes transduced by a set of IRES-containing lentivectors used in Fig. 4. After 8 h of hypoxia, IRES activities (LucF/LucR ratio) were measured in cell extracts. The IRES activity values have been normalized to the control siRNA. Histograms correspond to means \pm standard error of the mean of the mean, with a one-tailed t-test $\mathrm{p}<0.05,{ }^{* * *<0.001 \text {, compared to siControl. For each IRES }}$ the mean of three independent experiments with three biological replicates ($n=9$) is shown in normoxia (C) and hypoxia (D). All detailed values as well as standard deviations are presented in EV Table 5.

DISCUSSION

The present study highlights the crucial role of translational control in cardiomyocyte response to hypoxia. Up to now, although a few genes had been described for their translational regulation by hypoxia, it was thought that most genes are transcriptionally regulated. Here we show that translational control, revealed by mRNA recruitment in polysomes during hypoxia, concerns the majority of the genes involved in angiogenesis and lymphangiogenesis. IRESdependent translation appears as a key mechanism in this process, as we show that all the

Hantelys, Godet, David et al, July 2019

(lymph)angiogenic mRNAs known to contain an IRES are up-regulated. Furthermore, our data reveal that IRESs of angiogenic factor mRNAs are activated during early hypoxia, while non angiogenic mRNA IRESs are activated in late hypoxia. We have identified an angiogenesisand stress-related protein, vasohibin1, as a new ITAF responsible for the activation of several, but not all IRESs, in early hypoxia.

Translational control in tumoral versus non tumoral hypoxia.

Most studies of gene expression in response to stress have been performed at the transcriptome level in tumoral cells of different origins, whereas the present study is focused on cardiomyocytes. HL-1 cardiomyocytes are immortalized but still exhibit the beating phenotype (21). Thus this cell model, although not perfectly mimicking the cardiomyocyte behavior in vivo, is still close to a physiological state. The strong translational response to hypoxia revealed by our data, that differs from the transcriptional response usually observed in tumor cells, may reflect mechanisms occurring in cells that are not engaged into the cell transformation process leading to cancer, or at least not too far. Indeed, HL-1 cells respond to hypoxia very early, whereas various murine or human tumor cell lines described in other reports require a longer time of hypoxia for IRES-dependent translation to be stimulated. In human breast cancer BT474 cells, VEGFA, HIF and EMCV IRESs are all activated after 24h of hypoxia (29). In murine 4T1 and LLC cells (breast and lung tumor, respectively) as well as in human CAPAN-1 pancreatic adenocarcinoma, the VEGFA and VEGFC IRESs are activated after 24 hours of hypoxia whereas the EMCV IRES is not activated (2). The same observation of late activation in 4T1 cells has been made for the FGF1 IRES, while this IRES is activated in early hypoxia in HL-1 cardiomyocytes (Godet AC \& Prats AC, unpublished data)(Fig. 4). Also, the VEGFD IRES is differently regulated in HL-1 cardiomyocytes compared to 4T1 tumor cells: only heat shock, but not hypoxia, is able to activate this IRES in 4T1 cells, whereas it is activated by hypoxia in HL-1 cardiomyocytes (Fig. 4)(13). These observations suggest that many tumoral cell lines developing resistance to hypoxia are not able to govern subtle regulations of gene expression such as the waves of IRES regulation observed in HL-1 cells.

VASH1, an ITAF of early hypoxia.

We also consider the hypothesis that the important process of translational regulation observed in our study may be cardiomyocyte-specific. In such a case, IRES-dependent translation would depend on cell type specific ITAFs as well as the early response to hypoxia. These results are of great importance in regard to the acute stress response in ischemic heart that is necessary for recovery. In contrast, a delayed chronic response is known to be deleterious for heart healing (30). In agreement with this hypothesis, VASH1 expression is cell-type specific: described up to now as endothelial-specific, this protein is not expressed in tumoral cells (27). In the present study, we show that this cell-type specificity extends to cardiomyocytes. Consistent with our data, this protein has been described as a key actor of striated muscle angio-adaptation (31). VASH1 may thus have a role in the early hypoxic response in a limited number of cell types. The ITAF role of VASH1 identified here is physiologically relevant if one considers the VASH1 function in angiogenesis and stress tolerance (28). According to previous reports, VASH1 is induced during angiogenesis in endothelial cells and halts this process, while its overexpression also renders the same cells resistant to senescence and cell death induced by stress (28). Furthermore, it has been reported that VASH1 is induced after 3 hours of cell stress at the protein level but not at the transcriptional level in endothelial cells (32). This is in agreement with our observation in cardiomyocytes where VASH1, although downregulated in the transcriptome in early hypoxia, is more efficiently recruited in polysomes at the same time (Fig. 6).
It is noteworthy that VASH1 itself seems to be induced translationally by stress (Fig. 6) (32). In endothelial cells, Myashita et al report that the protein HuR upregulates VASH1 by binding to its mRNA. HuR may bind to an AU-rich element present in the 3 ' untranslated region of the

Hantelys, Godet, David et al, July 2019

VASH1 mRNA. However, in other studies, HuR has also been described as an ITAF, thus it is possible that VASH1 itself may be induced by an IRES-dependent mechanism (10, 33, 34).
The anti-angiogenic function of VASH1 may appear inconsistent with its ability to activate the IRES of an angiogenic factor. However, our data also suggest that VASH1 might be an activator or an inhibitor for (lymph)angiogenic factor mRNA translation. Such a double role may explain the unique dual ability of VASH1 to inhibit angiogenesis and to promote endothelial cell survival (28,32). This could result from the existence of different VASH1 isoforms of 44 kDa , $42 \mathrm{kDa}, 36 \mathrm{kDa}, 32 \mathrm{kDa}$ and 27 kDa , resulting from alternative splicing and/protein processing (31, 35-37). Interestingly p42 and p27 are the main isoforms expressed in heart, while the p44 is undetectable (31,37). One can expect that the ITAF function is carried by p 42 which contains the two predicted RNA binding domains (Fig.5C, EV Fig. 4). VASH1 has been observed in both the nucleus and the cytoplasm, and no striking nucleocytoplasmic relocalization is visible in response to hypoxia, in contrast to other ITAFs such as hnRNPA1 or nucleolin which shuttle to cytoplasm upon stress $(10,13,15,38,39)$. Interestingly, VASH1, appears as foci whose size increases in hypoxia, suggesting that it could be partly translocated to stress granules. This translocation has been reported for other ITAFs such as hnRNPA1 and polypyrimidine tract binding protein (PTB)(10, 40, 41).

VASH1 regulates several, but not all IRESs.

Although all IRESs of (lymph)angiogenic factor mRNAs are activated in early hypoxia, only FGF1 and VEGFD IRESs are regulated by VASH1. This suggests that other ITAFs are involved in activation of FGF2, VEGFA and VEGFC IRESs. Furthermore, the knock-down of VASH1 only partially silenced FGF 1 and VEGFD IRES activities. This could result from the moderate efficiency of the knock-down, due to the strong stability of VASH1 protein, but it also suggests that VASH1 acts with other partners in the IRESsome. The double role of VASH1 as an activator or an inhibitor of IRES activity in hypoxia or in normoxia, respectively, also favors the hypothesis that VASH1 interacts with different partners in the IRESome. Thus, our study shows that IRESs of (lymph)angiogenic growth factor mRNAs, although they are all activated in early hypoxia, are regulated by different IRESome complexes whose composition is still to be discovered.

MATERIALS \& METHODS

Lentivector construction and production

Bicistronic lentivectors coding for the renilla luciferase (LucR) and the stabilized firefly luciferase Luc+ (called LucF in the text) were constructed from the dual luciferase lentivectors described previously, which contained Luc2CP $(2,13)$. The LucR gene used here is a modified version of LucR where all the predicted splice donor sites have been mutated (sequence is available upon request). The cDNA sequences of the human FGF1, -2 , VEGFA, -C, -D, c-myc and EMCV IRESs were introduced between the first (LucR) and the second cistron (LucF) (19, 42, 43). IRES sequences sizes are : 430 nt (FGF1), 480nt (FGF2), 302 nt (VEGFAa), 485 nt (VEGFAb), 419 nt (VEGFC), 507 nt (VEGFD), 363 nt (c-myc), 640 nt (EMCV)(2, 13, 16, 17, 19, 42). The two IRESs of the VEGFA have been used and are called VEGFAa and VEGFAb, respectively (16). The expression cassettes were inserted into the SIN lentivector pTRIP-DU3-CMV-MCS vector described previously (43). All cassettes are under the control of the cytomegalovirus (CMV) promoter.
Lentivector particles were produced using the CaCl_{2} method-based by tri-transfection with the plasmids pLvPack and pLvVSVg, CaCl_{2} and Hepes Buffered Saline (Sigma-Aldrich, Saint-Quentin-Fallavier, France), into HEK-293FT cells. Viral supernatants were harvested 48 hours after transfection, passed through $0.45 \mu \mathrm{~m}$ PVDF filters (Dominique Dutscher SAS, Brumath, France) and stored in aliquots at $-80^{\circ} \mathrm{C}$ until use. Viral production titers were assessed on

Hantelys, Godet, David et al, July 2019

HT1080 cells with serial dilutions and scored for GFP expression by flow cytometry analysis on a BD FACSVerse (BD Biosciences, Le Pont de Claix, France).

Cell culture, transfection and transduction

HEK-293FT cells and HT1080 cells were cultured in DMEM-GlutaMAX + Pyruvate (Life Technologies SAS, Saint-Aubin, France), supplemented with 10% fetal bovine serum (FBS), and MEM essential and non-essential amino acids (Sigma-Aldrich).
Mouse atrial HL-1 cardiomyocytes were a kind gift from Dr. William Claycomb (Department of Biochemistry \& Molecular Biology, School of Medicine, New Orleans) (21). HL-1 cells were cultured in Claycomb medium containing 10\% FBS, Penicillin/Streptomycin ($100 \mathrm{U} / \mathrm{mL}-$ $100 \mu \mathrm{~g} / \mathrm{mL}$), 0.1 mM norepinephrine, and 2 mM L-Glutamine. Cell culture flasks were precoated with a solution of 0.5% fibronectin and 0.02% gelatin 1 h at $37^{\circ} \mathrm{C}$ (Sigma-Aldrich). To keep HL-1 phenotype, cell culture was maintained as previously described (21).
For hypoxia, cells were incubated at $37^{\circ} \mathrm{C}$ at $1 \% \mathrm{O}_{2}$.
HL-1 cardiomyocytes were transfected by siRNAs as follows: one day after being plated, cells were transfected with 10 nM of small interference RNAs from Dharmacon Acell SMARTpool targeting VASH1 (siVASH1) or non-targeting siRNA control (siControl), using Lipofectamine RNAiMax (Invitrogen) according to the manufacturer's recommendations, in a media without penicillin-streptomycin and norepinephrine. Cells were incubated 72 h at $37^{\circ} \mathrm{C}$ with siRNA (siRNA sequences are provided in EV Table 6).
For lentivector transduction, $6.10^{4} \mathrm{HL}-1$ cells were plated into each well of a 6 -well plate and transduced overnight in 1 mL of transduction medium (OptiMEM-GlutaMAX, Life Technologies SAS) containing $5 \mu \mathrm{~g} / \mathrm{mL}$ protamine sulfate in the presence of lentivectors (MOI 2). GFP-positive cells were quantified 48 h later by flow cytometry analysis on a BD FACSVerse (BD Biosciences). HL-1 cells were transduced with an 80% efficiency. siRNA treatment on transduced cells was performed 72 h after transduction (and after one cell passage). To achieve protein half-life measurement, HL-1 cardiomyocytes were treated with cycloheximide (InSolution CalBioChem) diluted in PBS at a final concentration of $10 \mu \mathrm{~g} / \mathrm{mL}$ in well plates. Time-course points were taken by stopping cell cultures after $0 \mathrm{~h}, 4 \mathrm{~h}, 6 \mathrm{~h} 8 \mathrm{~h} 16 \mathrm{~h}$ or 24 h of incubation and subsequent capillary Western analysis of cell extracts.

Reporter activity assay

For reporter lentivectors, luciferase activities in vitro and in vivo were performed using DualLuciferase Reporter Assay (Promega, Charbonnières-les-Bains, France). Briefly, proteins from HL-1 cells were extracted with Passive Lysis Buffer (Promega France). Quantification of bioluminescence was performed with a luminometer (Centro LB960, Berthold, Thoiry, France).

Capillary electrophoresis

Diluted protein lysate was mixed with fluorescent master mix and heated at $95^{\circ} \mathrm{C}$ for 5 minutes. $3 \mu \mathrm{~L}$ of protein mix containing Protein Normalization Reagent, blocking reagent, wash buffer, target primary antibody (mouse anti-VASH-1 Abcam EPR17420 diluted 1:100; mouse antiFGF1 Abcam EPR19989 diluted 1:25; mouse anti-P21 Santa Cruz sc-6546 (F5) diluted 1:10; rabbit anti eIF2 α Cell Signaling Technology 9721 diluted 1:50; mouse anti-phospho-eIF2 α Cell Signaling Technology 2103 diluted 1:50; rabbit anti-4EBP-1 Cell Signaling Technology 9452 diluted 1:50; rabbit anti-phospho-4EBP-1 Cell Signaling Technology 9451 diluted 1:50), secondary-HRP (ready to use rabbit "detection module", DM-001), and chemiluminescent substrate were dispensed into designated wells in a manufacturer provided microplate. The plate was loaded into the instrument (Jess, Protein Simple) and proteins were drawn into individual capillaries on a 25 capillary cassette (12-230kDa)(SM-SW001). Data were analyzed on compass software provided by the manufacturer.

Hantelys, Godet, David et al, July 2019

RNA purification and cDNA synthesis

Total RNA extraction from HL-1 cells was performed using TRIzol reagent according to the manufacturer's instructions (Gibco BRL, Life Technologies, NY, USA). RNA quality and quantification were assessed by a Xpose spectrophotometer (Trinean, Gentbrugge, Belgium). RNA integrity was verified with an automated electrophoresis system (Fragment Analyzer, Advanced Analytical Technologies, Paris, France).
500 ng RNA was used to synthesize cDNA using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Villebon-sur-Yvette, France). Appropriate no-reverse transcription and no-template controls were included in the PCR array plate to monitor potential reagent or genomic DNA contaminations, respectively. The resulting cDNA was diluted 10 times in nuclease-free water. All reactions for the PCR array were run in biological triplicates.

$q P C R$ array

The DELTAgene Assay ${ }^{\mathrm{TM}}$ was designed by Fluidigm Corporation (San Francisco, USA). The qPCR-array was performed on BioMark with the Fluidigm 96.96 Dynamic Array following the manufacturer's protocol (Real-Time PCR Analysis User Guide PN 68000088). The list of primers is provided in EV Table 6. A total of 1.25 ng of cDNA was preamplified using PreAmp Master Mix (Fluidigm, PN 100-5580, 100-5581, San Francisco, USA) in the plate thermal cycler at $95^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 10$ cycles at $95^{\circ} \mathrm{C}$ for 15 sec and $60^{\circ} \mathrm{C}$ for 4 min . The preamplified cDNA was treated by endonuclease I (New England BioLabs, PN M0293L, Massachusetts, USA) to remove unincorporated primers.
The preamplified cDNA was mixed with 2x SsoFast EvaGreen Supermix (BioRad, PN 1725211, California, USA), $50 \mu \mathrm{M}$ of mixed forward and reverse primers and sample Loading Reagent (Fluidigm, San Francisco, USA). The sample was loaded into the Dynamic Array 96.96 chip (Fluidigm San Francisco, USA). The qPCR reactions were performed in the BioMark RT-qPCR system. Data was analyzed using the BioMark RT-qPCR Analysis Software Version 2.0.

18 S rRNA was used as a reference gene and all data were normalized based on 18S rRNA level. Hprt was also assessed as a second reference gene but was not selected as its level was not stable during hypoxia. Relative quantification (RQ) of gene expression was calculated using the $2^{-\Delta \Delta C T}$ method. When the RQ value was inferior to 1 , the fold change was expressed as 1/RQ. The oligonucleotide primers used are detailed in EV Table 6.

Polysomal RNA preparation

HL-1 cells were cultured in $150-\mathrm{mm}$ dishes. 15 min prior to harversting, cells were treated by cycloheximide at $100 \mu \mathrm{~g} / \mathrm{ml}$. Cells were washed three times in PBS cold containing $100 \mu \mathrm{~g} / \mathrm{mL}$ cycloheximide and scraped in the PBS/cycloheximide. After centrifugation at $3,000 \mathrm{rpm}$ for 2 min at $4^{\circ} \mathrm{C}$, cells were lysed by $450 \mu \mathrm{l}$ hypotonic lysis buffer (5 mM Tris-HCL, $\mathrm{pH} 7.5 ; 2.5 \mathrm{mM}$ $\mathrm{MgCl}_{2} ; 1.5 \mathrm{mM} \mathrm{KCl}$). Cells were centrifuged at $13,000 \mathrm{rpm}$ for 5 min at $4^{\circ} \mathrm{C}$, the supernatants were collected and loaded onto a $10-50 \%$ sucrose gradient. The gradients were centrifuged in a Beckman SW40Ti rotor at $39,000 \mathrm{rpm}$ for 2.5 h at $4^{\circ} \mathrm{C}$ without brake. Fractions were collected using a Foxy JR ISCO collector and UV optical unit type 11. RNA was purified from pooled heavy fractions containing polysomes (fractions 19-27), as well as from cell lysate before gradient loading.

Preparation of biotinylated RNA

The FGF1, VEGFA or EMCV IRESs was cloned in pSCB-A-amp/kan plasmid (Agilent) downstream from the T 7 sequence. The plasmid were linearized and in vitro transcription was performed with MEGAscript T7 kit (Ambion), according to the manufacturer's protocol, in the

Hantelys, Godet, David et al, July 2019

presence of Biotin-16-UTP at 1 mM (Roche), as previously described (26). The synthesized RNA was purified using RNeasy kit (Qiagen).

BIA-MS experiments

BIA-MS studies based on surface plasmonic resonance (SPR) technology were performed on BIAcore T200 optical biosensor instrument (GE Healthcare), as described previously (13, 26). Immobilization of biotinylated IRES RNAs was performed on a streptavidin-coated (SA) sensorchip in HBS-EP buffer (10 mM Hepes $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM}$ EDTA, 0.005% surfactant P20) (GE Healthcare). All immobilization steps were performed at a flow rate of 2 $\mu \mathrm{l} / \mathrm{min}$ with a final concentration of $100 \mu \mathrm{~g} / \mathrm{ml}$.
Binding analyses were performed with normoxic or hypoxic cell protein extracts at $100 \mu \mathrm{~g} / \mathrm{ml}$ over the immobilized IRES RNA surface for 120 sec at a flow rate of $30 \mu \mathrm{l} / \mathrm{min}$. The channel (Fc1) was used as a reference surface for non-specific binding measurements. The recovery wizard was used to recover selected proteins from cell protein extracts. This step was carried out with 0.1% SDS. Five recovery procedures were performed to get enough amounts of proteins for MS identification.
Eluted protein samples from BIA experiment were digested in gel with $1 \mu \mathrm{~g}$ of trypsin (sequence grade, Promega) at $37^{\circ} \mathrm{C}$ OVN. Peptides were then subjected to LC-MS/MS analysis. The peptides mixtures were loaded on a YMC-Triart C18 150x300 $\mu \mathrm{m}$ capillary column (particle diameter $3 \mu \mathrm{~m}$) connected to a RS3000 Dionex HPLC system. The run length gradient (acetonitrile and water) was 30 minutes. Then, on the AB Sciex 5600+ mass spectrometer, data were acquired with a data dependent analysis. Data were then loaded on Mascot software (Matrix Science) that attributes peptide interpretations to MS/MS recorded scans. The higher the score, the lower the probability of false positive (a score of 20 corresponds to a 5% probability of false positive).

Surface Plasmon Resonance assays.

For kinetic analysis, immobilization of biotinylated FGF1 IRES RNA was performed on a streptavidin-coated (SA) sensorchip in HBS-EP buffer (10 mM Hepes pH 7.4, 150 mM NaCl , 3 mM EDTA, 0.005% surfactant P20) (GE Healthcare). Immobilization step was performed at a flow rate of $2 \mu \mathrm{l} / \mathrm{min}$ with a final concentration of $100 \mu \mathrm{~g} / \mathrm{ml}$. Total amount of immobilized FGF1 IRES RNA was 1500 RU.
Binding analyses were performed with recombinant protein VASH1 (Abnova H00022846-P01) at $100 \mu \mathrm{~g} / \mathrm{ml}$ over the immobilized FGF1. This recombinant VASH1 contains the 27 kDa N terminal part of the protein coupled to glutathione S-transferase. The channel (Fc 1) was used as a reference surface for non-specific binding measurements.
A Single-Cycle Kinetics (SCK) analysis to determine association, dissociation and affinity constants (ka, kd, and KD respectively) was carried out by injecting different protein concentrations ($16.25 \mathrm{nM}-300 \mathrm{nM}$). Binding parameters were obtained by fitting the overlaid sensorgrams with the $1: 1$. Langmuir binding model of the BIAevaluation software version 3.0.

Immunocytology

Cells were plated on glass coverslip and incubated for 4 h of normoxia or hypoxia. They were fixed with cold methanol at $-20^{\circ} \mathrm{C}$ during 5 min , washed 3 times with PBS and permeabilized 1 min with 0.1% Triton. Then, cells were incubated 5 min with blocking solution (1% FBS, 0.5% BSA) and 30 min with anti-VASH1 antibody ($1 / 50$; abcam ab176114) and Alexa 488 conjugated anti-mouse secondary antibody. Images were acquired with LSM780 Zeiss confocal microscope, camera lens $x 60$ with Z acquisition of $0.36 \mu \mathrm{M}$. A single plan is shown Fig. 6C. Imaris software was used to represent vasohibin staining in Figure 6C. To differentiate vasohibin in the nucleus and cytoplasm, nucleus was delimitated with Dapi staining and all Vasohibin foci in the nucleus are shown in purple and in the cytoplasm in green.

Hantelys, Godet, David et al, July 2019

Using imaris software, the mean of vasohibin foci was counted and the volume of vasohibin foci was quantified, a threshold was applied and all particles above $0,5 \mu \mathrm{~m}^{3}$ was selected and quantified.

Statistical analysis

All statistical analyses were performed using one-way Anova with Tukey's comparisons test or one-tailed Student's t -test and are expressed as mean + - standard deviation, ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01$, ***<0.001, $* * * *<0.0001$.

ACKNOWLEDGMENTS

Our thanks go to J.J. Maoret and F. Martin from the Inserm UMR1048 GeT-TQ plateau of the GeT plateform Genotoul (Toulouse), F. Lopez and L. Tonini from the proteomic platform genotoul (Toulouse), J. Iacovoni from the Inserm UMR 1048 bioinformatics plateau, as well as L. van den Berghe and C. Segura from the Inserm UMR1037 vectorology plateau (Toulouse) and A. Lucas from the We-Met Functional Biochemistry Facility (Toulouse). We also thank V. Poinsot for helpful discussion and W. Claycomb for providing HL-1 cells.

This work was supported by Région Midi-Pyrénées, Association Française contre les Myopathies (AFM-Téléthon), Association pour la Recherche sur le Cancer (ARC), European funding (REFBIO), Fondation Toulouse Cancer Santé and Agence Nationale pour la Recherche AAPG2018-RIBOCARD. F.H. had fellowships from the Région Midi-Pyrénées and from the Ligue Nationale Contre le Cancer (LNCC). E.R.G. had a fellowship from AFM-Telethon. A.C. Godet had a fellowship from LNCC.

EXPANDED VIEW MATERIAL

EV Figure 1, 2 and 3, 4, 5, EV Tables 1, 2, 3, 4, 5, 6, 7

REFERENCES

1. Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441(7092):437-43.
2. Morfoisse F, Kuchnio A, Frainay C, Gomez-Brouchet A, Delisle MB, Marzi S, et al. Hypoxia induces VEGF-C expression in metastatic tumor cells via a HIF-1alpha-independent translation-mediated mechanism. Cell Rep. 2014;6(1):155-67.
3. Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol. 2005;6(4):318-27.
4. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16(9):4604-13.
5. Pages G, Pouyssegur J. Transcriptional regulation of the Vascular Endothelial Growth Factor gene--a concert of activating factors. Cardiovasc Res. 2005;65(3):564-73.
6. Conte C, Riant E, Toutain C, Pujol F, Arnal JF, Lenfant F, et al. FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1alpha. PLoS One. 2008;3(8):e3078.
7. Baird SD, Turcotte M, Korneluk RG, Holcik M. Searching for IRES. RNA. 2006;12(10):1755-85.
8. Spriggs KA, Stoneley M, Bushell M, Willis AE. Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell. 2008;100(1):27-38.
9. Faye MD, Holcik M. The role of IRES trans-acting factors in carcinogenesis. Biochim Biophys Acta. 2015;1849(7):887-97.

Hantelys, Godet, David et al, July 2019

10. Godet AC, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B, et al. IRES Trans-Acting Factors, Key Actors of the Stress Response. Int J Mol Sci. 2019;20(4).
11. Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, et al. DAP5 associates with eIF2beta and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res. 2015;43(7):3764-75.
12. Mitchell SA, Spriggs KA, Coldwell MJ, Jackson RJ, Willis AE. The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell. 2003;11(3):757-71.
13. Morfoisse F, Tatin F, Hantelys F, Adoue A, Helfer AC, Cassant-Sourdy S, et al. Nucleolin Promotes Heat Shock-Associated Translation of VEGF-D to Promote Tumor Lymphangiogenesis. Cancer Res. 2016;76(15):4394-405.
14. Lewis SM, Holcik M. For IRES trans-acting factors, it is all about location. Oncogene. 2008;27(8):1033-5.
15. Lewis SM, Veyrier A, Hosszu Ungureanu N, Bonnal S, Vagner S, Holcik M. Subcellular relocalization of a trans-acting factor regulates XIAP IRES-dependent translation. Mol Biol Cell. 2007;18(4):1302-11.
16. Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol. 1998;18(11):6178-90.
17. Martineau Y, Le Bec C, Monbrun L, Allo V, Chiu IM, Danos O, et al. Internal ribosome entry site structural motifs conserved among mammalian fibroblast growth factor 1 alternatively spliced mRNAs. Mol Cell Biol. 2004;24(17):7622-35.
18. Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol. 1998;18(6):3112-9.
19. Vagner S, Gensac MC, Maret A, Bayard F, Amalric F, Prats H, et al. Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol. 1995;15(1):35-44.
20. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58-62.
21. Claycomb WC, Lanson NA, Jr., Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A. 1998;95(6):2979-84.
22. Kietzmann T, Roth U, Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood. 1999;94(12):4177-85.
23. Ronkainen VP, Ronkainen JJ, Hanninen SL, Leskinen H, Ruas JL, Pereira T, et al. Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J. 2007;21(8):1821-30.
24. Morfoisse F, Renaud E, Hantelys F, Prats AC, Garmy-Susini B. Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis. Mol Cell Oncol.
2015;2(4):e1024821.
25. Creancier L, Morello D, Mercier P, Prats AC. Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissuespecific regulation. J Cell Biol. 2000;150(1):275-81.
26. Ainaoui N, Hantelys F, Renaud-Gabardos E, Bunel M, Lopez F, Pujol F, et al.

Promoter-Dependent Translation Controlled by p54nrb and hnRNPM during Myoblast Differentiation. PLoS One. 2015;10(9):e0136466.
27. Sato Y. The vasohibin family: Novel regulators of angiogenesis. Vascul Pharmacol. 2012;56(5-6):262-6.
28. Sato Y. Novel Link between Inhibition of Angiogenesis and Tolerance to Vascular Stress. J Atheroscler Thromb. 2015;22(4):327-34.

Hantelys, Godet, David et al, July 2019

29. Braunstein S, Karpisheva K, Pola C, Goldberg J, Hochman T, Yee H, et al. A hypoxiacontrolled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell. 2007;28(3):501-12.
30. Silvestre JS, Mallat Z, Tedgui A, Levy BI. Post-ischaemic neovascularization and inflammation. Cardiovasc Res. 2008;78(2):242-9.
31. Kishlyansky M, Vojnovic J, Roudier E, Gineste C, Decary S, Forn P, et al. Striated muscle angio-adaptation requires changes in Vasohibin-1 expression pattern. Biochem Biophys Res Commun. 2010;399(3):359-64.
32. Miyashita H, Watanabe T, Hayashi H, Suzuki Y, Nakamura T, Ito S, et al. Angiogenesis inhibitor vasohibin-1 enhances stress resistance of endothelial cells via induction of SOD2 and SIRT1. PLoS One. 2012;7(10):e46459.
33. Durie D, Lewis SM, Liwak U, Kisilewicz M, Gorospe M, Holcik M. RNA-binding protein HuR mediates cytoprotection through stimulation of XIAP translation. Oncogene. 2011;30(12):1460-9.
34. Galban S, Kuwano Y, Pullmann R, Jr., Martindale JL, Kim HH, Lal A, et al. RNAbinding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha. Mol Cell Biol. 2008;28(1):93-107.
35. Kern J, Bauer M, Rychli K, Wojta J, Ritsch A, Gastl G, et al. Alternative splicing of vasohibin-1 generates an inhibitor of endothelial cell proliferation, migration, and capillary tube formation. Arterioscler Thromb Vasc Biol. 2008;28(3):478-84.
36. Sato Y. The vasohibin family: a novel family for angiogenesis regulation. J Biochem. 2013;153(1):5-11.
37. Sonoda H, Ohta H, Watanabe K, Yamashita H, Kimura H, Sato Y. Multiple processing forms and their biological activities of a novel angiogenesis inhibitor vasohibin. Biochem Biophys Res Commun. 2006;342(2):640-6.
38. Cammas A, Pileur F, Bonnal S, Lewis SM, Leveque N, Holcik M, et al. Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs. Mol Biol Cell. 2007;18(12):5048-59.
39. Dobbyn HC, Hill K, Hamilton TL, Spriggs KA, Pickering BM, Coldwell MJ, et al. Regulation of BAG-1 IRES-mediated translation following chemotoxic stress. Oncogene. 2008;27(8):1167-74.
40. Borghese F, Michiels T. The leader protein of cardioviruses inhibits stress granule assembly. J Virol. 2011;85(18):9614-22.
41. Guil S, Long JC, Caceres JF. hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol. 2006;26(15):5744-58.
42. Nanbru C, Lafon I, Audigier S, Gensac MC, Vagner S, Huez G, et al. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem. 1997;272(51):32061-6.
43. Prats AC, Van den Berghe L, Rayssac A, Ainaoui N, Morfoisse F, Pujol F, et al. CXCL4L1-fibstatin cooperation inhibits tumor angiogenesis, lymphangiogenesis and metastasis. Microvasc Res. 2013;89:25-33.

Hantelys et al, EV Figure 1

5 min	30 min
1h	2h

Expanded View Figure 1. Transcriptome of IRES-containing mRNAs in hypoxic cardiomyocytes.
Total RNA was purified from HL-1 cardiomyocytes submitted to increasing times from 5 min to 24 h of hypoxia at $1 \% \mathrm{O}_{2}$, as well as from normoxic cardiomyocytes as a control. cDNA was synthesized and used for a Fluidigm deltagene PCR array dedicated to genes related to (lymph)angiogenesis or stress (EV Table 6). Relative quantification (RQ) of gene expression during hypoxia was calculated using the $2^{-\Delta \Delta C T}$ method with normalization to 18 S and to normoxia. The percentage of repressed (red), induced (green) and nonregulated (blue) mRNAs is shown for the earlier times of the kinetics. The later times are shown in Fig. 1. The detailed values for all the times of the kinetics are presented in EV Table 1.

Hantelys et al, EV Figure 2

Expanded View Figure 2. Capillary electrophoresis immunodetection of 4E-BP1 and
eIF2 α.
A-C 4E-BP1 expression (A) and phosphorylation (B), as well as elF2 α expression (C) in normoxia and hypoxia (8 h) were analysed and quantified by capillary Simple Western, as described in Mat. \& Meth. The quantified values, expressed in arbitrary units of luminescence (AUC) are normalized to total proteins. Analysis of elF2 α phosphorylation is shown in Figure 2.

Transcriptome kinetics of IRES-containing mRNAs

Expanded View Figure 3. Transcriptome of IRES-containing mRNAs in hypoxic cardiomyocytes.

RQ values for IRES-containing mRNA transcriptome kinetics extracted from the PCR arrays shown in EV Table 1. The gene Ap/nr (apelin receptor) was chosen as a control without an IRES.

A

Mouse vasohibin-1 (NP_796328.2)

BindN prediction of RNA-binding residues

Summary

Input sequence length:	375 amino acids
Predicted binding sites:	125 residues
User-defined specificity:	80.00%
Estimated sensitivity:	53.95%

Overview

Sequence:
Prediction
Sequence: prediction: Confidence:

Sequence:
Prediction:
Confidence:
Sequence: Prediction onfidence

Sequence: Prediction

Sequence:
sequence: Confidence:

Sequence:
Prediction:

B

Human vasohibin-1 (NP_055724.1)

BindN prediction of RNA-binding residues

Summary
nput sequence length:
Predicted binding sites:
User-defined specificity: Estimated sensitivity:

365 amino acids
125 residues
80.00\%
53.95\%
$\frac{\text { Jverview }}{\text { equence: }}$
?rediction: :onfidence:
jequence:
rediction: zonfidence:
equence:
rediction:
:onfidence:
jequence: rediction: zonfidence:
jequence: rediction: zonfidence:
sequence:
rediction:

MPGGKKVAGGGSSGATPTSAAATAPSGVRRLETSEGTSAQRDEEPEEEGEEDLRDGGVPF 433377357259987857824564685498326672885774234467756676774846 FVNRGGLPVDEATWERMWKHVAKIHPDGEKVAQRIRGATDLPKIPIPSVPTFQPSTPVPE 694565527546345575258767233644432657432363673634645323262434 RLEAVQRYIRELQYNHTGTQFFEIKKSRPLTGLMDLAKEMTKEALPIKCLEAVILGIYLT 285574249727245263244637266823577778726622656493896999979392 NSMPTLERFPISFKTYFSGNYFRHIVLGVNFAGRYGALGMSRREDLMYKPPAFRTLSELV 236447657573743452434866999793353735246267532343443435374599 LDFEAAYGRCWHVLKKVKLGQSVSHDPHSVEQIEWKHSVLDVERLGRDDFRKELERHARD 999766566833872285347445334339538566558869474474247635273673 MRLKIGKGTGPPSPTKDRKKDVSSPQRAQSSPHRRNSRRSERRPSGDKKTSEPKAMPDLNG -+-+-++--1
577543829699999978987487579589998999999999888989876576554725 YQIRV
22778
*** Prediction: binding residues are labeled with '+' and in red;
non-binding residues labeled with '-' and in green
*** Confidence: from level 0 (lowest) to level 9 (highest)

Expanded View Figure 4. Conservation of predicted RNA binding domains in mouse and human vasohibin-1.
A-B RNA binding domains in mouse (A) and human (B) VASH1 proteins were predicted using BindN software (https://omictools.com/bindn-2-tool)

C

time	$\mathbf{0} \mathbf{h}$	$\mathbf{4} \mathbf{h}$	$\mathbf{6} \mathbf{h}$	$\mathbf{8} \mathbf{h}$	$\mathbf{1 6} \mathbf{h}$	$\mathbf{2 4} \mathbf{h}$
VASH-1	100%	110%	99%	88%	78%	71%
p21	100%	17%	30%	ND	8%	2%

Expanded View Figure 5. VASH1 half life is superior to $\mathbf{2 4 h}$.

A-C VASH1 half-life determination experiment were performed by blocking protein synthesis with cycloheximide at $10 \mu \mathrm{~g} / \mathrm{mL}$, with time-course points at $0 \mathrm{~h}, 4 \mathrm{~h}, 6 \mathrm{~h}, 8 \mathrm{~h}, 16 \mathrm{~h}$ and 24 h . VASH1 (A) and P21 (B) protein stability was measured by capillary Simple Western with normalization to 0 h time-course point. P21 was used as a control for its short half-life (C).

Hantelys et al, EV Table 1

Hypoxia time	5 min		30 min		1h		2h		4h		8h		24h	
Gene name	RQ													
Akt1	1.60	± 0.13	1.30	± 0.06	1.20	± 0.15	1.36	± 0.25	-1.10	± 0.09	1.40	± 0.13	1.00	± 0.32
Ang	2.65	± 0.25	1.23	± 0.36	-1.04	± 0.12	1.24	± 0.04	1.24	± 0.12	1.09	± 0.08	1.26	± 0.28
Angpt1	5.51	± 0.17	1.20	± 0.30	1.19	± 0.07	1.90	± 0.49	2.43	± 0.36	1.56	± 0.43	-2.27	± 0.06
Angpt/4	1.03	± 0.02	-3.14	± 0.09	1.65	± 0.54	1.60	± 0.46	1.56	± 0.67	3.50	± 1.07	-1.37	± 0.35
Anpep	ND		-3.26	± 0.29	1.65	± 0.01	-8.05	± 0.06	-1.04	± 0.14	1.62	± 0.62	1.03	± 0.43
Apln (Apelin)	2.11		-19,21	± 0.01	-6.17	± 0.05	-29.04	± 0.01	36.77	± 5.59	109.98	± 6.98	335.72	± 57.52
Aplnr	ND		-2.36	± 0.03	-1.57	± 0.10	1.44	± 0.32	3.25	± 1.70	1.98	± 0.72	2.31	± 1.29
Atp2a2 (SERCA2)	1.46	± 0.08	1.21	± 0.13	1.26	± 0.14	1.50	± 0.01	1.20	± 0.06	1.84	± 0.18	1.48	± 0.32
Bai1	-1.52	± 0.19	2.90	± 0.91	1.17	± 0.06	1.65	± 0.52	1.36	± 0.13	2.05	± 0.60	1.04	± 0.30
Ccl2	ND		-1.09	± 0.49	1.76	± 0.46	-2.76	± 0.16	1.57	± 1.01	2.99	± 1.13	1.23	
CCl21a	ND		-32.39	± 0.01	2.97	± 0.85	-1.90	± 0.03	2.65	± 2.78	-2.27	± 0.21	1.32	± 0.39
Col18a1	1.66	± 0.71	1.58	± 0.39	1.14	± 0.14	1.45	± 0.04	-1.69	± 0.09	1.82	± 0.43	1.57	± 0.43
Col4a3	19.64	± 0.07	1.52	± 0.19	1.20	± 0.21	1.31	± 0.04	1.00	± 0.03	1.45	± 0.30	4.40	± 0.80
Ctgf	1.29	± 0.09	1.67	± 0.26	1.16	± 0.06	1.30	± 0.13	1.06	± 0.13	2.05	± 0.30	3.66	± 0.76
CxCl1	1.32	± 0.64	1.11	± 0.27	1.67	± 0.19	1.58	± 0.12	1.01	± 0.09	-1.43	± 0.08	-2.04	± 0.13
CxCl10	1.37	± 0.86	1.36	± 0.29	1.11	± 0.14	1.33	± 0.25	1.05	± 0.09	-1.02	± 0.13	-1.08	± 0.23
Cyr61	2.30	± 0.18	3.14	± 0.14	1.59	± 0.18	-1.18	± 0.07	-1.03	± 0.06	1.56	± 0.12	1.15	± 0.21
Edn1	-2.43	± 0.28	2.93	± 0.31	1.72	± 0.32	-1.4	± 0.24	-1.39	± 0.06	-1.33	± 0.09	1.04	± 0.26
Efna1	2.08	± 0.15	1.23	± 0.10	-1.52	± 0.12	-1.16	± 0.19	1.25	± 0.09	1.17	± 0.05	1.35	± 0.33
Efnb2	1.74	± 0.14	1.55	± 0.25	1.14	± 0.23	-1.03	± 0.18	1.57	± 0.18	3.71	± 0.61	1.65	± 0.42
Egf	ND		1.35	± 0.14	1.32	± 0.30	1.56	± 0.44	1.56	± 0.11	2.14	± 0.53	-1.61	± 0.35
Eng	2.96	± 0.94	1.55	± 0.39	1.18	± 0.19	-1.02	± 0.14	-1.11	± 0.15	2.27	± 0.33	1.65	± 0.34
Ephb4	2.22	± 0.13	1.67	± 0.16	-1.03	± 0.14	1.10	± 0.13	1.01	± 0.12	1.45	± 0.09	1.57	± 0.21
Erbb2 (Her2)	1.87	± 0.19	1.85	± 0.26	-1.01	± 0.18	1.16	± 0.18	1.32	± 0.11	1.00	± 0.18	1.34	± 0.09
F3	1.12	± 0.94	1.45	± 0.18	1.28	± 0.11	-1.57	± 0.23	-1.23	± 0.07	-1.09	± 0.10	-1.56	± 0.21
Fgf1 (aFGF)	-2.63	± 0.18	1.69	± 0.23	1.29	± 0.22	1.37	± 0.21	-1.32	± 0.05	-1.43	± 0.20	1.08	± 0.20
Fgf2 (bFGF)	1.06	± 0.04	1.76	± 0.13	-2.5	± 0.03	ND		-16.05	± 0.02	-2.05	± 0.07	1.43	± 0.35
Fgfr3	1.41	± 0.07	1.34	± 0.27	-1.08	± 0.12	1.38	± 0.31	1.47	± 0.27	3.93	± 0.55	2.69	± 0.39

Hypoxia time	5min		30min		1h		2h		4h		8h		24h	
Gene name	RQ													
Fn1	3.30	± 0.07	1.70	± 0.15	-1.02	± 0.17	1.16	± 0.01	-1.25	± 0.06	2.45	± 0.36	2.61	± 0.49
Hif1a	2.97	± 0.03	1.20	± 0.24	1.28	± 0.18	-1.42	± 0.26	-1.15	± 0.08	-1.06	± 0.21	-1.75	± 0.22
Hnrnpm	1.55	± 0.18	1.17	± 0.18	1.54	± 0.15	2.26	± 0.20	1.86	± 0.25	3.86	± 1.33	1.23	± 0.26
Hpse	ND		3.23	± 1.07	1.25	± 0.34	1.64	± 0.16	1.56	± 0.14	3.52	± 1.07	11.04	± 1.95
Id1	-1.61	± 1.12	1.58	± 0.18	2.63	± 0.50	3.01	± 1.27	4.23	± 0.19	2.01	± 0.40	1.79	± 0.64
Ifna1	ND		1.72	± 0.17	-1.09	± 0.06	1.73	± 0.07	2.19	± 0.33	3.11	± 0.25	1.31	± 0.49
lgf1	10.07	± 0.59	1.54	± 0.22	1.42	± 0.15	1.06	± 0.04	1.10	± 0.22	-1.25	± 0.14	-2.86	± 0.14
Igf1r	ND		ND		ND		ND		-3.17	± 0.08	2.37	± 0.20	5.14	± 0.32
Itgav	ND		1.19	± 0.11	-1.36	± 0.14	1.33	± 0.29	1.33	± 0.12	3.41	± 0.56	2.82	± 0.64
Itgb3	-4.33	± 0.30	1.34	± 0.19	-1.35	± 0.02	1.04	± 0.20	1.03	± 0.20	1.42	± 0.34	-1.37	± 0.10
Jag1	2.13	± 0.09	1.80	± 0.24	1.03	± 0.13	1.66	± 0.46	1.46	± 0.06	2.26	± 0.37	1.76	± 0.21
Mdk	1.14	± 0.21	2.45	± 0.17	-1.07	± 0.17	-1.27	± 0.00	1.16	± 0.32	1.52	± 0.38	-1.16	± 0.46
Mmp14	-1.77	± 0.03	1.30	± 0.22	1.02	± 0.06	-1.16	± 0.17	1.06	± 0.11	1.70	± 0.24	1.95	± 0.15
Mmp2	1.46	± 0.18	1.96	± 0.50	1.20	± 0.05	1.68	± 0.44	1.14	± 0.33	1.94	± 0.66	-1.23	± 0.37
Neat1	4.03	± 0.48	-1.17	± 0.23	-1.59	± 0.05	2.65	± 0.00	1.89	± 0.15	2.96	± 1.02	-1.16	± 0.29
Nos3	9.29		-4.01	± 0.10	2.00	± 0.54	-2.58	± 0.26	-1.30	± 0.14	-1.02	± 0.40	-1.32	± 0.19
Nrp1	2.46	± 0.06	1.32	± 0.17	1.04	± 0.15	-1.25	± 0.25	-1.10	± 0.07	1.47	± 0.25	1.10	± 0.16
Nrp2	2.50	± 0.07	1.55	± 0.05	1.02	± 0.12	1.02	± 0.12	1.14	± 0.19	1.72	± 0.32	1.83	± 0.39
P54nrb	2.96	± 0.09	1.58	± 0.42	1.21	± 0.20	1.42	± 0.29	1.22	± 0.13	1.66	± 0.30	1.11	± 0.23
PAI1 (SerpinE1)	-1.73	± 0.12	2.18	± 0.54	1.46	± 0.15	1.74	± 0.65	5.75	± 0.57	15.76	± 2.01	13.18	± 1.02
Pdgfa	3.65	± 0.43	1.45	± 0.18	1.29	± 0.26	1.59	± 0.36	1.71	± 0.11	1.97	± 0.35	1.54	± 0.34
Pecam1	1.48		-11.55	± 0.02	-1.09	± 0.24	2.86	± 1.08	2.09	± 0.77	2.70	± 1.72	2.60	± 0.86
Pf4	ND		-39.36	± 0.02	-1.79	± 0.33	-2.20	± 0.18	1.80	± 0.40	1.48	± 0.55	1.01	± 0.28
Pgf	ND		2.17	± 0.14	-1.36	± 0.19	-7.89	± 0.09	4.47	± 0.89	1.85	± 0.29	3.22	± 0.85
Plau (upa)	1.13	± 0.29	-1.04	± 0.24	-1.36	± 0.16	-1.31	± 0.13	1.25	± 0.30	1.58	± 0.26	1.24	± 0.24
Plg	ND		-2.71	± 0.26	-1.05		2.45	± 0.63	-1.35	± 0.19	-3.33	± 0.16	-2.94	± 0.25
Prox1	7.13	± 0.20	1.48	± 0.23	1.26	± 0.14	-1.13	± 0.14	-1.08	± 0.13	1.27	± 0.29	-1.72	± 0.07

Hypoxia time	5min		30min		1h		2h		4h		8h		24h	
Gene name	RQ													
Psf/Sfpq	1.45	± 0.17	1.37	± 0.09	1.30	± 0.19	1.22	± 0.08	1.10	± 0.15	1.55	± 0.59	-1.43	± 0.16
Pspc1	1.00	± 0.80	1.34	± 0.11	1.50	± 0.01	1.64	± 0.58	1.67	± 0.19	1.37	± 0.31	1.59	± 0.23
SerpinF1	ND		-31.89	± 0.02	-9.09	± 0.01	-1.91	± 0.33	-2.38	± 0.11	-1.14	± 0.17	1.02	± 0.37
Sphk1	ND		1.91	± 0.80	1.70	± 0.04	-1.51	± 0.19	1.30	± 0.11	2.78	± 1.20	1.17	± 0.43
Tek	1.97	± 1.55	1.98	± 0.23	1.55	± 0.41	1.48	± 0.20	1.24	± 0.14	-1.25	± 0.09	1.04	± 0.13
Tgfa	ND		-2.01	± 0.13	-7.94	± 0.05	-6.9	± 0.03	2.91	± 0.63	3.50	± 1.29	4.05	± 1.71
Tgfb1	-5.26	± 0.02	1.22	± 0.23	-1.45	± 0.14	1.03	± 0.10	-1.02	± 0.22	1.45	± 0.24	1.05	± 0.25
Tgfb2	-2.45	± 0.08	1.50	± 0.31	1.22	± 0.07	1.37	± 0.12	1.78	± 0.24	2.00	± 0.39	1.43	± 0.40
Tgfbr1	-2.03	± 0.57	1.33	± 0.16	1.28	± 0.25	1.48	± 0.14	1.86	± 0.34	2.23	± 0.77	-1.27	± 0.16
Thbs1	2.65	± 0.09	1.88	± 0.12	1.19	± 0.09	1.47	± 0.33	1.12	± 0.07	1.30	± 0.22	1.44	± 0.08
Thbs2	2.15	± 0.12	1.52	± 0.10	1.03	± 0.16	1.20	± 0.18	-1.20	± 0.01	1.21	± 0.15	-1.22	± 0.21
Timp1	-2.20	± 0.04	1.13	± 0.27	-1.32	± 0.29	-1.96	± 0.17	-1.28	± 0.12	-1.22	± 0.11	-2.33	± 0.19
Timp2	2.21	± 0.04	1.46	± 0.22	1.14	± 0.01	1.13	± 0.09	1.67	± 0.13	1.28	± 0.12	-1.69	± 0.15
Timp3	ND		2.70	± 0.43	1.40	± 0.23	1.98	± 0.46	1.09	± 0.16	1.04	± 0.29	1.11	± 0.17
Vash1	ND		ND		ND		ND		-3.01	± 0.14	1.56	± 0.30	1.10	± 0.08
Vegfa	2.90	± 0.02	1.40	± 0.18	1.20	± 0.12	1.72	± 0.50	4.48	± 0.43	9.12	± 1.48	4.71	± 0.69
Vegfb	1.38	± 0.04	1.33	± 0.10	-1.2	± 0.11	1.02	± 0.04	-1.09	± 0.07	1.04	± 0.22	-1.59	± 0.10
Vegfc	ND		ND		1.38	± 0.18	ND		-5.03	± 0.05	-11.37	± 0.03	-2.86	± 0.16
Vegfd	ND		-1.19	± 0.17	-1.73	± 0.22	-1.99	± 0.23	1.05	± 0.37	1.48	± 0.29	1.08	± 0.24
Vegfr2 (Kdr)	-2.05	± 0.05	1.25	± 0.13	1.07	± 0.04	1.43	± 0.21	1.31	± 0.10	2.29	± 0.38	-1.01	± 0.30

EV Table 1. Transcriptome of (lymph)angiogenic factor genes in hypoxic HL-1 cardiomyocytes.
Total RNA was purified from HL-1 cardiomyocytes submitted to increasing times from 5 min to 24 h of hypoxia at $1 \% \mathrm{O}_{2}$, as well as from normoxic cardiomyocytes as a control. cDNA was synthesized and used for a Fluidigm deltagene PCR array dedicated to genes related to (lymph)angiogenesis or stress (EV Table 6). Relative quantification (RQ) of gene expression in hypoxia was calculated using the $2^{-\Delta \Delta C T}$ method with normalization to 18 S and to normoxia. Standard deviation is indicated. When the RQ value is inferior to 1 , the fold change is expressed as $-1 / R Q$. ND means "non detected".

Hantelys et al. EV Table 2

Hypoxia: 4 h

	Total mRNA		Polysome bound mRNA		Fold change		Standard deviation	
Gene name	RQ 1	RQ 2	RQ 1	RQ 2	RQ(polysomes)/ RQ(total mRNA) 1	RQ(polysomes)/ RQ(total mRNA) 2	$\begin{gathered} \text { ST DEV } \\ 1 \end{gathered}$	$\begin{gathered} \text { ST DEV } \\ 2 \end{gathered}$
Akt1	0.54	0.63	1.12	1.45	2.07	2.29	0.07	0.05
Ang	0.22	0.59	0.54	0.44	2.42	-1.35	0.53	0.01
Angpt1	0.16	0.48	0.37	0.32	2.35	-1.48	0.67	0.01
Angpt/4	0.21	0.39	0.67	0.48	3.26	1.23	1.56	0.15
Anpep	0.41	0.40	1.39	1.59	3.41	3.96	0.21	0.83
Apelin	35.38	2.85	60.39	4.47	1.71	1.57	0.27	0.10
Aplnnr	3.25	ND	1.12	ND	-2.86	ND	0.35	ND
Atp2a2	0.31	0.45	0.6	0.84	1.94	1.84	0.34	0.07
Bai1	0.16	0.39	0.61	1.97	3.8	5.06	0.89	0.30
Ccl2	1.57	1.96	ND	ND	ND	ND	ND	ND
Ccl21a	2.65	ND						
Col18a1	0.45	0.57	1.18	0.88	2.64	1.53	0.61	0.19
Col4a3	0.37	0.51	0.87	1.15	2.36	2.24	0.41	0.13
Ctgf	0.29	0.48	0.9	0.13	3.15	-3.77	0.49	0.00
Cxcl1	0.1	0.56	0.22	0.29	2.21	-1.95	0.3	0.04
Cxcl10 (inp10)	0.19	0.43	0.74	0.13	3.96	-3.26	1.43	0.02
Cyr 61	0.45	0.72	0.91	0.62	2	-1.16	0.24	0.04
Edn1	0.27	0.48	0.68	0.68	2.49	1.42	0.55	0.03
Efna1	0.3	0.48	0.69	0.82	2.29	1.69	0.29	0.16
Efnb2	0.53	0.55	1.31	0.68	2.48	1.23	0.71	0.01
Egf	0.21	0.56	0.53	2.34	2.46	4.16	1.56	0.67
Eng	0.8	0.63	2.16	1.36	2.71	2.16	0.78	0.25
Ephb4	0.31	0.50	0.58	0.68	1.87	1.36	0.23	0.05
Erbb2(her2)	0.27	0.41	0.55	0.60	2.02	1.44	0.24	0.08
F3	0.44	0.78	1.1	0.51	2.48	-1.53	0.51	0.00
Fgf1	0.3	0.40	0.76	1.16	2.56	2.90	0.87	0.19
Fgf2	0.06	-	ND	-	ND	-	ND	-
Fgfr3	0.63	0.70	1.35	0.88	2.15	1.25	0.41	0.12
Fibrillarin	ND	0.61	ND	1.06	ND	1.73	ND	0.04
Fn1	0.48	0.46	1.13	0.57	2.34	1.23	0.3	0.04
Hif1a	0.52	0.55	0.97	0.90	1.88	1.63	0.36	0.18
Hif2a	ND	0.39	ND	0.64	ND	1.64	ND	0.14
Hnrnpm	0.74	0.68	1.84	1.42	2.48	2.08	0.5	0.01
Hpse	0.66	0.61	2.75	1.26	4.17	2.07	0.79	0.16
ld1	0.47	ND	0.9	0.87	1.93	ND	0.38	ND

Ifna1	0.34	ND	1.35	1.91	3.93	ND	1.38	ND
Igf1	0.22	0.40	0.44	0.79	2.03	1.97	0.54	0.13
Igf1r	1.05	0.79	1.97	1.49	1.88	1.88	0.06	0.06
Itgav	0.48	0.61	0.86	0.75	1.79	1.22	0.31	0.01
Itgb3	0.48	0.56	1.18	0.52	2.44	-1.07	0.4	0.09
Jag1	0.17	ND	0.35	ND	2.03	ND	0.38	ND
Mdk	0.47	ND	0.96	0.66	2.03	ND	0.35	ND
Mmp14	0.44	0.79	0.82	0.90	1.85	1.13	0.18	0.13
Mmp2	0.27	0.24	0.52	1.26	1.91	5.14	0.44	2.48
Neat-1	0.22	0.43	0.88	4.21	3.98	9.90	1.24	0.03
Nos3	1.08	0.20	0.84	2.35	-1.30	11.86	0.1	4.49
Nrp1	0.54	0.48	0.9	0.35	1.67	-1.37	0.22	0.00
Nrp2	0.51	0.60	0.96	0.78	1.88	1.29	0.18	0.09
P54nrb	0.57	0.73	1.77	1.32	3.12	1.81	0.78	0.09
Pai-1	4.77	2.31	9.15	5.12	1.92	2.22	0.27	0.27
Pdgfa	0.41	0.59	0.99	1.33	2.42	2.24	0.48	0.06
Pecam1	0.55	0.93	1.18	0.95	2.15	1.03	1.37	0.15
Pf4	0.44	0.54	0.86	0.47	1.97	-1.15	1.07	0.03
Pgf	0.65	0.20	1.53	3.70	2.36	18.38	0.83	2.53
PLAU(upa)	0.31	0.36	0.68	0.73	2.16	2.03	0.5	0.59
Plg	0.67	ND	0.17	ND	-3.85	ND	0.77	ND
Prox1	0.33	0.51	0.72	1.52	2.22	2.95	0.27	0.51
Psf/sfpq	0.44	0.65	1.21	0.75	2.74	1.15	0.8	0.02
Pspc1	0.36	0.47	0.8	0.79	2.19	1.68	0.43	0.03
Serpinf1	0.31	0.12	1.79	0.89	5.7	7.61	2.05	0.95
Sphk1	0.58	0.63	0.45	2.32	-1.30	3.65	0.12	1.09
Tek	0.22	0.44	0.54	1.15	2.43	2.62	0.95	0.24
Tgfa	0.85	0.43	2.09	1.03	2.45	2.40	0.31	1.00
Tgfb1	0.29	0.52	0.74	0.57	2.52	1.08	0.31	0.03
Tgfb2	0.3	0.63	0.72	0.52	2.39	-1.22	0.39	0.04
Tgfbr1	0.44	0.52	0.81	0.51	1.86	-1.02	0.57	0.02
Thbs1	0.31	0.48	0.62	0.38	2.03	-1.27	0.3	0.23
Thbs2	0.35	0.47	0.7	0.67	1.98	1.43	0.28	0.01
Timp1	0.27	0.46	0.63	0.43	2.36	-1.07	0.34	0.15
Timp2	0.27	0.52	0.69	0.90	2.55	1.73	0.42	0.04
Timp3	0.22	0.57	0.44	0.77	1.95	1.35	0.31	0.02
Vash1	-	0.33	-	2.28	-	6.86	-	4.27
Vegfa	1.82	2.09	5.38	2.28	2.95	1.09	0.7	0.04
Vegfb	2.94	0.59	8.39	1.40	2.85	2.37	0.43	0.07
Vegfc	1.05	-	ND	-	ND	-	ND	-
Vegfd	0.23	0.48	0.56	0.85	2.44	1.78	0.96	0.23
Vegfr2 (kdr)	0.25	0.37	0.58	0.57	2.29	1.55	0.55	0.15

Hypoxia: 24 h

Gene name	Total mRNA	Polysome bound mRNA	Fold change	Standard deviation
Akt1	1.80	5.69	3.17	0.22
Ang	1.88	2.38	1.26	0.15
Angpt1	1.17	2.62	2.24	0.08
Angpt/4	ND	ND	ND	ND
Anpep	4.68	ND	ND	ND
Apelin	31.49	ND	ND	ND
Aplnnr	ND	ND	ND	ND
Atp2a2	3.34	2.73	-1.22	0.12
Bai1	1.39	ND	ND	ND
Ccl2	ND	ND	ND	ND
Ccl21a	ND	0.83	ND	ND
Col18a1	4.29	12.60	2.94	0.27
Col4a3	5.14	9.53	1.85	0.21
Ctgf	1.83	2.75	1.50	0.07
Cxcl1	1.09	1.04	-1.06	0.23
Cxcl10 (inp10)	10.42	ND	ND	ND
Cyr 61	4.57	5.52	1.21	0.12
Edn1	2.40	2.13	-1.12	0.04
Efna1	4.02	2.79	-1.44	0.04
Efnb2	2.86	3.03	1.06	0.07
Egf	2.33	ND	ND	ND
Eng	4.50	ND	D	ND
Ephb4	2.67	3.37	1.26	0.01
Erbb2(her2)	2.26	4.96	2.20	0.34
F3	3.72	5.21	1.40	0.06
Fgf1	1.00	ND	ND	ND
Fgf2	-	-	-	-
Fgfr3	5.01	9.20	1.84	0.35
Fibrillarin	2.13	2.49	1.17	0.22
Fn1	ND	ND	ND	ND
Hif1a	1.24	2.75	2.21	0.21
Hif2a	1.56	ND	ND	ND
Hnrnpm	1.25	7.91	6.34	0.76
Hpse	17.68	7.70	-2.30	0.07
Id1	1.75	ND	ND	ND
Ifna1	ND	ND	ND	ND
Igf1	1.73	1.42	-1.22	0.07
Igf1r	4.65	4.94	1.06	0.00
Itgav	5.01	7.29	1.46	0.17
Itgb3	1.99	15.07	7.56	0.49

Jag1	ND	ND	ND	ND
Mdk	2.08	ND	ND	ND
Mmp14	3.04	4.42	1.45	0.17
Mmp2	2.88	ND	ND	ND
Neat-1	3.20	3.44	1.08	0.17
Nos3	ND	ND	ND	ND
Nrp1	3.04	2.84	-1.07	0.12
Nrp2	4.42	5.27	1.19	0.07
P54nrb	2.55	7.61	2.99	0.08
Pai-1	18.19	ND	ND	ND
Pdgfa	2.90	10.05	3.46	0.34
Pecam1	11.37	ND	ND	ND
Pf4	1.16	ND	ND	ND
Pgf	6.82	ND	ND	ND
PLAU(upa)	4.42	2.28	-1.94	0.00
Plg	ND	ND	ND	ND
Prox1	1.10	3.35	3.04	0.28
Psf/sfpq	0.86	4.59	5.32	0.05
Pspc1	1.23	1.73	ND	ND
Serpinf1	15.49	ND	ND	ND
Sphk1	6.11	ND	ND	ND
Tek	4.07	5.49	1.35	0.16
Tgfa	4.75	ND	ND	ND
Tgfb1	3.41	5.67	1.66	0.14
Tgfb2	4.72	1.80	-2.63	0.06
Tgfbr1	2.08	2.37	1.14	0.23
Thbs1	5.35	4.11	-1.30	0.10
Thbs2	3.77	3.29	-1.15	0.01
Timp1	2.75	2.05	-1.34	0.12
Timp2	2.12	1.94	-1.09	0.14
Timp3	5.20	ND	ND	ND
Vash1	7.43	ND	ND	ND
Vegfa	8.15	14.73	1.81	0.19
Vegfb	1.94	6.41	3.31	0.34
Vegfc	-	-	-	-
Vegfd	2.77	ND	ND	ND
Vegfr2 (kdr)	3.04	2.28	-1.33	0.13

EV Table 2. Translatome of (lymph)angiogenic factor genes in hypoxic HL-1 cardiomyocytes. Polysomes were purified on sucrose gradient from HL-1 cardiomyocytes either in normoxia or after 4 h or after 24 h of hypoxia at $1 \% \mathrm{O}_{2}$, as described in Materials and Methods. RNA was purified from polysome-bound and from cell lysate (before gradient loading). cDNA and PCR array was performed as in Figure 1 and in EV Table 1. Relative quantification (RQ) of gene expression in hypoxia was calculated using the $2^{-\Delta C T}$ method
(polysomal RNA/total RNA normalized to normoxia). The 4 h time of hypoxia array was repeated in two independent arrays (RQ1 and RQ2). The values presented in Figures 2 and 3 correspond to RQ1 values. For each array, gene expression analysis was performed in three replicates. Standard deviation is indicated. When the $R Q$ value is inferior to 1 , the fold change is expressed as $-1 / R Q$. ND means "non detected". "-" means that the gene was not included in the array.

Hantelys et al, EV Table 3

A/ Kinetics of FGF1 IRES activity in hypoxia (30 min to 24 h)

Normoxia

LucF	A	B	C	Mean	SD
3Omin/ 16h	1379893	1430614	1379161	1396556	29498
1 h	1125637	1523078	1518366	1389027	228115
2 h	1261000	1469939	1356217	1362385	104606
4 h	1154339	1436444	1532732	1374505	196654
6h	1357302	1583219	1525817	1488779	117424
$8 \mathrm{~h} / 24 \mathrm{~h}$	1772344	1668645	1416015	1619001	183278

LucR	A	B	C	Mean	SD
30min/ 16h	7946845	8739701	8113491	8266679	418038
1h	7848356	8700328	8205407	8251364	427841
2h	7763820	8766358	8196176	8242118	502846
4 h	6957128	8160444	8944535	8020702	1001046
6h	8571896	9444154	9233090	9083047	455075
8h/ 24h	8896288	8402478	7130206	8142991	911187

Hypoxia

LucF	A	B							C	Mean	SD
3Omin	1758060	1725309	1674165	1719178	42282						
1 h	1475799	1562285	1591315	1543133	60092						
2 h	1728494	1889719	1927154	1848456	105562						
4 h	1891657	1744526	2255783	1963989	263192						
6 h	1815024	2151709	2541526	2169420	363575						
8 h	2143188	2354330	2311918	2269812	111691						
16 h	1860159	1762647	1940120	1854309	88881						
24 h	1733141	1936317	2026315	1898591	150184						

LucR	A		B	C	Mean
SD					
30 min	11000223	10866380	10294397	10720333	374893
1 h	10257343	10319905	10828619	10468622	313332
2 h	11652705	11702822	12633961	11996496	552629
4 h	10450445	10725351	12210832	11128876	947030
6 h	10117963	10586170	10958961	10554365	421400
8 h	10592865	10001462	10350135	10314821	297279
16 h	12250023	11839180	12615589	12234930	388424
24 h	14326454	13708075	16512683	14849071	1473534

LucF/ LucR

		Biological replicates					IRES activity: LucF/LucR *100		t-test	Significance	H/N
Time	Condition	A	B	C	Mean	SD	Mean	SD			
30min	Normoxia	0.1736	0.1637	0.1700	0.1691	0.0050	16.91	0.50			
	Hypoxia	0.1598	0.1588	0.1626	0.1604	0.0020	16.04	0.20	0.040990334	*	0.95
1h	Normoxia	0.1434	0.1751	0.1850	0.1678	0.0217	16.78	2.17			
	Hypoxia	0.1439	0.1514	0.1470	0.1474	0.0038	14.74	0.38	0.10537981		0.88
2h	Normoxia	0.1624	0.1677	0.1655	0.1652	0.0026	16.52	0.26			
	Hypoxia	0.1483	0.1615	0.1525	0.1541	0.0067	15.41	0.67	0.022944683	*	0.93
4h	Normoxia	0.1659	0.1760	0.1714	0.1711	0.0051	17.11	0.51			
	Hypoxia	0.1810	0.1627	0.1847	0.1761	0.0118	17.61	1.18	0.319890477		1.03
6h	Normoxia	0.1583	0.1676	0.1653	0.1637	0.0048	16.37	0.48			
	Hypoxia	0.1794	0.2033	0.2319	0.2049	0.0263	20.49	2.63	0.046232591	*	1.25
8h	Normoxia	0.1992	0.1986	0.1986	0.1988	0.0004	19.88	0.04			
	Hypoxia	0.2023	0.2354	0.2234	0.2204	0.0167	22.04	1.67	0.080176714		1.11
16h	Normoxia	0.1736	0.1637	0.1700	0.1691	0.0050	16.91	0.50			
	Hypoxia	0.1518	0.1489	0.1538	0.1515	0.0025	15.15	0.25	0.007194029	**	0.90
24h	Normoxia	0.1992	0.1986	0.1986	0.1988	0.0004	19.88	0.04			
	Hypoxia	0.1210	0.1413	0.1227	0.1283	0.0112	12.83	1.12	0.004341785	***	0.65
	Normoxia mean	0.1672	0.1748	0.1760	0.1726	0.0131	17.26	1.31			
										$\begin{aligned} & *=p<0.05 \\ & * *=p<0.01 \\ & * * *=p<0.005 \end{aligned}$	

B/ FGF1 IRES

LucF

Experiment	Time	Condition	A	B	C	Mean	SD	Experiment	Time	Condition	A	B	C	Mean	SD
1	4 h	Normoxia	77310	91175	63445	77310	13865	1	4h	Normoxia	604174	507891	700457	604174	96283
		Hypoxia	248088	192876	303300	248088	55212			Hypoxia	996143	899215	1093070	996143	96928
	8h	Normoxia	3721	5041	2401	3721	1320		8h	Normoxia	12580	13628	11532	12580	1048
		Hypoxia	10760	12896	8624	10760	2136			Hypoxia	35746	46304	25188	35746	10558
	24h	Normoxia	231071	198199	263943	231071	32872		24h	Normoxia	1010280	1134589	885971	1010280	124309
		Hypoxia	138279	153534	123025	138279	15255			Hypoxia	662414	716741	608087	662414	54327
2	4h	Normoxia	52728	58279	56285	55764	2812	2	4h	Normoxia	452118	345763	472356	423412	68003
		Hypoxia	138626	171997	152394	154339	16770			Hypoxia	714978	915991	757182	796050	105993
	8h	Normoxia	72622	72505	73578	72902	589		8h	Normoxia	700579	710733	712400	707904	6398
		Hypoxia	70529	72640	33059	58743	22268			Hypoxia	631364	634140	633140	632881	1406
	24h	Normoxia	208454	220996	210670	213373	6694		24h	Normoxia	1021135	1036550	1020270	1025985	9160
		Hypoxia	100770	113450	99785	104668	7621			Hypoxia	519324	514720	769988	601344	146068
3	4h	Normoxia	59485	53665	53223	55458	3495	3	4 h	Normoxia	495500	529252	547526	524093	26394
		Hypoxia	110552	157006	149316	138958	24899			Hypoxia	754720	974680	917680	882360	114154
	8h	Normoxia	121992	112068	132044	122035	9988		8h	Normoxia	912286	860603	855579	876156	31390
		Hypoxia	118486	109078	112198	113254	4792			Hypoxia	826664	827015	822262	825314	2649
	24h	Normoxia	226971	199587	262787	229782	31694		24h	Normoxia	956252	896252	789825	880776	84286
		Hypoxia	105268	70597	90603	88823	17404			Hypoxia	455239	386245	351256	397580	52910

LucF/ LucR

				Biological replicates		Mean	SD	AU : LucF/LucR *100 Man				
Experiment	Time	Condition	A	B	C			Mean	SD	t-test	Significance	H/N
1	4h	Normoxia	0.1280	0.1795	0.0906	0.1327	0.0447	13.27	4.47	0.061		1.86
		Hypoxia	0.2490	0.2145	0.2775	0.2470	0.0315	24.70	3.15			
	8h	Normoxia	0.2958	0.3699	0.2082	0.2913	0.0809	29.13	8.09	0.415		1.05
		Hypoxia	0.3010	0.2785	0.3424	0.3073	0.0324	30.73	3.24			
	24h	Normoxia	0.2287	0.1747	0.2979	0.2338	0.0618	23.38	6.18	0.292		0.89
		Hypoxia	0.2088	0.2142	0.2023	0.2084	0.0060	20.84	0.60			
2	4h	Normoxia	0.1166	0.1686	0.1192	0.1348	0.0293	13.48	2.93	0.049	*	1.44
		Hypoxia	0.1939	0.1878	0.2013	0.1943	0.0068	19.43	0.68			
	8h	Normoxia	0.1037	0.1020	0.1033	0.1030	0.0009	10.30	0.09	0.335		0.90
		Hypoxia	0.1117	0.1145	0.0522	0.0928	0.0352	9.28	3.52			
	24h	Normoxia	0.2041	0.2132	0.2065	0.2079	0.0047	20.79	0.47	0.204		0.87
		Hypoxia	0.1940	0.2204	0.1296	0.1813	0.0467	18.13	4.67			
3	4h	Normoxia	0.1201	0.1014	0.0972	0.1062	0.0122	10.62	1.22	0.027	*	1.48
		Hypoxia	0.1465	0.1611	0.1627	0.1568	0.0089	15.68	0.89			
	8h	Normoxia	0.1337	0.1302	0.1543	0.1394	0.0130	13.94	1.30	0.406		0.98
		Hypoxia	0.1433	0.1319	0.1365	0.1372	0.0058	13.72	0.58			
	24h	Normoxia	0.2374	0.2227	0.3327	0.2643	0.0597	26.43	5.97	0.090		0.85
		Hypoxia	0.2312	0.1828	0.2579	0.2240	0.0381	22.40	3.81			

Final values		AU : LucF/LucR *100		ratio	t-test	Significance
Time	Condition	Total mean	SD			
4h	Normoxia	12.46	3.07		0.003	***
	Hypoxia	19.94	4.27	1.60		
8h	Normoxia	17.79	9.57		0.954	
	Hypoxia	17.91	10.10	1.01		
24h	Normoxia	23.53	4.95		0.072	
	Hypoxia	20.46	3.56	0.87		

C/ FGF2 IRES

LucF

Experiment	Time	Condition	A	B	C	Mean	SD
1	4h	Normoxia	89743	98302	91878	93308	4455
		Hypoxia	109876	111252	98034	106387	7267
	8h	Normoxia	146589	149931	129865	142128	10751
		Hypoxia	124357	130350	152345	135684	14737
	24h	Normoxia	116853	120498	124567	120639	3859
		Hypoxia	182431	173530	165431	173797	8503
2	4h	Normoxia	104059	102906	102632	103199	757
		Hypoxia	109548	111252	120034	113611	5627
	8h	Normoxia	84185	90263	75623	83357	7355
		Hypoxia	85227	82565	78265	82019	3513
	24h	Normoxia	226539	198256	161526	195440	32598
		Hypoxia	245261	256154	198782	233399	30470
3	4h	Normoxia	80652	78568	70687	76636	5256
		Hypoxia	85698	90565	84568	86944	3187
	8h	Normoxia	80256	77895	79568	79240	1214
		Hypoxia	80268	82568	79635	80824	1543
	24h	Normoxia	178258	170625	168262	172382	5224
		Hypoxia	258684	298365	224265	260438	37081

LucR

LucF/ LucR

			Biological replicates			Mean	SD	AU : LucF/LucR *100				
Experiment	Time	Condition	A	B	C			Mean	SD	t-test	Significance	H/N
1	4h	Normoxia	0.1427	0.1630	0.1808	0.1621	0.0190	16.21	1.90	0.010	**	1.48
		Hypoxia	0.2402	0.2215	0.2604	0.2407	0.0194	24.07	1.94			
	8h	Normoxia	0.1673	0.1480	0.1651	0.1602	0.0106	16.02	1.06	0.021	*	1.35
		Hypoxia	0.2445	0.2029	0.2014	0.2163	0.0244	21.63	2.44			
	24h	Normoxia	0.2026	0.1685	0.2508	0.2073	0.0414	20.73	4.14	0.270		0.88
		Hypoxia	0.2338	0.1478	0.1675	0.1831	0.0450	18.31	4.50			
2	4h	Normoxia	0.1517	0.1520	0.1636	0.1558	0.0067	15.58	0.67	0.003	*	1.54
		Hypoxia	0.2226	0.2436	0.2525	0.2396	0.0154	23.96	1.54			
	8h	Normoxia	0.1301	0.1271	0.1154	0.1242	0.0078	12.42	0.78	0.010	*	1.13
		Hypoxia	0.1439	0.1483	0.1295	0.1406	0.0098	14.06	0.98			
	24h	Normoxia	0.3299	0.2926	0.2571	0.2932	0.0364	29.32	3.64	0.040	*	0.72
		Hypoxia	0.1974	0.2435	0.1885	0.2098	0.0295	20.98	2.95			
3	4h	Normoxia	0.1760	0.1973	0.1744	0.1826	0.0128	18.26	1.28	0.035	*	1.39
		Hypoxia	0.2216	0.2538	0.2832	0.2529	0.0308	25.29	3.08			
	8h	Normoxia	0.1677	0.1591	0.1574	0.1614	0.0055	16.14	0.55	0.023	*	1.22
		Hypoxia	0.1886	0.2072	0.1965	0.1974	0.0093	19.74	0.93			
	24h	Normoxia	0.3081	0.3101	0.2992	0.3058	0.0058	30.58	0.58	0.292		0.94
		Hypoxia	0.2643	0.3480	0.2504	0.2876	0.0528	28.76	5.28			

Final values		AU : LucF/LucR *100				
Time	Condition	Total mean	SD	ratio	t-test	Significance
4h	Normoxia	16.68	1.70			
4	Hypoxia	24.44	2.08	1.46	0.000	****
8 h	Normoxia	14.86	1.96			
8 h	Hypoxia	18.48	3.69	1.24	0.0009	****
24	Normoxia	26.88	5.41			
24	Hypoxia	22.68	6.03	0.84	0.047	*

D/ VEGFA IRES a

LucF

Experiment	Time	Condition	A	B	C	Mean	SD
11	4h	Normoxia	106987	7470	80384	64947	51523
		Hypoxia	198708	10543	112982	107411	94206
	8h	Normoxia	140987	13381	229805	128058	108790
		Hypoxia	291799	15874	217091	174921	142714
	24h	Normoxia	95467	11501	66548	57839	42655
		Hypoxia	43998	3278	18093	21790	20610
2	4h	Normoxia	80568	75356	78658	78194	2637
		Hypoxia	187525	175862	168568	177318	9562
	8h	Normoxia	100578	96235	97268	98027	2269
		Hypoxia	186568	202525	164570	184554	19057
	24h	Normoxia	102540	110402	98758	103900	5940
		Hypoxia	60568	55845	68025	61479	6141
3	4h	Normoxia	68256	60658	58698	62537	5049
		Hypoxia	105364	121231	135682	120759	15165
	8h	Normoxia	230264	214235	221658	222052	8022
		Hypoxia	402562	380256	351214	378011	25748
	24 h	Normoxia	125214	123214	110254	119561	8122
		Hypoxia	70658	65252	64154	66688	3482

LucR

LucF/ LucR

			Biological replicates					$\begin{aligned} & \hline \text { AU : LucF/LucR } \\ & * 100 \end{aligned}$				
Experiment	Time	Condition	A	B	C	Mean	SD	Mean	SD	t-test	Significance	H/N
		Normoxia	0.1918	0.0120	0.1228	0.1089	0.0907	10.89	9.07			
	4 r	Hypoxia	0.1432	0.0084	0.1144	0.0887	0.0710	8.87	7.10	0.146		0.81
	8 h	Normoxia	0.1283	0.0083	0.1455	0.0940	0.0748	9.40	7.48			
1	8h	Hypoxia	0.1991	0.0124	0.1603	0.1239	0.0986	12.39	9.86	0.143		1.32
	24h	Normoxia	0.0766	0.0071	0.0397	0.0411	0.0348	4.11	3.48			
	2	Hypoxia	0.0417	0.0037	0.0183	0.0213	0.0192	2.13	1.92	0.081		0.52
	4h	Normoxia	0.1572	0.1643	0.1974	0.1730	0.0214	17.30	2.14			
	4 r	Hypoxia	0.1903	0.1780	0.1948	0.1877	0.0087	18.77	0.87	0.144		1.09
2	8 h	Normoxia	0.1326	0.1406	0.1378	0.1370	0.0041	13.70	0.41			
2	8 h	Hypoxia	0.1820	0.2055	0.1623	0.1832	0.0216	18.32	2.16	0.030	*	1.34
	24 h	Normoxia	0.1167	0.1120	0.1137	0.1141	0.0024	11.41	0.24			
	24h	Hypoxia	0.0540	0.0557	0.0689	0.0595	0.0081	5.95	0.81	0.004	***	0.52
	4h	Normoxia	0.1847	0.1522	0.1448	0.1606	0.0212	16.06	2.12			
	4 h	Hypoxia	0.1203	0.1393	0.1568	0.1388	0.0183	13.88	1.83	0.218		0.86
3	8 h	Normoxia	0.3509	0.3283	0.3173	0.3322	0.0171	33.22	1.71			
3	8 h	Hypoxia	0.4584	0.4463	0.3998	0.4348	0.0309	43.48	3.09	0.005	**	1.31
	24h	Normoxia	0.1651	0.1609	0.1531	0.1597	0.0061	15.97	0.61			
	24 h	Hypoxia	0.0724	0.0662	0.0679	0.0688	0.0032	6.88	0.32	0.001	****	0.43

Final values	Condition	AU : LucF/LucR *100				
Time		Total mean	SD	ratio	t-test	Significance
4h	Normoxia	14.75	5.61		0.718	
	Hypoxia	13.84	5.66	0.94		
8h	Normoxia	18.77	11.64		0.001	***
	Hypoxia	24.73	15.24	1.32		
24h	Normoxia	10.50	5.47		0.0002	****
	Hypoxia	4.99	2.42	0.48		

E/ VEGFA IRES b

LucF

Experiment	Time	Condition	A	B	C	Mean	SD
1	4h	Normoxia	140874	98149	100854	113292	23925
		Hypoxia	100976	91883	93743	95534	4804
	8h	Normoxia	159873	208754	170983	179870	25624
		Hypoxia	378983	513871	389750	427535	74963
	24h	Normoxia	499864	537099	556098	531020	28606
		Hypoxia	350980	439788	345230	378666	53011
2	4h	Normoxia	102368	112327	106258	106984	5019
		Hypoxia	86358	87652	85365	86458	1147
	8h	Normoxia	130254	112584	112547	118462	10212
		Hypoxia	298654	305265	300245	301388	3451
	24h	Normoxia	498567	465856	475554	479992	16801
		Hypoxia	345268	344568	324265	338034	11929
3	4h	Normoxia	104241	124251	114212	114235	10005
		Hypoxia	80242	78658	81542	80147	1444
	8h	Normoxia	124212	110226	102265	112234	11110
		Hypoxia	310245	302142	298265	303551	6113
	24h	Normoxia	487568	452028	435982	458526	26400
		Hypoxia	285475	284658	235268	268467	28754

LucR

Experiment	Time	Condition	A	B	C	Mean	SD
1	4h	Normoxia	1087650	2019783	1876580	1661338	501961
		Hypoxia	2098750	2993873	3542712	2878445	728868
	8h	Normoxia	2178659	2269092	2157890	2201880	59126
		Hypoxia	2765909	3127386	2987652	2960316	182282
	24h	Normoxia	3987600	3794801	3654780	3812394	167106
		Hypoxia	3265890	3614913	2764579	3215127	427434
2	4h	Normoxia	986256	968586	987584	980809	10606
		Hypoxia	1987584	1876258	1785625	1883156	101156
	8h	Normoxia	1587568	1658258	1785547	1677124	100329
		Hypoxia	2258586	2457268	2358625	2358160	99342
	24h	Normoxia	3685658	3545658	3365245	3532187	160631
		Hypoxia	2998586	3058248	3124025	3060286	62744
3	4h	Normoxia	876548	857625	985562	906578	69053
		Hypoxia	1685265	1457235	1471457	1537986	127746
	8h	Normoxia	1325328	1245258	1475682	1348756	116985
		Hypoxia	2425241	2574625	2145258	2381708	217969
	24h	Normoxia	3258654	3214651	3254478	3242594	24290
		Hypoxia	3021214	2875625	2874246	2923695	84457

LucF/ LucR

			Biological replicates					$\begin{aligned} \hline \text { AU : } & \text { LucF/LucR } \\ & * 100 \end{aligned}$				
Experiment	Time	Condition	A	B	C	Mean	SD	Mean	SD	t-test	Significance	H/N
	4h	Normoxia	0.1295	0.0486	0.0537	0.0773	0.0453	7.73	4.53			
	4 h	Hypoxia	0.0481	0.0307	0.0265	0.0351	0.0115	3.51	1.15	0.083		0.45
1	8h	Normoxia	0.0734	0.0920	0.0792	0.0815	0.0095	8.15	0.95			
1	8 h	Hypoxia	0.1370	0.1643	0.1305	0.1439	0.0180	14.39	1.80	0.005	***	1.77
	24h	Normoxia	0.1254	0.1415	0.1522	0.1397	0.0135	13.97	1.35			
	24 h	Hypoxia	0.1075	0.1217	0.1249	0.1180	0.0093	11.80	0.93	0.008	**	0.84
	4h	Normoxia	0.1038	0.1160	0.1076	0.1091	0.0062	10.91	0.62			
	4 h	Hypoxia	0.0434	0.0467	0.0478	0.0460	0.0023	4.60	0.23	0.001	***	0.42
2	8 h	Normoxia	0.0820	0.0679	0.0630	0.0710	0.0099	7.10	0.99			
2	8 h	Hypoxia	0.1322	0.1242	0.1273	0.1279	0.0040	12.79	0.40	0.003	**	1.80
	24h	Normoxia	0.1353	0.1314	0.1413	0.1360	0.0050	13.60	0.50			
	24 h	Hypoxia	0.1151	0.1127	0.1038	0.1105	0.0060	11.05	0.60	0.026	*	0.81
	4h	Normoxia	0.1189	0.1449	0.1159	0.1266	0.0159	12.66	1.59			
	4 h	Hypoxia	0.0476	0.0540	0.0554	0.0523	0.0042	5.23	0.42	0.007	**	0.41
3	8 h	Normoxia	0.0937	0.0885	0.0693	0.0838	0.0129	8.38	1.29			
3	8 h	Hypoxia	0.1279	0.1174	0.1390	0.1281	0.0108	12.81	1.08	0.037	*	1.53
	24h	Normoxia	0.1496	0.1406	0.1340	0.1414	0.0079	14.14	0.79			
	24 h	Hypoxia	0.0945	0.0990	0.0819	0.0918	0.0089	9.18	0.89	0.003	**	0.65

Final values		AU : LucF/LucR * 100		ratio	t-test	Significance
Time	Condition	Total mean	SD			
4h	Normoxia	10.43	3.25		0.0000	****
	Hypoxia	4.45	0.98	0.43		
8 h	Normoxia	7.88	1.11		0.0000	****
	Hypoxia	13.33	1.33	1.69		
24h	Normoxia	13.90	0.85		0.0002	****
	Hypoxia	10.68	1.37	0.77		

F/ VEGFC IRES

LucF

Experiment	Time	Condition	A	B	C	Mean	SD
1	4h	Normoxia	17645	16237	15672	16518	1016
		Hypoxia	21673	18377	17834	19295	2078
	8h	Normoxia	21673	18377	17834	19295	2078
		Hypoxia	27742	18374	19875	21997	5032
	24h	Normoxia	23451	21422	22765	22546	1032
		Hypoxia	30194	22544	26876	26538	3836
2	4h	Normoxia	15245	14582	13258	14362	1012
		Hypoxia	19875	18625	17485	18662	1195
	8h	Normoxia	20235	20146	19826	20069	215
		Hypoxia	26587	21457	20358	22801	3325
	24h	Normoxia	21568	20148	18759	20158	1405
		Hypoxia	28568	27532	26352	27484	1109
3	4h	Normoxia	18750	16985	19754	18496	1402
		Hypoxia	17258	16238	14587	16028	1348
	8h	Normoxia	16987	17258	16784	17010	238
		Hypoxia	30268	31245	30216	30576	580
	24h	Normoxia	19867	20235	28220	22774	4720
		Hypoxia	19287	24568	22586	22147	2668

LucR

Experiment	Time	Condition	A	B	C	Mean	SD
1	4h	Normoxia	287654	316145	365786	323195	39540
		Hypoxia	302234	354485	345290	334003	27894
	8h	Normoxia	425763	455482	480013	453753	27166
		Hypoxia	403294	341909	375634	373612	30742
	24h	Normoxia	420632	391071	375100	395601	23102
		Hypoxia	452093	342612	410973	401893	55302
2	4h	Normoxia	195685	185247	182457	187796	6973
		Hypoxia	298538	290265	284242	291015	7177
	8h	Normoxia	390584	382546	367856	380329	11525
		Hypoxia	390268	352632	342268	361723	25258
	24h	Normoxia	410214	402158	402387	404920	4586
		Hypoxia	402358	412586	398574	404506	7249
3	4h	Normoxia	205236	204325	210214	206592	3170
		Hypoxia	280142	270268	262874	271095	8664
	8h	Normoxia	356258	321252	384276	353929	31577
		Hypoxia	410226	401236	410256	407239	5199
	24h	Normoxia	398268	396216	381568	392017	9107
		Hypoxia	398265	396246	362142	385551	20298

LucF/ LucR

			Biological replicates					$\begin{aligned} & \text { AU : LucF/LucR } \\ & * 100 \end{aligned}$				
Experiment	Time	Condition	A	B	C	Mean	SD	Mean	SD	t-test	Significance	H/N
		Normoxia	0.0613	0.0514	0.0428	0.0518	0.0093	5.18	0.93			
		Hypoxia	0.0717	0.0518	0.0516	0.0584	0.0115	5.84	1.15	0.083		1.13
	8 h	Normoxia	0.0509	0.0403	0.0372	0.0428	0.0072	4.28	0.72			
	8 h	Hypoxia	0.0688	0.0537	0.0529	0.0585	0.0089	5.85	0.89	0.003	**	1.37
	24h	Normoxia	0.0558	0.0548	0.0607	0.0571	0.0032	5.71	0.32			
	24 r	Hypoxia	0.0668	0.0658	0.0654	0.0660	0.0007	6.60	0.07	0.026	*	1.16
	4h	Normoxia	0.0779	0.0787	0.0727	0.0764	0.0033	7.64	0.33			
	4 h	Hypoxia	0.0666	0.0642	0.0615	0.0641	0.0025	6.41	0.25	0.004	***	0.84
		Normoxia	0.0518	0.0527	0.0539	0.0528	0.0011	5.28	0.11			
2	8 h	Hypoxia	0.0681	0.0608	0.0595	0.0628	0.0046	6.28	0.46	0.045	*	1.19
	24h	Normoxia	0.0526	0.0501	0.0466	0.0498	0.0030	4.98	0.30			
	24 h	Hypoxia	0.0710	0.0667	0.0661	0.0679	0.0027	6.79	0.27	0.001	**	1.37
	4h	Normoxia	0.0914	0.0831	0.0940	0.0895	0.0057	8.95	0.57			
	4 h	Hypoxia	0.0616	0.0601	0.0555	0.0591	0.0032	5.91	0.32	0.010	*	0.66
3	8h	Normoxia	0.0477	0.0537	0.0437	0.0484	0.0051	4.84	0.51			
3	8 h	Hypoxia	0.0738	0.0779	0.0737	0.0751	0.0024	7.51	0.24	0.002	***	1.55
	24h	Normoxia	0.0499	0.0511	0.0740	0.0583	0.0136	5.83	1.36			
	24 h	Hypoxia	0.0484	0.0620	0.0624	0.0576	0.0079	5.76	0.79	0.462		0.99

Final values	Condition	AU : LucF/LucR *100				
Time		Total mean	SD	ratio	t-test	Significance
4h	Normoxia	7.26	1.75		0.062	****
	Hypoxia	6.05	0.67	0.83		
8h	Normoxia	4.80	0.62		0.0002	
	Hypoxia	6.55	0.91	1.36		
24h	Normoxia	5.50	0.82		0.031	*
	Hypoxia	6.38	0.64	1.16		

G/ VEGFD IRES

LucF

Experiment	Time	Condition	A	B	C	Mean	SD
1	4h	Normoxia	1123453	1092536	1242342	1152777	79091
		Hypoxia	1087648	1129996	1250434	1156026	84457
	8h	Normoxia	899766	837544	657889	798400	125600
		Hypoxia	1141352	977778	855973	991701	143198
	24h	Normoxia	1187460	1382536	1289532	1286509	97573
		Hypoxia	521596	706269	506468	578111	111246
2	4h	Normoxia	125682	123122	120268	123024	2708
		Hypoxia	110236	112025	99856	107372	6571
	8h	Normoxia	89526	75862	78588	81325	7232
		Hypoxia	112252	85211	92252	96572	14028
	24h	Normoxia	147214	132250	145258	141574	8134
		Hypoxia	50231	48215	47528	48658	1405
3	4h	Normoxia	1252025	985986	1025254	1087755	143610
		Hypoxia	1452638	1258326	1425325	1378763	105192
	8h	Normoxia	1418588	1325682	1312022	1352097	57986
		Hypoxia	1912212	1858562	1757552	1842775	78529
	24h	Normoxia	1547252	1457258	1325206	1443239	111685
		Hypoxia	485625	465258	475528	475470	10184

LucR

Experiment	Time	Condition	A	B	C	Mean	SD
1	4h	Normoxia	11987690	12069833	12069833	12042452	47425
		Hypoxia	10657845	12059630	11656849	11458108	721716
	8h	Normoxia	13799872	14349216	12764891	13637993	804472
		Hypoxia	11678964	10969410	12345654	11664676	688233
	24h	Normoxia	14908768	16101138	15779780	15596562	616939
		Hypoxia	8765789	9428743	9076890	9090474	331686
2	4h	Normoxia	1265226	1125268	1125363	1171952	80777
		Hypoxia	1025236	989265	1125236	1046579	70453
	8h	Normoxia	1325662	1685236	1256364	1422421	230227
		Hypoxia	1152635	1232568	1152332	1179178	46237
	24h	Normoxia	1658235	1751820	1256250	1555435	263293
		Hypoxia	895652	952325	875252	907743	39934
3	4h	Normoxia	10252682	9253258	11220214	10242051	983521
		Hypoxia	11212241	13258233	12258225	12242900	1023082
	8h	Normoxia	12452120	11572582	11457582	11827428	544046
		Hypoxia	10214785	9865236	11525852	10535291	875474
	24h	Normoxia	10475685	11452232	10254362	10727426	637380
		Hypoxia	9258352	8562265	8956825	8925814	349078

LucF/ LucR

			Biological replicates					$\begin{array}{\|c\|} \hline \text { AU : LucF/LucR } \\ \\ * 100 \end{array}$				
Experiment	Time	Condition	A	B	C	Mean	SD	Mean	SD	t-test	Significance	H/N
1	4h	Normoxia	0.0937	0.0905	0.1029	0.0957	0.0064	9.57	0.64	0.039	*	1.06
		Hypoxia	0.1021	0.0937	0.1073	0.1010	0.0068	10.10	0.68			
	8h	Normoxia	0.0652	0.0584	0.0515	0.0584	0.0068	5.84	0.68	0.014	*	1.46
		Hypoxia	0.0977	0.0891	0.0693	0.0854	0.0146	8.54	1.46			
	24h	Normoxia	0.0796	0.0859	0.0817	0.0824	0.0032	8.24	0.32	0.024	*	0.77
		Hypoxia	0.0595	0.0749	0.0558	0.0634	0.0101	6.34	1.01			
2	4h	Normoxia	0.0993	0.1094	0.1069	0.1052	0.0052	10.52	0.52	0.413		0.98
		Hypoxia	0.1075	0.1132	0.0887	0.1032	0.0128	10.32	1.28			
	8h	Normoxia	0.0675	0.0450	0.0626	0.0584	0.0118	5.84	1.18	0.011	*	1.41
		Hypoxia	0.0974	0.0691	0.0801	0.0822	0.0142	8.22	1.42			
	24h	Normoxia	0.0888	0.0755	0.1156	0.0933	0.0204	9.33	2.04	0.035	*	0.58
		Hypoxia	0.0561	0.0506	0.0543	0.0537	0.0028	5.37	0.28			
3	4h	Normoxia	0.1221	0.1066	0.0914	0.1067	0.0154	10.67	1.54	0.290		1.06
		Hypoxia	0.1296	0.0949	0.1163	0.1136	0.0175	11.36	1.75			
	8h	Normoxia	0.1139	0.1146	0.1145	0.1143	0.0004	11.43	0.04	0.018	*	1.54
		Hypoxia	0.1872	0.1884	0.1525	0.1760	0.0204	17.60	2.04			
	24h	Normoxia	0.1477	0.1272	0.1292	0.1347	0.0113	13.47	1.13	0.004	***	0.40
		Hypoxia	0.0525	0.0543	0.0531	0.0533	0.0010	5.33	0.10			

Final values		AU : LucF/LucR *100		ratio	t-test	Significance
Time	Condition	Total mean	SD			
4h	Normoxia	10.25	1.01		0.435	****
	Hypoxia	10.59	1.28	1.03		
8h	Normoxia	7.70	2.88		0.0008	
	Hypoxia	11.45	4.83	1.49		
24h	Normoxia	10.35	2.67		0.002	***
	Hypoxia	5.68	0.72	0.55		

H/ c-myc IRES

LucF

Experiment	Time	Condition	A	B	C	Mean	SD
1	4h	Normoxia	2567872	3651734	3454332	3224646	577283
		Hypoxia	2029809	3147437	3256210	2811152	678845
	8h	Normoxia	3546872	3161720	3478284	3395625	205450
		Hypoxia	3508730	2749546	2876921	3045066	406564
	24h	Normoxia	7768312	8684097	6987312	7813240	849284
		Hypoxia	7513771	5782962	7981903	7092879	1158317
2	4h	Normoxia	356812	375210	351278	361100	12529
		Hypoxia	275895	265826	245628	262450	15413
	8h	Normoxia	368258	450268	452025	423517	47864
		Hypoxia	325120	301245	298547	308304	14625
	24h	Normoxia	358582	258625	247583	288263	61148
		Hypoxia	486250	460258	410258	452255	38623
3	4h	Normoxia	360212	410251	420215	396893	32155
		Hypoxia	310215	325230	312020	315822	8198
	8h	Normoxia	415231	398652	350652	388178	33539
		Hypoxia	350655	316522	310222	325800	21755
	24h	Normoxia	362025	352014	342062	352034	9982
		Hypoxia	658250	568260	487210	571240	85559

LucR

Experiment	Time	Condition	A	B	C	Mean	SD
1	4h	Normoxia	29784420	27508124	26098324	27796956	1859945
		Hypoxia	20988822	19862926	21341228	20730992	772141
	8h	Normoxia	24900832	29630539	30983221	28504864	3193622
		Hypoxia	23987042	24750406	25987577	24908342	1009576
	24h	Normoxia	36987908	35408692	23788902	32061834	7207949
		Hypoxia	18898912	13608479	16988904	16498765	2679057
2	4h	Normoxia	3025325	2758632	2658985	2814314	189411
		Hypoxia	2025128	2212570	2325201	2187633	151583
	8h	Normoxia	2856985	2140236	2562120	2519780	360245
		Hypoxia	2653213	2012251	2120124	2261863	343184
	24h	Normoxia	3856658	4021522	4010698	3962959	92219
		Hypoxia	4582632	4658230	4215120	4485327	237040
3	4h	Normoxia	2879258	2586258	2586258	2683925	169164
		Hypoxia	2145251	2014214	2147542	2102336	76324
	8h	Normoxia	3125368	2582321	2836124	2847938	271716
		Hypoxia	2785624	2658325	2625258	2689736	84672
	24h	Normoxia	4025215	4085368	4125214	4078599	50342
		Hypoxia	4658284	4075250	4875251	4536262	413724

LucF/ LucR

LucF			Biological replicates					$\begin{aligned} \hline \text { AU : } & \text { LucF/LucR } \\ & * 100 \end{aligned}$				
Experiment	Time	Condition	A	B	C	Mean	SD	Mean	SD	t-test	Significance	H/N
	4h	Normoxia	0.0862	0.1328	0.1324	0.1171	0.0268	11.71	2.68			
	4 h	Hypoxia	0.0967	0.1585	0.1526	0.1359	0.0341	13.59	3.41		*	1.16
1	8 h	Normoxia	0.1424	0.1067	0.1123	0.1205	0.0192	12.05	1.92			
1	8 h	Hypoxia	0.1463	0.1111	0.1107	0.1227	0.0204	12.27	2.04			1.02
	24h	Normoxia	0.2100	0.2453	0.2937	0.2497	0.0420	24.97	4.20	0.0002		
	24 h	Hypoxia	0.3976	0.4250	0.4698	0.4308	0.0365	43.08	3.65		***	1.73
	4h	Normoxia	0.1179	0.1360	0.1321	0.1287	0.0095	12.87	0.95	0.307		
	4	Hypoxia	0.1362	0.1201	0.1056	0.1207	0.0153	12.07	1.53			0.94
2	8h	Normoxia	0.1289	0.2104	0.1764	0.1719	0.0409	17.19	4.09	0.081		
2	8 h	Hypoxia	0.1225	0.1497	0.1408	0.1377	0.0139	13.77	1.39	0.081		0.80
	24h	Normoxia	0.0930	0.0643	0.0617	0.0730	0.0173	7.30	1.73	0.031		
	24 h	Hypoxia	0.1061	0.0988	0.0973	0.1007	0.0047	10.07	0.47		*	1.38
	4h	Normoxia	0.1251	0.1586	0.1625	0.1487	0.0206	14.87	2.06	. 443		
	4 r	Hypoxia	0.1446	0.1615	0.1453	0.1505	0.0095	15.05	0.95	0.443		1.01
3	8h	Normoxia	0.1329	0.1544	0.1236	0.1370	0.0158	13.70	1.58	121		
3	8 h	Hypoxia	0.1259	0.1191	0.1182	0.1210	0.0042	12.10	0.42			0.88
	24h	Normoxia	0.0899	0.0862	0.0829	0.0863	0.0035	8.63	0.35			
	24 h	Hypoxia	0.1413	0.1394	0.0999	0.1269	0.0234	12.69	2.34		*	1.47

Final values	Condition	AU : LucF/LucR *100				
Time		Total mean	SD	ratio	t-test	Significance
4h	Normoxia	13.15	2.23		0.536	
	Hypoxia	13.57	2.32	1.03		
8h	Normoxia	14.31	3.30		0.066	
	Hypoxia	12.71	1.48	0.89		
24h	Normoxia	13.63	8.82		0.010	*
	Hypoxia	21.95	16.04	1.61		

LucF

Experiment	Time	Condition	A	B	C	Mean	SD
11	4h	Normoxia	1698754	1842473	1523420	1688216	159787
		Hypoxia	1768791	1848197	1212320	1609769	346483
	8h	Normoxia	2453998	2217362	2178642	2283334	149062
		Hypoxia	1098422	1388910	1053523	1180285	182064
	24h	Normoxia	2987530	3331188	3097981	3138900	175445
		Hypoxia	3208903	3551010	3254552	3338155	185746
2	4h	Normoxia	1852625	1798265	1658985	1769958	99875
		Hypoxia	1658986	1725542	1875258	1753262	110769
	8h	Normoxia	2547240	2580264	1985520	2371008	334250
		Hypoxia	1658250	1752220	1425632	1612034	168128
	24h	Normoxia	2658568	2784240	2645280	2696029	76681
		Hypoxia	2985568	3025106	3685210	3231961	393022
3	4h	Normoxia	1985625	1895032	1758320	1879659	114430
		Hypoxia	1254214	1158220	1258210	1223548	56611
	8h	Normoxia	2652124	2758210	2650210	2686848	61809
		Hypoxia	1452025	1252620	1158203	1287616	150005
	24h	Normoxia	2875620	2750215	2458982	2694939	213748
		Hypoxia	3025240	2920213	3857920	3267791	513758

LucR

Experiment	Time	Condition	A	B	C	Mean	SD
11	4h	Normoxia	1897642	1739558	1676425	1771208	113954
		Hypoxia	1497245	1416380	1123235	1345620	196789
	8h	Normoxia	2453210	2270622	1987430	2237087	234694
		Hypoxia	1345232	1423859	1125412	1298168	154690
	24h	Normoxia	2234123	2586791	3142423	2654446	457914
		Hypoxia	2076764	1593918	2090845	1920509	282924
2	4 h	Normoxia	1325225	1250265	1325052	1300181	43228
		Hypoxia	998565	865258	1125580	996468	130174
	8h	Normoxia	2025872	2125672	2110253	2087266	53725
		Hypoxia	1257253	1520252	1427856	1401787	133423
	24h	Normoxia	1987562	2358268	2145214	2163681	186042
		Hypoxia	2125147	2235126	1989987	2116753	122785
3	4h	Normoxia	2015210	1989570	1997212	2000664	13164
		Hypoxia	1328620	1285210	1275487	1296439	28290
	8h	Normoxia	2251012	2325026	2452012	2342683	101657
		Hypoxia	1352210	1245253	1124210	1240558	114072
	24h	Normoxia	2454210	2325620	2332210	2370680	72414
		Hypoxia	2452012	2145217	2052982	2216737	208908

LucF/ LucR

			Biological replicates					$\begin{array}{\|c\|} \hline \text { AU : LucF/LucR } \\ \\ * 100 \end{array}$				
Experiment	Time	Condition	A	B	C	Mean	SD	Mean	SD	t-test	Significance	H/N
1	4h	Normoxia	0.8952	1.0592	0.9087	0.9544	0.0910	95.44	9.10	0.010	*	1.25
		Hypoxia	1.1814	1.3049	1.0793	1.1885	0.1130	118.85	11.30			
	8h	Normoxia	1.0003	0.9765	1.0962	1.0244	0.0634	102.44	6.34	0.091		0.89
		Hypoxia	0.8165	0.9755	0.9361	0.9094	0.0828	90.94	8.28			
	24h	Normoxia	1.3372	1.2878	0.9859	1.2036	0.1902	120.36	19.02	0.057	*	1.48
		Hypoxia	1.5451	2.2278	1.5566	1.7765	0.3909	177.65	39.09			
2	4h	Normoxia	1.3980	1.4383	1.2520	1.3628	0.0980	136.28	9.80	0.020	*	1.30
		Hypoxia	1.6614	1.9943	1.6660	1.7739	0.1909	177.39	19.09			
	8h	Normoxia	1.2574	1.2139	0.9409	1.1374	0.1715	113.74	17.15	0.340		1.02
		Hypoxia	1.3189	1.1526	0.9984	1.1567	0.1603	115.67	16.03			
	24h	Normoxia	1.3376	1.1806	1.2331	1.2504	0.0799	125.04	7.99	0.116		1.23
		Hypoxia	1.4049	1.3534	1.8519	1.5367	0.2741	153.67	27.41			
3	4h	Normoxia	0.9853	0.9525	0.8804	0.9394	0.0537	93.94	5.37	0.469		1.00
		Hypoxia	0.9440	0.9012	0.9865	0.9439	0.0426	94.39	4.26			
	8h	Normoxia	1.1782	1.1863	1.0808	1.1484	0.0587	114.84	5.87	0.049	*	0.90
		Hypoxia	1.0738	1.0059	1.0302	1.0367	0.0344	103.67	3.44			
	24h	Normoxia	1.1717	1.1826	1.0544	1.1362	0.0711	113.62	7.11	0.136		1.31
		Hypoxia	1.2338	1.3613	1.8792	1.4914	0.3418	149.14	34.18			

Final values	Condition	AU : LucF/LucR *100				
Time		Total mean	SD	ratio	t-test	Significance
4h	Normoxia	108.55	22.02		0.011	*
	Hypoxia	130.21	38.62	1.20		
8h	Normoxia	110.34	11.29		0.062	**
	Hypoxia	103.42	14.11	0.94		
24h	Normoxia	119.68	11.99		0.007	
	Hypoxia	160.16	32.22	1.34		

J/ Control without IRES (hairpin)

LucF						Mean	SD
			Biological replicates				
Experiment	Time	Condition	A	B	C		
1	8h	Normoxia	2082	2490	1901	2158	302
		Hypoxia	1937	3592	2125	2552	906
	24h	Normoxia	2262	1232	1692	1729	516
		Hypoxia	2063	3082	4574	3240	1263
2	8h	Normoxia	4203	4273	3176	3884	614
		Hypoxia	5664	1600	4811	4025	2143
3	8h	Normoxia	5188	5900	6041	5710	457
		Hypoxia	3270	4499	ND	3884	2015

LucR

			Biological replicates				
Experiment	Time	Condition	A	B	C	Mean	SD
1	8h	Normoxia	91411	99067	79850	90109	9674
		Hypoxia	98850	86360	51747	78986	24402
	24h	Normoxia	95815	50314	72697	72942	22752
		Hypoxia	49263	68572	104606	74147	28090
2	8h	Normoxia	155803	142912	127454	142056	14194
		Hypoxia	100895	73120	120118	98044	23628
3	8h	Normoxia	163996	161011	198604	174537	20896
		Hypoxia	69871	75614	ND	72743	41668

LucF/ LucR

			Biological replicates					$\begin{array}{\|c} \text { AU: LucF/LuR } \\ \\ * 100 \end{array}$			
Experiment	Time	Condition	A	B	C	Mean	SD	Mean	SD	t-test	Significance
	8 h	Normoxia	0.0228	0.0251	0.0238	0.0239	0.0012	2.39	0.12		
1	8 h	Hypoxia	0.0236	0.0245	0.0233	0.0238	0.0006	2.38	0.06	0.833	
1	24h	Normoxia	0.0196	0.0416	0.0411	0.0341	0.0126	3.41	1.26		
	24 h	Hypoxia	0.0419	0.0449	0.0437	0.0435	0.0015	4.35	0.15	0.280	
2	8 h	Normoxia	0.0270	0.0299	0.0249	0.0273	0.0025	2.73	0.25		
2	8 h	Hypoxia	0.0561	0.0219	0.0400	0.0394	0.0171	3.94	1.71	0.381	
3	8 h	Normoxia	0.0316	0.0366	0.0304	0.0329	0.0033	3.29	0.33		
3	8 h	Hypoxia	0.0468	0.0595	ND	0.0531	0.0090	5.31	0.90	0.127	

EV Table 3. IRES activities at different times of hypoxia in HL-1 cells.
Luciferase activity values and IRES activities corresponding to the experiments presented Figure 4.
A/ Kinetics of FGF1 IRES activity from 30 min to 24 h
B-I/ Activities of the different IRES at $4 \mathrm{~h}, 8 \mathrm{~h}$ and 24 h of hypoxia
$\mathrm{J} /$ Negative control with a lentivector containing a hairpin (no IRES) between the two luciferase cistrons.

Biological replicates are indicated as A, B and C, whereas independent experiments are indicated as $1,2,3$. Means, standard deviation (SD) and t-test of IRES activities were calculated. The panels "final values" correspond to means of all experiments (nine values) which are reported in the histograms of Figure 4. P-value significance is indicated: ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *}<0.001,{ }^{* * * *} \mathrm{p}<0.0001$.

A. Proteins bound to FGF1 IRES

(0 h)		
Symbol Full name	Score Spectres	Peptides
ASAP2_MOUSE Arf-GAP with SH3 domain, ANK repeatand PH domain-containing protein 2 OS=Mus muscalus $G=$ =Aspp2PE= $2 S V=3$	29	1
KCTDg_MOUSE BTB/POZ domain-containing protein KCTDO OS=Mus musculus G N $=$ Kcd9PE=2SV=1	23	$1 \quad 1$
EMAL6MOUSE Echinoderm microtubule-associated protein-like $60 S=$ Mus musculus G Q $=E m 16 P E=2 S V=1$	35	$1 \quad 1$
	53	$1 \quad 1$
H11_MOUSE Histone H1.10S=Mus musculus GN=Hist1h1a PE= $15 \mathrm{SV}=2$	28	$1 \quad 1$
GPR19_MOUSE Probable G-protein coupled receptor 190S=Mus musculus GN=Gpr19PE=2SV=2	22	11
GUF1_MOUSE Translation factor Gufi, mitcchondrial $O S=$ Mus musculus $G N=G u f 1 P E=1 S V=1$	13	$4 \quad 1$

(4 h)			
Symbol	Full name	Score Spectres	Peptides
ASAP2_MOUSE	Af-GAP with SH3domain, ANK repeat and PH domain-containing protein 2OS=Mus muscalus $G N=A$ Aspp $2 P E=15 V=3$	51	22
ATPA_MOUSE		52	22
CCCL_MOUSE	C2domain-containing protein 2-like OS=Mus musculus $G N=$ C2dd2 P P $=15 \mathrm{SV}=3$	25	$1 \quad 1$
PDE88_MOUSE		23	$1 \quad 1$
GVIN1_MOUSE	Inteferon-induced verlarge GTPase $10 S=$ Mus musculus $\mathrm{SN}=6 \mathrm{Gvin} 1 \mathrm{PE}=15 \mathrm{SV}=1$	29	$1 \quad 1$
ACOX1_MOUSE	Peroxisomal acyl-coenyme A oxidase 10S=Mus musalus $\mathrm{SN}_{2}=A \operatorname{cox} 1 \mathrm{PE}=15 \mathrm{SV}=5$	23	$1 \quad 1$
TaM41_MOUSE		23	1 1
ALBU_MOUSE	Serum abumin $0 S=M u s$ muscalus $G N=A l b P E=15 V=3$	35	1 1
TCPG_MOUSE	T-complex protein 1 subunitgamma 0 S=Mus musculus $G N=C+C 3 P E=15 V=1$	28	$1 \quad 1$
VASH1_MOUSE	Vasohibin-10S=Mus muscalus $\mathrm{GN}=$ Vashh $\mathrm{PE}=2$ 2SV=4	26	21

(4 h)		
Symbol Full name	Score Spectres	Peptides
ASAP2_MOUSE Arf-GAP withSH3domain, ANK repeatand PH domain-containing protein 2 OS=Mus musculus $6 N=A$ Asp2PPE=1SV $=3$	48	1
EMAL6MOUSE Edhinoderm microtubule-assodiated protein-like $60 S=$ Mus musculus $G N=E m 16 P E=2 S V=1$	$43 \quad 2$	1
FXLL4_MOUSE F-box/LRR-repeat protein 140S=Mus muscalus 6 N=Fbx $14 P \mathrm{P}=25 \mathrm{SV}=1$	15	1
BRCC3_MOUSE Lys-63-specific deubiquitinase BRCC360S=Mus muscalus GN= $=$ Brcc3 PE=1SV=1	$20 \quad 1$	1
MYBA_MOUSE Myb-related protein $\mathrm{OS}=$ =Mus muscalus $G N=$ =Mybli $P E=15 V=2$	$26 \quad 1$	1
NUDC2_MOUSE NudCdomain-containing protein 2OS=Mus musculus 6 N=Nuddcd2 $P E=15 \mathrm{SV}=1$	$17 \quad 1$	1
GUF1_MOUSE Translation factor Gufi, mitochondrial OS=M	$14 \quad 25$	1
TMPSD_MOUSE Transmembrane protease seine 130S=Mus musalus $6 N=T$ Imprssi3PE=2SV$=2$	15 1	1

(8 h)		
Symbol Full name	Score Spectres	Peptides
ACTA MOUSE Actin, articsmooth muscle OS=Mus musalus $6 N=A$ Acta $2 \mathrm{P}=15 \mathrm{SV}=1$	36	1
ADTI_MOUSE ADP/ATP translocase $105=$ Mus muscalus $6 N=S 12534 P E=15 V=4$	32	1
ASAP2_MOUSE Aff-GAP withSH3domain, ANK repeatand PH domain-containing protein $205=$ Mus musculus $6=$ Assp2PE=1SV=3	51	2
	22	1
CSPRS_MOUSE Component of Spil10-rs $05=$ =Mus muscalus $G N=$ CSprs $P E=2 S V=1$	$23 \quad 1$	1
MCM8_MOUSE DNA helicase MCM80S=Mus musalus $9 N=$ Mam8PE=1SV $=3$	$25 \quad 1$	1
EMAL6_MOUSE Edinoderm microtubule-associated protein-like $605=$ Mus muscalus $G N=E m 16 P E=2 S V=1$	34	1
GXAP1_NOUSE Gkinase-anchoring protein $10 S=$ Mus musculus $6 N=G$ Gkp $1 P E=15 V=1$	$26 \quad 1$,
HIT_MOUSE Histone Hitos=Mus musalus GN=HisthhtlPE=1SV=4	$41 \quad 1$,
ALBU_MOUSE Serumalbumin $05=$ Mus muscalus G N=Alb $P E=15 V=3$	41	1
SPE39_MOUSE Spermatogenesis-defective protein 39 homolog OS=Mus musculus $6 N=$ Vipas39PE=1SV=1	$20 \quad 1$	1
GUF1_MOUSE Translation factor Guf1, mitochondrial $0 S=$ Mus musculus $G N=G U 41 \mathrm{P}=15 \mathrm{SV}=1$	$22 \quad 1$	1
VASH1_MOUSE Vasohibin-10S=Mus musculus $6 N=V$ Vash $1 P E=2 S V=4$	28	1

Normoxia (8 h)		
Symbol Full name	Score Spectres	Peptides
RM17_MOUSE 39S Sibosomal protein L17, mitochondrial OS=Mus musalus GN=Mrpl17PE=1SV=1	26	1
RS10_MOUSE 40Sribosomal protein S100S=Mus musalus $6 N=$ Rpsi10PE=1 $15 V=1$	42	1
RS19_MOUSE 40Sribosomal proteinS190S=Mus musalus $6 N=$ Rpss19PE=1 $15=3$	$41 \quad 1$	1
	$28 \quad 1$,
	57	2
ADT1_MOUSE ADP/ATP translocase 10S=Mus musalus $6 N=S$ LCL5a $4 \mathrm{PE}=15 \mathrm{SV}=4$	604	5
ASAP2_MOUSE Arf-GAP with SH3domain, ANK repeat and PHdomain-containing protein 2OS=Mus musculus GN=Assp2PE=1SV=3	83	5 1
ATPA_MOUSE ATP synthase subunit alpha, mitochondrial $0 S=$ Mus musculus $G W=A$ atpa $1 P \mathrm{P}=15 \mathrm{IV}=1$	515 14	10
	$582 \quad 15$	11
ATPG_MOUSE ATP synthase subunit gamm, mitochondrial OS=Mus muscalus $\mathrm{GN}=\mathrm{Atp} 5 \mathrm{Cc} 1 \mathrm{PE}=1 \mathrm{SV}=1$	67	3
ATPO_MOUSE ATP synthase subunit 0 , mitochondrial $0 S=$ Mus muscalus G N$=A$ At 50 P $\mathrm{P}=15 \mathrm{SV}=1$	$579 \quad 20$	9
ATAD3_MOUSE ATPase familyAAA domain-containing protein $305=M$ Ls muscalus $G N=A$ Atd $3 \mathrm{PE}=15 \mathrm{SV}=1$	19	1
CE225_MOUSE Centrosomal protein of 295k0a OS=Mus musalus $\mathrm{GN}=$ Cep $295 \mathrm{PE}=1 \mathrm{SV}=3$	32	4
CERU_MOUSE Cerrloplasmin OS=Mus musculus $\mathrm{N}=$ CP PEE=1SV=2	106	5
CC178_MOUSE Coiled-coil domain-containing protein 1780S=Mus musculus $6 N=$ Ccdac178PE=2SV=2	21	1
TR133_MOUSE E3ubiquitin-protein ligase TRIM33 OS=Mus muscalus GN=Trim33PE=1 $15=2$	78	4
	30	1
HNPPU_MOUSE Heterogeneous nudear ibonudeoprotein UOS=Mus musculus 6 N=Hnnpu PE=1SV=1	72	2
H12-MOUSE Histone H1.2OS=Mus musalus GN=HisthhicPE=1SV=2	146	3
H2AV_MOUSE Histone H2A.VOS=Mus muscalus GN=H2afv PE=1 $15 V=3$	60	2
H281B_MOUSE Histone H2Btype 1 -BOS=Mus musculus $6 N=H$ Histlih2bb PE=1 $15=3$	203	4
H4_MOUSE Histone H4OS=Mus muscalus GN=Hist1h4a PE=1SV=2	25	1
HXA1_MOUSE Homeobox protein Hox-A10S=Mus musculus $6 \mathrm{~N}=$ =Hoxal $P E=15 \mathrm{SV}=2$	25	1
1TH2_MOUSE Inter-alpha-typsin inhibitor heary chain H2OS=Musmusalus $6 N=1$ tih2PE=1SV=1	43	2
MYBA_MOUSE Myb-reated protein $\mathrm{AOS}=$ Musmusalus $G N=$ Mybl1 $P E=15 \mathrm{SV}=2$	26	1
	35	1
MPCP_MOUSE Phosphate carier rotein, mitochondrial OS=Mus musalus $6 N=512533 P \mathrm{P}=15 \mathrm{SV}=1$	51	1
P1XA3_MOUSE Plexin-A3OS=Mus musculus $6 N=P$ Pxna3PE=1 $15 V=2$	25	1
	67	2
BSN_MOUSE Protein bassoon OS=Mus musculus $6 N=85 \mathrm{SE} \mathrm{PE}=15 \mathrm{SV}=4$	25	1
RTKN2_MOUSE Rhotekin-2OS=Musmusalus $6 N=R$ Rkn2PE=1 $15 V=2$	29	1
RUNX1_MOUSE Runt-related transcription factor $105=$ Mus muscalus 6 N $=$ Runx1P $P=15 \mathrm{SV}=1$	25	1
AT2A2_MOUSE Sarcoplasmic/endoplasmicretialum calcium ATPase 2 OS=Mus muscalus $G W=A$ Appa2 $2 P E=15 \mathrm{~V}=2$	$28 \quad 1$	
SPTC2_MOUSE Serine palmitoytransfersese $205=$ Mus musalus GN=Sptce $2 P E=15 V=2$	125	8
SOPR_MOUSE Serumdeprivation-response protein $0 S=$ MUs musculus $G N=S d p p P E=15 V=3$	56	2
SUCA_MOUSE Succinyl-CoA ligse [ADP/GDP-forming] subunitalpha, mitochondrial OS=Mus musculus $6 N=5$ Sudg1 $1 P=15 \mathrm{FV}=4$	25	1
SAE1_MOUSE SUMO-ativating enyme subunit $10 S=$ Mus musculus $G N=S$ See $1 P E=15 V=1$	21	1
GUF1_MOUSE Translation factor Guf1, mitochondrial OS=Mus muscalus GN=Guf1 PE=1SV=1	17	1
ECHA_MOUSE Trifunctional enymm subunit alpha, mitochondrial $O S=$ Mus musalus $G N=H$ Hahha $P E=15 V=1$	119	3
ECHB_MOUSE Trifunctional enyme subunit beta, mitochondrial OS=Mus musclus GN=Hadhb PE= $15 V=1$	81	3
TNNT2_MOUSE TroponiTT, ardiacmusde OS=Musmusalus $9 N=T$ Tnt2 $2 P E=15 V=2$	23	1
RS27A_MOUSE Ubiquitin-4OS Sibosomal protein S27a 0 S=Mus musalus $G N=$ RPs27a PE=1 $15 V=2$	35	1
CN159_MOUSE UPFO317 protein C14ori159 homolog, mitochondrial $05=$ Mus musalus $P E=15 V=1$	26	1
VDAC1_ MOUSE Voltage-dependent anion-selective channel protein $10 S=$ Mus musculus G N$=$ Vdac1 $1 P E=15 V=3$	48	1
VDAC_ MOUSE Voltage-dependent anion-selective channel protein $20 S=M$ usmusculus $G N=V$ daca $2 P E=15 V=2$	64	2

B. Proteins bound to VEGFA IRES

Normoxia (0 h)				
Symbol	Full name	Score Spectres	Peptides	
NUCL_MOUSE	Nucleolin OS=Mus musculus $6 \mathrm{~N}=\mathrm{Nc}$ PEE=1 $\mathrm{SV}=2$	209	7	1
ASAP2_MOUSE	Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 OS=Mus muscalus GN=Asap2PE=1 SV=3	28	3	1
RN181_MOUSE	E3ubiquitin-protein ligase RNF181 OS=Mus muscalus $6 \times=$ Rnf181 PE= $=1 \mathrm{SV}=1$	26	3	1
CSPRS_MOUSE	Component of Sp100-rs OS=Mus musculus $\mathrm{GN}=$ Csprs $\mathrm{PE}=2 \mathrm{SV}=1$	23	4	1
C2C2L_MOUSE	C2domain-containing protein 2 -like $05=$ Mus musculus $\mathrm{SN}=22 \mathrm{cdz} / \mathrm{PE}=1 \mathrm{SV}=3$	14	1	1
SAE1_MOUSE	SUMO-ativating enzyme subunit $10 S=$ Mus musculus $G N=5$ ee1 $P E=15 V=1$	14	1	1

Hypoxia (4 h)				
Symbol	Full name	Score Spectres	Peptides	
ATPA_MOUSE	ATP synthase subunit alpha, mitochondrial $0 S=M u s$ musculus $G N=A$ Atp $5 a 1 P \mathrm{P}=1 \mathrm{SV}=1$	42	1	1
ASAP2_MOUSE	Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 OS=Mus musclus $G N=A$ sap2PE= $15 V=3$	38	3	1
RN181_MOUSE	E3ubiquitin-protein ligase RNF1810S=Mus muscalus $\mathrm{GN}=$ Rnf181PE=1 $1 \mathrm{SV}=1$	30	2	1
DOC10 MOUSE	Dedicator of ctokinesis protein $100 S=$ Mus muscalus $G N=D O c k 10 P E=15 \mathrm{SV}=3$	26	2	1
NID2_MOUSE	Nidogen-2 $2 \mathrm{~S}=$ Mus muscalus $6 \mathrm{~N}=$ Nid2 $2 \mathrm{P}=1 \mathrm{1SV}=2$	26	2	1
C2C2L_MOUSE	C2domain-containing protein 2-like $\mathrm{OS}=$ Mus musculus $\mathrm{GN}=22 \mathrm{~d} 21 / \mathrm{PE}=1 \mathrm{SV}=3$	25	3	1
PLCL1_MOUSE	Inative phospholipase C-like protein $105=$ Mus musalus $\mathrm{CN}=\mathrm{Pld} 1$ PE=1 $\mathrm{SV}=3$	21	1	1

Normoxia (4 h)

Symbol	Full name	Score Spe	P	
ATPA_MOUSE	ATP synthase subunit alpha, mitochondrial OS=Mus musculus GN=Atp5a1 PE=1 $\mathrm{SV}=1$	912	25	16
ATPO_MOUSE	ATP synthase subunit 0 , mitochondrial $\mathrm{OS}=$ Mus musculus $\mathrm{GN}=$ Atp $50 \mathrm{PE}=1 \mathrm{SV}=1$	374	12	7
ATPB_MOUSE	ATP synthase subunit beta, mitochondrial $0 S=M u s$ musculus $\mathrm{GN}=\mathrm{Atp} 5 \mathrm{~b} \mathrm{PE}=1 \mathrm{SV}=2$	372	9	8
ADT2_MOUSE	ADP/ATP translocase 20S=Mus musculus $6 \mathrm{~N}=\mathrm{SIC} 25 a 5 \mathrm{PE}=1 \mathrm{SV}=3$	364	8	5
HNRPU_MOUSE	Heterogeneous nuclear ribonucleoprotein U $\mathrm{OS}=$ Mus musculus $\mathrm{GN}=$ Hnrnpu PE $=1 \mathrm{SV}=1$	348	12	9
ACTA_MOUSE	Actin, aortic smooth muscle $\mathrm{OS}=$ Mus musculus $\mathrm{GN}=\mathrm{Acta} 2 \mathrm{PE}=1 \mathrm{SV}=1$	147	2	1
ECHA_MOUSE	Trifunctional enzyme subunit alpha, mitochondrial OS=Mus musculus $\mathrm{GN}=\mathrm{Hadha} \mathrm{PE}=1 \mathrm{SV}=1$	134	8	8
ACTB_MOUSE	Actin, cytoplasmic 10S=Mus musculus GN=Actb PE=1 SV=1	119	1	1
ALBU_MOUSE	Serum albumin $0 S=M$ M musculus $G N=A 1 b P E=1 S V=3$	100	1	1
SUCA_MOUSE	Succinyl-CoAligase [ADP/GDP-forming] subunit alpha, mitochondrial OS=Mus musculus GN=Suclg1 PE=1 $5 V=4$	86	1	1
ATPG_MOUSE	ATP synthase subunit gamma, mitochondrial $0 S=$ Mus musculus $\mathrm{GN}=$ Atp $5 ¢ 1 \mathrm{PE}=1 \mathrm{SV}=1$	78	1	1
THIM MOUSE	3-ketoacyl-CoA thiolase, mitochondrial $O S=$ Mus musculus $\mathrm{GN}=\mathrm{Ac}$ caa2 $2 \mathrm{PE}=1 \mathrm{SV}=3$	57	1	1
SERPH_MOUSE	Serpin $\mathrm{H} 1 \mathrm{OS}=$ Mus musculus $\mathrm{GN}=$ Serpinh $1 \mathrm{PE}=1 \mathrm{SV}=3$	54	1	1
ASAP2_MOUSE	Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein $20 S=$ Mus musculus $\mathrm{GN}=\mathrm{Asap} 2 \mathrm{PE}=1 \mathrm{SV}=3$	52	3	1
PTRF_MOUSE	Polymerase I and transcript release factor $\mathrm{OS}=$ Mus musculus $\mathrm{GN}=\mathrm{Ptrf} \mathrm{PE}=1 \mathrm{SV}=1$	51	1	1
AT2A2_MOUSE	Sarcoplasmic/endoplasmic reticulum calcium ATPase 20S=Mus musculus $\mathrm{GN}=$ Atp2a2 $\mathrm{PE}=1 \mathrm{SV}=2$	46	1	1
ILF2_MOUSE	Interleukin enhancer-binding factor $20 S=$ Mus musculus $\mathrm{GN}=11 \mathrm{f} 2 \mathrm{PE}=1 \mathrm{SV}=1$	43	2	2
MOCS3_MOUSE	Adenylyltransferase and sulfurtransferase MOCS3 OS=Mus musculus $\mathrm{GN}=$ M $\operatorname{Ccs} 3 \mathrm{PE}=15 \mathrm{SV}=1$	39	1	1
MYOG_MOUSE	Myogenin $0 S=$ Mus musculus $\mathrm{GN}=$ Myog $\mathrm{PE}=1 \mathrm{SV}=2$	33	1	1
TAGAP_MOUSE	T-cell activation Rho GTPase-activating protein $0 \mathrm{~S}=$ Mus musculus $\mathrm{GN}=$ Tagap PE=2SV=2	27	1	1
CH60_MOUSE	60 kDa heat shock protein, mitochondrial $0 S=$ Mus musculus $\mathrm{GN}=\mathrm{Hspd} 1 \mathrm{PE}=1 \mathrm{SV}=1$	26	1	1
C2C2L_MOUSE	C2 domain-containing protein 2 -like $0 S=$ Mus musculus $G N=C 2 \mathrm{~cd} 21 \mathrm{PE}=1 \mathrm{SV}=3$	25	2	1
EFC14_MOUSE	EF-hand calcium-binding domain-containing protein $140 \mathrm{~S}=$ Mus musculus $\mathrm{GN}=\mathrm{Ef}$ cab14PE=2SV$=1$	24	1	1
SPIR1_MOUSE	Protein spire homolog $10 S=$ Mus musculus $\mathrm{GN}=$ Spire1 $\mathrm{PE}=1 \mathrm{SV}=1$	24	1	1
ATAD3_MOUSE	ATPase family AAA domain-containing protein $30 \mathrm{~S}=$ Mus musculus $\mathrm{GN}=$ Atad3PE $=1 \mathrm{SV}=1$	20	1	1

Hypoxia (8 h)				
Symbol	Full name	Score Spectres	Peptides	
SPTC2_MOUSE	Serine palmitoyltranserase $20 S=M$ s muscalus $G N=S$ Ptlc2 PE= $15 V=2$	20	1	1
CCD66_MOUSE	Coilded-coil domain-containing protein $6605=M u s$ musculus $6 \mathrm{~N}=C \operatorname{cdd} 66 \mathrm{PE}=1 \mathrm{SV}=3$	28	1	1
ASAP2_MOUSE	Afr-GAP with SH3 domain, ANK repeat and PH domain-containing protein $20 S=M$ s muscalus $G N=A$ Sap2 $2 P E=15 V=3$	35	1	1

Normoxia (8 h)				
Symbol	Full name	Score Spectres	Peptides	
SPTC2_MOUSE	Serine palmitoyltranserase $20 S=$ Mus muscalus $6 N=S$ ptlc2 PE= $15 V=2$	20	1	1
CCD66_MOUSE	Coiled-coil domain-containing protein $660 \mathrm{~S}=$ Mus musculus $\mathrm{GN}=C \operatorname{cdc} 66 \mathrm{PE}=1 \mathrm{SV}=3$	28	1	1
ASAP2_MOUSE	Aff-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 OS=Mus musculus $G N=A$ Ssp2P PE= $15 V=3$	35	1	1
ATPA_MOUSE	ATP synthase subunit alpha, mitochondrial $\mathrm{OS}=$ Mus musculus $\mathrm{G}=\mathrm{N}=\mathrm{At} 591 \mathrm{PE}=1 \mathrm{SV}=1$	60	1	1
PHRF1_MOUSE	PHD and RING finger domain-containing protein $10 S=M u s$ musculus $6 N=P \mathrm{Pr} 1$ 1 $\mathrm{PE}=1 \mathrm{SV}=2$	41	7	1
OXR1_MOUSE	Oxidation resistance protein $10 S=M u s$ musculus $\mathrm{GN}=0 \times 11 \mathrm{PE}=1 \mathrm{SV}=3$	26	1	1
KCTD9_MOUSE	BTB/POZ domain-containing protein KCTD9 OS=Mus musclus $6 N=$ Kctd9 PE=2SV=1	24	2	1
BII_MOUSE	Bc-2-interating killer $0 S=$ Mus muscalus $\mathrm{GN}=\mathrm{B}$ Bik $\mathrm{PE}=1 \mathrm{SV}=1$	21	2	1

C. Proteins bound to EMCV IRES

Normoxia (0 h)					
Symbol	Full name	Score	Spectres		
ASAP2_MOUSE A	Aff-GAP with SH3 domain, ANK repeat and PH domain-containing protein 20S=Mus muscalus $6 N=A$ sap2 $2 P=15 V=3$		55	2	1
ATPA_MOUSE A	ATP synthase subunit alpha, mitochondrial OS=Mus musculus $6 \mathrm{~N}=\mathrm{Atp} 521 \mathrm{PE}=1 \mathrm{SV}=1$		70	2	2
KCTD9_MOUSE B	BTB/POZ domain-containing protein KCTDg OS=Mus muscalus GN=Ǩtd9 PE=2SV=1		23	1	1
BRCC3_MOUSE L	Lys-63-specific deubiquitinase BRCC36 OS=Mus muscalus $6 N=B$ Brcc3 PE=1 $5 V=1$		30	1	1
NDE1_MOUSE N	Nuclear distribution protein nudE homolog 10S=Mus musculus $6 \mathrm{~N}=$ Nde1 $\mathrm{PE}=1 \mathrm{SV}=1$		21	1	1
VASH1_MOUSE V	Vasohibin-1 0 S=Mus muscalus $6 N=$ Vash 1 PE=2SV=4		26	1	1

(4 h)			
Symbol	Full name	Score Spectres	Peptides
ASAP2_MOUSE	Aff-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 OS=Mus musculus $G N=A$ sap2PE=1 $5 V=3$	81	$5 \quad 1$
KCTDg_MOUSE	BTB/POZ domain-containing protein KCTDg OS=Mus musculus $G N=K$ Kctd $9 \mathrm{PE}=22 \mathrm{VV}=1$	23	21
NUDC2_MOUSE	NudC domain-containing protein $20 S=M u s$ musculus $G N=$ Nudd $2 P E=15 V=1$	20	$1 \quad 1$
PLPLI_MOUSE	Patatin-like phospholipase domain-containing protein $10 S=$ Mus musculus GN=Pnpla1 PE=2SV=1	24	$1 \quad 1$
TAM41_MOUSE P	Phosphatidate cytidylyltransferase, mitochondrial $0 S=$ Mus muscalus $\mathrm{GN}=$ Tamm41 $\mathrm{PE}=1 \mathrm{SV}=2$	21	$1 \quad 1$
VASH1_MOUSE V	Vasohibin-1 0 S=Mus muscalus $6 N=$ Vash 1 PE=2SV=4	22	$3 \quad 1$

Normoxia (4 h)			
Symbol	Full name	Score Spectres	Peptides
LOX15_MOUSE	Arachidonate 15-lipoxygenase $\mathrm{OS}=$ Mus muscalus $\mathrm{GN}=\mathrm{Alox15PE=15V=4}$	23	1
ASAP2_MOUSE	Aff-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 OS=Mus muscalus $G N=A$ sap2PE=1 $5 V=3$	88	6 1
Kctog_MOUSE	BTB/POZ domain-containing protein KCTDg OS=Mus muscalus GN=KCd9 PE=2SV=1	23	21
BRCC3_MOUSE	Lys-63-specific deubiquitinase BRCC36 OS=Mus muscalus GN=Brcc3 PE=1 SV=1	27	1
PCLO_MOUSE	Protein piccolo OS=Mus musculus $G N=P \mathrm{Pc}$ PPE=1 $15 V=4$	24	1
RPAP1_MOUSE	RNA polymerase Il-associated protein $10 S=$ Mus musculus $\mathrm{GN}=$ Rpap1 $1 \mathrm{PE}=1 \mathrm{SV}=2$	23	1
ALBU_MOUSE	Serum albumin $0 S=$ Mus musculus $G N=A l b P E=15 V=3$	73	1
GUF1_MOUSE	Translation factor Guf1, mitochondrial OS=Mus musculus $6 N=$ Guf1 $1 P=15 V=1$	24	$1 \quad 1$

Normoxia (8 h)			
Symbol	Full name	Score Spectres	Peptides
ASAP2_MOUSE	Afr-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 OS=Mus musculus $G N=A$ sap2PE=1 $5 V=3$	38	41
ATAD3_MOUSE	ATPase family $A A A$ domain-containing protein $30 S=M u s$ musculus $G N=A t a d 3 P E=15 V=1$	26	21
DOC10 MOUSE	Dedicator of cytokinesis protein $100 S=$ Mus musculus $G N=D$ Dock10PE=1 $5 V=3$	24	1 1
NUCL_MOUSE	Nucleolin $O S=$ Mus musculus $G N=N \mathrm{Cl} P \mathrm{P}=1 \mathrm{SV}=2$	40	1
RPAP1_MOUSE	RNA polymerase ll-associated protein $10 S=$ Mus musculus $6 N=R$ pap $1 P E=15 V=2$	29	1 1
VASH1_MOUSE	Vasohibin-1 $0 S=$ Mus muscalus $\mathrm{GN}=$ Vash $1 \mathrm{PE}=2 \mathrm{SV}=4$	28	$3 \quad 1$

EV Table 4. BIA-MS analysis of IRES-bound proteins in hypoxic cardiomyocytes.
Total cell extracts from normoxic or hypoxic HL-1 cardiomyocytes were injected into the BIAcore T200 optical biosensor device where biotinylated IRES RNAs had been immobilized. The list of bound proteins identified by mass spectrometry (LC-MS/MS) after tryptic digestion is shown for FGF1 (A), VEGF-Aa (B) or EMCV (C) IRESs, respectively. The score and the number of spectra and peptides identified are indicated. For each time of hypoxia, cells were cultivated the same time in normoxia as a control (Normoxia 4h and 8h).

Hantelys et al, EV Table 5

FGF1 IRES

LucF			Biological replicates				
	SiRNA	Experiment	A	B	C	Mean	SD
Normoxia	Si Control	1	6165	5235	4839	5413	681
		2	9056	8546	8165	3917	650
		3	24718	28513	71475	41569	25969
	Si VASH1	1	6061	4321	6130	5504	1025
		2	2819	4382	4771	3991	907
		3	25587	41809	41011	36136	9144
Hypoxia	Si Control	1	23268	23282		23275	10
		2	9056	7434	4327	6939	2134
		3	35934	27425	41617	34992	7143
	Si VASH1	1	3476	3798	3703	3659	165
		2	918	794	159	624	356
		3	35078	27053	26439	29523	4820
LucR			Biological replicates				
	SiRNA	Experiment	A	B	C	Mean	SD
Normoxia	Si Control	1	53438	31326	43193	42652	11066
		2	26638	18202	41546	28795	10241
		3	215819	361595	537143	371519	160892
	Si VASH1	1	33640	25524	46369	35178	10507
		2	20966	30708	37007	29560	7132
		3	169661	310210	232371	237414	70410
Hypoxia	Si Control	1	20104	28719	24302	24375	4308
		2	47957	40352	28489	38933	8713
		3	166883	126093	212489	168488	43220
	Si VASH1	1	17915	14606	17491	16671	1800
		2	6722	7810	5492	6675	1043
		3	202073	157173	139745	166330	32157

IRES activity

LucF/ LucR			Biological replicates			Mean	SD	$\begin{aligned} & \text { AU : LucF/LucR } \\ & * 100 \end{aligned}$		Ratio	t-test	Significance
	SiRNA	Experiment	A	B	C			Mean	SD			
Normoxia	Si Control	1	0.1154	0.1671	0.1120	0.1315	0.0309	13.15	3.09			
		2	0.1325	0.1124	0.1632	0.1360	0.0226	13.60	2.26			
		3	0.1145	0.0789	0.1331	0.1088	0.0276	10.88	2.76			
	Si VASH1	1	0.1235	0.1379	0.1419	0.1311	0.0154	13.11	1.54	1.00	0.440	
		2	0.0954	0.1482	0.1614	0.1350	0.0307	13.50	3.07	0.99	0.483	
		3	0.1508	0.1348	0.1765	0.1540	0.0210	15.40	2.10	1.42	0.008	**
Hypoxia	Si Control	1	1.1574	0.8107		0.9840	0.2451	98.40	24.51			
		2	0.1888	0.1840	0.1520	0.1750	0.0187	17.50	1.87			
		3	0.2153	0.2175	0.1959	0.2096	0.0119	20.96	1.19			
	Si VASH1	1	0.1729	0.1323	0.1524	0.1525	0.0203	15.25	2.03	0.15	0.004	***
		2	0.1364	0.1016	0.0289	0.0890	0.0476	8.90	4.76	0.51	0.026	*
		3	0.1736	0.1721	0.1892	0.1783	0.0095	17.83	0.95	0.85	0.063	

Final values		AU : LucF/LucR *100		Normalized to Si control		t-test	Significance
Time	Condition	Total mean	SD	Ratio	SD		
	Si Control	12.54	2.74	1.00	0.22		
Normoxia	Si VASH1	14.12	2.31	1.13	0.18	0.094	
	Si Control	39.02	37.86	1.00	0.97		
Hypoxia	Si VASH1	13.99	4.96	0.36	0.13	0.047	*

FGF2 IRES

LucF			Biological replicates				
	SiRNA	Experiment	A	B	C	Mean	SD
Normoxia	Si Control	1	22826	21218	12844	18963	5360
		2	1378436	1082836	1164807	1208693	152608
		3	83190	93828	99601	92206	8325
	Si VASH1	1	21094	24819	20555	22156	2322
		2	2209438	826675	1840332	1625481	715981
		3	67392	76305	73470	72389	4554
Hypoxia	Si Control	1	19965	12844	11697	14835	4480
		2	1017433	1179299	829663	1008798	174978
		3	67103	78868	71632	72534	5934
	Si VASH1	1	15522	15043	16528	15698	758
		2	893314	749103	966069	869495	110427
		3	59989	68906	68663	65852	5080
LucR			Biological replicates				
	SiRNA	Experiment	A	B	C	Mean	SD
Normoxia	Si Control	1	180511	135180	129077	148256	28100
		2	12202038	11842478	11986298	12010272	180975
		3	590388	751723	757328	699813	94806
	Si VASH1	1	125421	125058	135793	128757	6096
		2	14135403	8953356	10851103	11313287	2621757
		3	556354	613876	606021	592084	31191
Hypoxia	Si Control	1	96016	67708	75468	79731	14628
		2	6222023	7669135	5269169	6386776	1208436
		3	334572	394644	375540	368252	30692
	Si VASH1	1	68476	61198	64605	64760	3642
		2	4535768	4011896	5170671	4572778	580273
		3	392981	376414	347094	372163	23237

IRES activity

LucF/ LucR			Biological replicates			Mean	SD	AU : LucF/LucR *100		Ratio	t-test	Significance
	SiRNA	Experiment	A	B	C			Mean	SD			
Normoxia	Si Control	1	0.1265	0.1570	0.0995	0.1276	0.0287	12.76	2.87			
		2	0.1130	0.0914	0.0972	0.1005	0.0111	10.05	1.11			
		3	0.1409	0.1248	0.1315	0.1324	0.0081	13.24	0.81			
	Si VASH1	1	0.1169	0.1836	0.1592	0.1532	0.0338	15.32	3.38	1.20	0.165	
		2	0.1563	0.0923	0.1696	0.1394	0.0413	13.94	4.13	1.39	0.101	
		3	0.1211	0.1243	0.1212	0.1222	0.0018	12.22	0.18	0.92	0.104	
Hypoxia	Si Control	1	0.2079	0.1897	0.1550	0.1842	0.0269	18.42	2.69			
		2	0.1635	0.1538	0.1575	0.1582	0.0049	15.82	0.49			
		3	0.2006	0.1998	0.1907	0.1971	0.0055	19.71	0.55			
	Si VASH1	1	0.1617	0.2222	0.2190	0.2009	0.0341	20.09	3.41	1.09	0.330	
		2	0.1969	0.1867	0.1868	0.1902	0.0059	19.02	0.59	1.20	0.001	*
		3	0.1526	0.1831	0.1978	0.1778	0.0230	17.78	2.30	0.90	0.026	*

Final values		AU : LucF/LucR * 100		Normalized to Si control		t-test	Significance
Time	Condition	Total mean	SD	Ratio	SD		
	Si Control	12.02	2.18	1.00	0.18		
Normoxia	Si VASH1	13.83	2.99	1.15	0.25	0.073	
	Si Control	17.98	2.21	1.00	0.12		
Hypoxia	Si VASH1	18.97	2.31	1.05	0.13	0.235	

VEGFA IRES a

IRES activity

LucF/ Lu			Biological replicates			Mean	SD	$\begin{aligned} & \hline \text { AU : LucF/LucR } \\ & * 100 \end{aligned}$		Ratio	t-test	Significance
	SiRNA	Experiment	A	B	C			Mean	SD			
Normoxia	Si Control	1	0.0084	0.0083	0.0091	0.0086	0.0004	0.86	0.04			
		2	0.0119	0.0108	0.0087	0.0104	0.0016	1.04	0.16			
		3	0.0111	0.0118	0.0106	0.0112	0.0006	1.12	0.06			
	Si VASH1	1	ND	ND	ND							
		2	0.0107	0.0109	0.0105	0.0107	0.0002	1.07	0.02	1.02	0.403	
		3	0.0089	0.0098	0.0101	0.0096	0.0007	0.96	0.07	0.86	0.053	
Hypoxia	Si Control	1	0.0086	0.0106	0.0109	0.0100	0.0013	1.00	0.13			
		2	0.0178	0.0203	0.0194	0.0192	0.0013	1.92	0.13			
		3	0.0178	0.0164	0.0153	0.0165	0.0012	1.65	0.12			
	Si VASH1	1	0.0089	0.0146	0.0118	0.0118	0.0028	1.18	0.28	1.17	0.185	
		2	0.0161	0.0191	0.0187	0.0180	0.0017	1.80	0.17	0.94	0.027	*
		3	0.0153	0.0169	0.0145	0.0156	0.0012	1.56	0.12	0.94	0.194	

Final values		AU : LucF/LucR *100		Normalized to Si control			
Time	Condition	Total mean	SD	Ratio	SD	t-test	Significance
	Si Control	1.01	0.15	1.00	0.14		
Normoxia	Si VASH1	1.01	0.07	1.01	0.07	0.162	
	Si Control	1.52	0.42	1.00	0.28		
Hypoxia	Si VASH1	1.51	0.32	0.99	0.21	0.417	

VEGFA IRES b

LucF			Biological replicates				
	SiRNA	Experiment	A	B	C	Mean	SD
Normoxia	Si Control	1	24407	29293	28866	27522	2706
		2	636888	673362	711456	673902	37287
		3	336029	485230	456130	425796	79091
	Si VASH1	1	26057	23895	24286	24746	1152
		2	754530	811206	796490	787408	29409
		3	377720	490184	368048	411984	67896
Hypoxia	Si Control	1	25539	27250	27360	26716	1021
		2	1455967	1495875	1461388	1471077	21646
		3	252396	325862	292610	290290	36788
	Si VASH1	1	29633	27197	27734	28188	1280
		2	1442573	1496275	1406109	1448319	45357
		3	290051	301154	292703	294636	5799
LucR			Biological replicates				
	SiRNA	Experiment	A	B	C	Mean	SD
Normoxia	Si Control	1	204606	259243	265657	243169	33550
		2	3953413	4461082	4955118	4456538	500868
		3	2785870	3180830	2979085	2981929	197495
	Si VASH1	1	129783	131937	114093	125271	9740
		2	4588230	4469611	4706020	4587954	118204
		3	3035339	3373906	2706872	3038706	333530
Hypoxia	Si Control	1	207937	216079	211792	211936	4073
		2	5227968	5137726	5358864	5241519	111190
		3	1206699	1464757	1496579	1389345	158974
	Si VASH1	1	179775	171019	145280	165358	17930
		2	5346747	5752000	5164154	5420967	300869
		3	1221397	1296195	1237799	1251797	39315

IRES activity

LucF/ LucR			Biological replicates			Mean	SD	AU : LucF/LucR *100		Ratio	t-test	Significance
	SiRNA	Experiment	A	B	C			Mean	SD			
Normoxia	Si Control	1	0.1193	0.1130	0.1087	0.1136	0.0053	11.36	0.53			
		2	0.1611	0.1509	0.1436	0.1519	0.0088	15.19	0.88			
		3	0.1206	0.1525	0.1531	0.1421	0.0186	14.21	1.86			
	Si VASH1	1	0.1274	0.0922	0.0914	0.1036	0.0205	10.36	2.05	0.91	0.064	
		2	0.1644	0.1815	0.1692	0.1717	0.0088	17.17	0.88	1.13	0.071	
		3	0.1244	0.1453	0.1360	0.1352	0.0104	13.52	1.04	0.95	0.019	*
Hypoxia	Si Control	1	0.1228	0.1261	0.1292	0.1260	0.0032	12.60	0.32			
		2	0.2785	0.2912	0.2727	0.2808	0.0094	28.08	0.94			
		3	0.2092	0.2225	0.1955	0.2091	0.0135	20.91	1.35			
	Si VASH1	1	0.1425	0.1259	0.1309	0.1331	0.0085	13.31	0.85	1.06	0.190	
		2	0.2698	0.2601	0.2723	0.2674	0.0064	26.74	0.64	0.95	0.140	
		3	0.2375	0.2323	0.2365	0.2354	0.0027	23.54	0.27	1.13	0.050	

Final values		AU : LucF/LucR *100		Normalized to Si control		t-test	Significance
Time	Condition	Total mean	SD	Ratio	SD		
	Si Control	13.59	2.02	1.00	0.15		
Normoxia	Si VASH1	13.69	3.20	1.01	0.24	0.438	
	Si Control	20.53	6.76	1.00	0.33		
Hypoxia	Si VASH1	21.20	6.10	1.03	0.30	0.186	

VEGFC IRES

LucF			Biological replicates				
	SiRNA	Experiment	A	B	C	Mean	SD
Normoxia	Si Control	1	246375	242933	314902	268070	40594
		2	217056	137257	253247	202520	59346
		3	34901	43369	30196	36155	6676
	Si VASH1	1	487878	477149	492814	485947	8009
		2	229290	246978	182056	219441	33563
		3	38245	41693	27884	35941	7187
Hypoxia	Si Control	1	335045	434617	425637	398433	55079
		2	281808	313489	279125	291474	19113
		3	24456	25053	23295	24268	894
	Si VASH1	1	356286	400146	398669	385034	24907
		2	307224	258394	357857	307825	49734
		3	20099	20436	22661	21065	1392
LucR			Biological replicates				
	SiRNA	Experiment	A	B	C	Mean	SD
Normoxia	Si Control	1	3487442	3595724	2160847	3081337	799005
		2	1940200	1317594	1986534	1748109	373556
		3	517859	522417	438634	492970	47111
	Si VASH1	1	5663195	5510976	2230869	4468347	1939207
		2	1895114	2069968	1309904	1758329	398067
		3	562597	580376	487313	543428	49404
Hypoxia	Si Control	1	3743871	4296534	1914906	3318437	1246509
		2	2035704	2389202	2247759	2224222	177921
		3	288505	254400	261953	268286	17913
	Si VASH1	1	3382601	3988748	1245215	2872188	1441227
		2	2242942	2337124	2558068	2379378	161757
		3	190852	185250	218449	198184	17773

IRES activity

LucF/ LucR			Biological replicates			Mean	SD	AU : LucF/LucR *100		Ratio	t-test	Significance
	SiRNA	Experiment	A	B	C			Mean	SD			
Normoxia	Si Control	1	0.0706	0.0676	0.1457	0.0946	0.0443	9.46	4.43			
		2	0.1119	0.1042	0.1275	0.1145	0.0119	11.45	1.19			
		3	0.0674	0.0830	0.0688	0.0731	0.0086	7.31	0.86			
	Si VASH1	1	0.0861	0.0866	0.2209	0.1312	0.0777	13.12	7.77	1.39	0.100	
		2	0.1210	0.1193	0.1390	0.1264	0.0109	12.64	1.09	1.10	0.010	*
		3	0.0680	0.0718	0.0572	0.0657	0.0076	6.57	0.76	0.90	0.103	
Hypoxia	Si Control	1	0.0895	0.1012	0.2223	0.1376	0.0735	13.76	7.35			
		2	0.1384	0.1312	0.1242	0.1313	0.0071	13.13	0.71			
		3	0.0848	0.0985	0.0889	0.0907	0.0070	9.07	0.70			
	Si VASH1	1	0.1053	0.1003	0.3202	0.1753	0.1255	17.53	12.55	1.27	0.171	
		2	0.1370	0.1106	0.1399	0.1291	0.0162	12.91	1.62	0.98	0.429	
		3	0.1053	0.1103	0.1037	0.1065	0.0034	10.65	0.34	1.17	0.013	*

Final values		AU : LucF/LucR *100		Normalized to Si control		t-test	Significance
Time	Condition	Total mean	SD	Ratio	SD		
	Si Control	9.41	2.94	1.00	0.31		
Normoxia	Si VASH1	10.78	5.05	1.15	0.54	0.074	
	Si Control	11.99	4.32	1.00	0.36		
Hypoxia	Si VASH1	13.70	7.02	1.14	0.59	0.079	

VEGFD IRES

LucF			Biological replicates				
	SiRNA	Experiment	A	B	C	Mean	SD
Normoxia	Si Control	1	145323	155346	154191	151620	5484
		2	47796	48288	42436	46173	3246
		3	75842	68756	63160	69253	6355
	Si VASH1	1	194207	225219	224077	214501	17584
		2	41472	53177	48922	47857	5925
		3	50506	69895	67848	62750	10653
Hypoxia	Si Control	1	195382	241996	212936	216772	23542
		2	86899	103834	88966	93233	9239
		3	38323	41266	45431	41673	3571
	Si VASH1	1	179053	197152	112369	162858	44651
		2	79555	81056	77725	79445	1668
		3	29441	36166	41950	35852	6260
LucR			Biological replicates				
	SiRNA	Experiment	A	B	C	Mean	SD
Normoxia	Si Control	1	1907458	2093765	2160847	2054023	131286
		2	567674	597668	541654	568999	28030
		3	858060	837030	638997	778029	120864
	Si VASH1	1	1991236	2298870	2230869	2173658	161600
		2	517993	560985	512755	530578	26463
		3	593777	780959	789452	721396	110603
Hypoxia	Si Control	1	1619167	1897011	1914906	1810361	165821
		2	525002	615275	500416	546898	60479
		3	326465	350347	383692	353501	28743
	Si VASH1	1	1641814	1672889	1245215	1519972	238454
		2	536248	545353	584930	555510	25882
		3	278668	318382	374719	323923	48265

IRES activity

LucF/ LucR			Biological replicates			Mean	SD	AU : LucF/LucR *100		Ratio	t-test	Significance
	SiRNA	Experiment	A	B	C			Mean	SD			
Normoxia	Si Control	1	0.0762	0.0742	0.0714	0.0739	0.0024	7.39	0.24			
		2	0.0842	0.0808	0.0783	0.0811	0.0029	8.11	0.29			
		3	0.0884	0.0821	0.0988	0.0898	0.0084	8.98	0.84			
	Si VASH1	1	0.0975	0.0980	0.1004	0.0986	0.0016	9.86	0.16	1.33	0.004	***
		2	0.0801	0.0948	0.0954	0.0901	0.0087	9.01	0.87	1.11	0.154	
		3	0.0851	0.0895	0.0859	0.0868	0.0024	8.68	0.24	0.97	0.332	
Hypoxia	Si Control	1	0.1207	0.1276	0.1112	0.1198	0.0082	11.98	0.82			
		2	0.1655	0.1688	0.1778	0.1707	0.0064	17.07	0.64			
		3	0.1174	0.1178	0.1184	0.1179	0.0005	11.79	0.05			
	Si VASH1	1	0.1091	0.1179	0.0902	0.1057	0.0141	10.57	1.41	0.88	0.028	*
		2	0.1484	0.1486	0.1329	0.1433	0.0090	14.33	0.90	0.84	0.045	*
		3	0.1057	0.1136	0.1120	0.1104	0.0042	11.04	0.42	0.94	0.040	*

Final values		AU : LucF/LucR *100		Normalized to Si control		t-test	Significance
Time	Condition	Total mean	SD	Ratio	SD		
	Si Control	8.16	0.83	1.00	0.10		
Normoxia	Si VASH1	9.19	0.70	1.13	0.09	0.033	*
	Si Control	13.61	2.65	1.00	0.19		
Hypoxia	Si VASH1	11.98	1.97	0.88	0.14	0.002	***

c-myc IRES

IRES activity

LucF/ LucR			Biological replicates			Mean	SD	AU : LucF/LucR *100		Ratio	t-test	Significance
	SiRNA	Experiment	A	B	C			Mean	SD			
Normoxia	Si Control	1	0.0968	0.1131	0.1853	0.1318	0.0471	13.18	4.71			
		2	0.2674	0.2804	0.2705	0.2728	0.0068	27.28	0.68			
		3	0.1436	0.1521	0.1275	0.1411	0.0125	14.11	1.25			
	Si VASH1	1	0.2202	0.2137	0.2386	0.2242	0.0129	22.42	1.29	1.70	0.023	*
		2	0.2944	0.2779	0.2748	0.2824	0.0105	28.24	1.05	1.04	0.197	
		3	0.1231	0.1324	0.1269	0.1274	0.0047	12.74	0.47	0.90	0.085	
Hypoxia	Si Control	1	0.2277	0.1582	0.1522	0.1794	0.0420	17.94	4.20			
		2	0.4096	0.4066	0.3642	0.3935	0.0254	39.35	2.54			
		3	0.2371	0.2603	0.2233	0.2402	0.0187	24.02	1.87			
	Si VASH1	1	0.2438	0.2501	0.2398	0.2445	0.0052	24.45	0.52	1.36	0.059	
		2	0.3576	0.2976	0.4211	0.3588	0.0618	35.88	6.18	0.91	0.275	
		3	0.2058	0.2278	0.1899	0.2078	0.0190	20.78	1.90	0.86	0.0002	****

Final values		AU : LucF/LucR *100		Normalized to Si control		t-test	Significance
Time	Condition	Total mean	SD	Ratio	SD		
	Si Control	18.19	7.26	1.00	0.40		
Normoxia	Si VASH1	21.13	6.83	1.16	0.38	0.065	
	Si Control	27.10	9.91	1.00	0.37		
Hypoxia	Si VASH1	27.04	7.55	1.00	0.28	0.489	

EMCV IRES

IRES activity

LucF/ LucR			Biological replicates			Mean	SD	$\begin{aligned} \hline \text { AU: } & \text { LucF/LucR } \\ & { }^{100} \end{aligned}$				
	SiRNA	Experiment	A	B	C			Mean	SD		t-test	Significance
Normoxia	Si Control	1	0.7711	0.8728	0.7247	0.7895	0.0757	78.95	7.57			
		2	0.7261	0.8068	0.8901	0.8077	0.0820	80.77	8.20			
		3	0.9037	0.8959	0.8832	0.8943	0.0103	89.43	1.03			
	Si VASH1	1	1.0031	1.0279	1.2324	1.0878	0.1258	108.78	12.58	1.38	0.054	
		2	0.7794	0.8277	0.8178	0.8083	0.0255	80.83	2.55	1.00	0.494	
		3	0.9231	0.9355	0.9327	0.9304	0.0065	93.04	0.65	1.04	0.028	*
Hypoxia	Si Control	1	1.2459	1.2341	1.4275	1.3025	0.1084	130.25	10.84			
		2	1.2601	1.1828	1.1736	1.2055	0.0475	120.55	4.75			
		3	1.4117	1.3415	1.1948	1.3160	0.1107	131.60	11.07			
	Si VASH1	1	ND	1.2133	1.2838	1.2486	0.0498	124.86	4.98	0.96	0.285	
		2	1.1554	1.2414	1.0129	1.1366	0.1154	113.66	11.54	0.94	0.202	
		3	1.2691	1.2301	1.2470	1.2487	0.0196	124.87	1.96	0.95	0.191	

Final values		AU : LucF/LucR * 100		Normalized to Si control		t-test	Significance
Time	Condition	Total mean	SD	Ratio	SD		
	Si Control	83.05	7.41	1.00	0.09		
Normoxia	Si VASH1	94.22	13.73	1.13	0.17	0.043	*
	Si Control	127.47	9.64	1.00	0.08		
Hypoxia	Si VASH1	120.66	8.74	0.95	0.07	0.029	*

EV Table 5. Knock-down of VASH1 in HL-1 cells.

HL-1 cells transduced by the different IRES-containing lentivectors were transfected with siRNA siVASH of SiControl and submitted to 8 h of hypoxia. Luciferase activity and IRES activities (ratio LucF/LucR x 100) were measured. The values correspond to the experiments presented Figure 4.
Biological replicates are indicated as A, B and C, whereas independent experiments are indicated as 1, 2, 3. Means, standard deviation (SD) and t-test of IRES activities were calculated. The panels "final values" correspond to means of all experiments (nine values) which are reported in the histograms of Figure 7. P-value significance is indicated: *p<0.05, ** $\mathrm{p}<0.01$, ***<0.001, ${ }^{* * * *} \mathrm{p}<0.0001$.

Hantelys et al, EV Table 6

Target	Forward primer 5' to 3'	Reverse primer 5' to 3'
Akt1	AGAACTCTAGGCATCCCTTCC	CGTTGGCATACTCCATGACA
Ang	TCCTGACTCAGCACCATGAC	ACATCTTTGCAGGGTGAGGTTA
Angpt1	ACAACACCGGGAAGATGGAA	TTCACCAGAGGGATTCCCAAAA
Angpt2	GAACCAGACAGCAGCACAAA	TCGAGTCTTGTCGTCTGGTTTA
Angpt/4	CTTGGGACCAAGACCATGAC	TGGCTACAGGTACCAAACCA
Anpep	TGGGACTTTGTCCGAAGCA	TCCCTGGATGAGATTGGCAAA
Apln (Apelin)	GCAGGAGGAAATTTCGCAGAC	ACTTGGCGAGCCCTTCAA
Aplnr	TTGACTGGCCTTTTGGAACC	GCAAAAGACACTGGCGTACA
Atp2a2	CGGTCCAAGAGTCTCCTTCTA	GCACAATCCACTCCATCGAA
Bai1	GGTCCTGAGAAGCAAACCAA	GACCATTCGTTCCAGTTTCCA
Ccl11(Eotaxin)	CAACAACAGATGCACCCTGAA	CACAGATCTCTTTGCCCAACC
Ccl2 (mcp-1)	AGCAGCAGGTGTCCCAAA	TTCTTGGGGTCAGCACAGAC
Ccl21a	GTCAGGACTGCTGCCTTAAGTA	GCTTCCTATAGCCTCGGACAA
Cdh5	AACGAGGACAGCAACTTCAC	TGGCATGCTCCCGATTAAAC
Col18a1	CAGGACCAAAGGGTGACAAA	tTCCAGGTGGAAGAGGTCAA
Col4a3	GCTGGTACAAAGGGCAACAA	TAAGCCTGGCAATCCATCCA
Ctgf	AAGCTGACCTGGAGGAAAACA	TGCAGCCAGAAAGCTCAAAC
Cxcl1	CCTGAAGCTCCCTTGGTTCA	TTCTCCGTTACTTGGGGACAC
Cxcl10 (Inp10)	ATCCGGAATCTAAGACCATCAAGAA	GCTCTCTGCTGTCCATCCA
Cxcl5 (ena78/lix)	GGCATTTCTGTTGCTGTTCAC	TGCGGCTATGACTGAGGAA
Cxcl9	AGCCCCAATTGCAACAAAAC	TCTTCACATTTGCCGAGTCC
Cyr61	CCACACCAAGGGGTTGGAA	CACAGGGTCTGCCTTCTGAC
Edn1	CCTGGACATCATCTGGGTCAA	AACGCTTGGACCTGGAAGAA
Efna1	TGGGCAAGGAGTTCAAGGAA	GCACTGGGATTCCTGATGGTA
Efnb2	TGCCAGACAAGAGCCATGAA	GTCTTGTTGGACCGTGATTCC
Egf	GGAGAGACTGCTGAGTGTCA	AGCCAGCACACACTCATCTA
Eng	AGGCATCCAACACCATCGAA	TCTAGCTGGACTGTGACCTCA
Ephb4	CCTCACGGAATTCATGGAGAAC	ACCAGCTGGATGACTGTGAA
Erbb2 (Her2)	ATTCTCAGACGCCGGTTCA	TTGGCCCCAAAGGTCATCA
F3	ACCCAAACCCACCAACTATACC	GTGTCTGTGGTCGAGAAGCA
Fgf1 (aFGF)	TGGACACCGAAGGGCTTTTA	GCATGCTTCTTGGAGGTGTAA
Fgf2 (bFGF)	TCTTCCTGCGCATCCATCC	GCACACACTCCCTTGATAGACA
Fgfr3	AGGATTTAGACCGCATCCTCAC	CCTGGCGAGTACTGCTCAAA
Flt1	TTGCACGGGAGAGACTGAAA	GCCAAATGCAGAGGCTTGAA
Fn1	CGTCATTGCCCTGAAGAACA	AAGGGTAACCAGTTGGGGAA
Hgf	CATCAAATGCCAGCCTTGGAA	TCTTTACCGCGATAGCTCGAA
Hif1a	TCGACACAGCCTCGATATGAA	TTCCGGCTCATAACCCATCA
Hnrnpm	GATGCCAACCATCTGAGCAAA	CCAAATCCTATGCCTTCCATTCC
Hpse	GCCTCGAGGGAAGACAGTTAAA	TGCCATGTAAGAGAGTCGATCAC

Id1	ACCCTGAACGGCGAGATCA	GATCGTCGGCTGGAACACA
Ifna1	TCCACCAGCAGCTCAATGAC	TCTTCCTGGGTCAGGGGAAA
Ifng	GGCACAGTCATTGAAAGCCTA	GCCAGTTCCTCCAGATATCCA
Igf1	GAGCTGGTGGATGCTCTTCA	CTCCGAATGCTGGAGCCATA
Igf1r	ATGGAGCCTGAGAACATGGA	CCTTGTGTCCTGAGTGTCTT
II1b	TGGCAACTGTTCCTGAACTCA	GGGTCCGTCAACTTCAAAGAAC
116	CCAGAAACCGCTATGAAGTTCC	GTTGTCACCAGCATCAGTCC
II8	GGCTACTGTTGGCCCAATTAC	GCTTCATTGCCGGTGGAAA
Itgav	AAAGGCAGATGGCAAGGGAA	GGCTCCCTTCTGCTTGAGTTTA
Itgb3	CCCACCACAGGCAATCAAAA	GCGTCAGCACGTGTTTGTA
Jag1	TCCCAAGCATGGGTCTTGTA	GATGCACTTGTCGCAGTACA
Lect1	CCTGCCGATTTTCTGGCTTA	AGAGGGAGCACTGTTTCTCA
Lep	AGACCATTGTCACCAGGATCA	ATGAAGTCCAAGCCAGTGAC
Mdk	TTGCCCTCTTGGTGGTCAC	CCAGGTCCACTCCGAACAC
Mmp14	CAAGGCTGATTTGGCAACCA	GCCTTGATCTCAGTCCCAAAC
Mmp2	CGAGGACTATGACCGGGATA	GGGCACCTTCTGAATTTCCA
Mmp9	TCCCCAAAGACCTGAAAACC	GGGTGTAACCATAGCGGTAC
Neat1	GGGAAGCTGATTGCCAAGAA	ATGGTTTCAGAGCCCACAAC
P54nrb	TGGTACTCCAGCTCCTCCA	CAGCTTGGCCAAAACGTTCA
Nos3	GGGATTCTGGCAAGACAGACTA	GCAGCCAAACACCAAAGTCA
Notch4	ACCTGCTTGCAACCTTCCA	GGTGCACTCATTGACCTCCA
Nrp1	CCTGTATCCTGGGAAACTGGTA	GCCCAACATTCCAGAGCAA
Nrp2	GTGGATCAGCAGCGCTAAC	GCCATCACTCTGCAGTTTCAA
PAI1 (serpinE1)	CAGACAATGGAAGGGCAACA	GAGGTCCACTTCAGTCTCCA
Pdgfa	TGTAACACCAGCAGCGTCAA	GGCTTCTTCCTGACATACTCCA
Pecam1	GCACAGTGATGCTGAACAAC	GTCACCTTGGGCTTGGATAC
Pf4	CCAGCCTGGAGGTGATCAA	GGCAAATTTTCCTCCCATTCTTCA
Pgf	CCAATCGGGATCCACATTTCTA	GCCTTTGTCGTCTCCAGAATA
Plau (upa)	TAGCCTAGGCCTGGGGAAA	AGGCCAATCTGCACATAGCA
Plg	TGGAATTGCCCACAGTTTCC	CCGATAGTCTTTGCCATTCCC
Prok2	GGCTTGGCGTGTTTAAGGAC	GGGTCGCATTTCAAGTTCCTAC
Prox1	GCCCTCAACATGCACTACAAC	CGTGATCTGCGCAACTTCC
Psf/Sfpq	TGAAAAGCTGGCCCAGAAGAA	TGTGCCATGCTGAGCAAAAC
Pspc1	TCCCCGTGGAGCAATAAACA	ATACCCATCATTGGAGGAGGAC
Ptgs1	TATCACCTGCGGCTCTTCAA	GTTCCACGGAAGGTGGGTA
S1pr1	CGGTGTAGACCCAGAGTCC	GAGAGGCCTCCGAGAAACA
SerpinF1	AGAACCTCAAGAGTGCTTCCA	TTCTCCAGAGGGGCAACAAA
Sphk1	GGCAGCTTCTGTGAACCACTA	CAGCAGGTTCATGGGTGACA
Tek	GTTGGATGGCAATCGAATCAC	CCAGAGCAATACACCATAGGAC
Tgfa	CCCTGGCTGTCCTCATTATCA	CAGTGTTTGCGGAGCTGAC
Tgfb1	GCTGCGCTTGCAGAGATTAA	GTAACGCCAGGAATTGTTGCTA
Tgfb2	GCCCATATCTATGGAGTTCAGACA	AGCGGAAGCTTCGGGATTTA

Tgfbr1	AATTGCTCGACGCTGTTCTA	ACCGATGGATCAGAAGGTACA
Thbs1	CCCCAGAAGACATTCTCAGGAA	CGTTCACCACGTTGTTGTCA
Thbs2	GACTGCACGTCATGGTGAAC	CCCAATGAGCTCCAAAAGGAAC
Tie1	CCTTTGCTCAGATCGCACTA	CTCAAACAGCGACATGTTCAC
Timp1	TCCCCAGAAATCAACGAGACC	CATTTCCCACAGCCTTGAATCC
Timp2	GAAGAGCCTGAACCACAGGTA	TCATCCGGGGAGGAGATGTA
Timp3	CCCTTTGGCACTCTGGTCTA	ACGTGGGGCATCTTACTGAA
Tnf	GGCACACTGGATAAGCTGGAA	CAGCAGCCGACTTCCTCAA
Tymp	GGCTGCCAAGTTGGGGTGTGTT	AAACCAGGGCGTGGCTCCTGTA
Vash1	GCAGCACATAGGAGAGATGAG	CTGGCTTTGTTCTGTCTTTCTT
Vegfa	GGGATGTCCCTGGAAGAACACA	TGGCTTCACAGCACTCTCC
Vegfb	TCCATTCAGACCCCAGAAGAA	GTGTTATCCCACAGCATGTCA
Vegfc	ATTTCACCTGGCACTCTCCA	TCCCAGGAAAGGGTTTCACA
Vegfd (figf)	CTCGCTCGGGACATCTACAAA	GGGCCATCCATTTCAGAGGAA
Vegfr2 (Kdr)	CAACTAAGAACGGCCATGCA	AGCCTGCGGCTTAATTTGAC
Vegfr3 (Flt4)		

EV Table 6. List of genes and primer couples used in the Fluidigm Deltagene PCR array.

Hantelys et al, EV Table 7

siControl (5' $->$ 3')	siVASH1 (5'->3')
ACCAAAUGUACAGCUGAUU	GACACUAGGACCCUUAAAU
ACCAAAUGUACAAAAGACU	CGAAGUUCUGGAUAAAGAG
ACCAAAUGUACAAAAGGAU	CCCUCCUGGACUACAUGUU
ACCAAAUGUACAACACACU	CAUGUUAGUGUGUCCCUGU

EV Table 7. SiRNA sequences. The sequences of the four siRNAs present in the siControl and siVASH1 Smartpools are indicated.

