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ABSTRACT

We present a new method, TrackSig, to estimate the evolutionary trajectories of signatures of somatic
mutational processes. TrackSig uses cancer cell fraction (CCF) corrected by copy number to infer an
approximate order in which the somatic mutations accumulate. TrackSig segments mutation ordering by
CCF and fits signature exposures (activities) as a piece-wise constant function of the mutation ordering.
TrackSig uses optimal segmentation to find the points of change in signature activities.
We assess TrackSig’s reconstruction accuracy using simulations. We find 2% median activity error on
simulations with one to three change-points. The size and the direction of the signature change is
consistent in 83% and 95% of cases respectively. There were an average of 0.02 missed change-points
and 0.12 false positive change-points per sample. We provide a framework to estimate signature exposure
trajectories across CCF scale as well as the way to determine active signatures. The code is available at
https://github.com/YuliaRubanova/TrackSig.

1 Introduction

Somatic mutations accumulate throughout our lifetime, arising from external sources or from processes
intrinsic to the cell1, 2. Some sources generate characteristic patterns of mutations. For example, smoking
is associated with G to T mutations; UV radiation is associated with C to T mutations3–5. Some processes
provide a constant source of mutations6 while others are sporadic7.

Using mutational signature analysis, one can estimate the contribution of different mutation processes to
the collection of somatic mutations present in a sample. In this type of analysis, single nucleotide variants
(SNVs) are classified into 96 types based on the type of substitution and tri-nucleotide context (e.g., ACG to
a ATG)2. Mutational signatures across the 96 types were derived by non-negative matrix factorization in the
previous work by Alexandrov et al.2. Many of the signatures are strongly associated with known mutational
processes including smoking7, non-homologous double strand break repair2, and ionizing radiation8. The
activities of some signatures are correlated with patient age6 and suggesting their use as a molecular clock9.
Thus, signature analysis can identify the DNA damage repair pathways that are absent in the cancer, can
predict prognosis10 or guide treatment choice11.

Formally, a mutational signature is a probability distribution over these 96 types, where each element is a

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/260471doi: bioRxiv preprint 

https://github.com/YuliaRubanova/TrackSig
https://doi.org/10.1101/260471
http://creativecommons.org/licenses/by-nc-nd/4.0/


probability of generating mutations from the corresponding type12. Each signature is assigned an activity
(also called exposure) which represents the proportion of mutations that the signature generates. These
can be computed for pre-defined signatures from the total mutational spectrum of a sample by constrained
regression13, 14.

Mutational sources can change over time. Mutations caused by carcinogen activity stop accumulating
when the activity ends7. Mutations associated with defective DNA damage repair, such as BRCA1 loss1, 2

will begin to accumulate after that loss. Recent analyses have reported modest changes in signature activities
between clonal and subclonal populations9, 15 based on groups of mutations identified by clustering their
variant allele frequencies (VAFs). However, the accuracy of these methods relies heavily on the sensitivity
and precision of this clustering, which is low for typical whole genome sequencing coverage16.

In this paper we introduce TrackSig, a new method to reconstruct signature activities across time without
VAF clustering. We use VAF to approximately order mutations based on their prevalence within the cancer
cell population and then track changes in signature activity consistent with this ordering.

Using TrackSig, we have previously demonstrated that signature activities change often during the
lifetime of a cancer and that these changes can help identify new subclonal lineages17. Here, we use bootstrap
analyses and realistic simulations to help assess the accuracy of those reconstructions.

2 Methods
TrackSig has two stages. First, we sort single nucleotide variants (SNVs) by an estimated order of their
accumulation. We compute this estimate using their variant allele frequencies (VAFs) and a copy number
aberration (CNA) reconstruction of the samples. Next, we infer a trajectory of the mutational signature
activities over the estimated ordering of the SNVs. We estimated activity trajectory for each signature is a
piecewise constant function of the SNV ordering with a small number of change-points. These stages are
described in detail below.

TrackSig is designed to be applied to VAF frequency data from a single, heterogeneous tumour sample.
However, if an ordering of mutations is available through another sources, for example, a reconstruction of
the cancer phylogeny, then this ordering can be used directly and the first stage of TrackSig can be omitted.

2.1 Estimating the order of acquisition of SNVs
We assume SNVs to be persistent and cumulative, meaning that mutations cannot be reverted to the reference
state and no position is mutated twice. This is known as the infinite sites assumption1, 18.

Under this assumption, SNVs acquired earlier in the evolution of a cancer will generally be more prevalent
in the population of tumour cells. In TrackSig, we sort mutations according to decreasing cancer cell fraction
(CCF) thus assuming that mutations with higher CCF were acquired earlier. This assumption can be violated
if multiple major subclones from different branches are represented in the sample. However, this situation
occurs rarely19, and may manifest as a characteristic oscillation in the reconstructed activities. See sec 4.3 for
more details.

2.1.1 Estimating cancer cell fraction
Estimating a SNV’s CCF requires both an estimate of its VAF and an estimate of the average number of alleles
per cell at the locus where the SNV occurs. In TrackSig, we derive this estimate from a CNA reconstruction
provided with the VAF inputs.

To account for uncertainty in a SNV’s VAF due to the finite sampling, we model the posterior distribution
over its VAF using a Beta distribution:

VAF∼ Beta(nvar,nref), (1)

where nvar is the number of reads carrying a variant, and nref is the number of reference reads. To simplify
the algorithm, and the subsequent sorting step, we sample an estimate of VAFi (VAF of SNV i) from this
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distribution. This gives us a single sampled ordering. With a large number of SNVs, we expect little variability
in the estimated activity trajectory due to uncertainty in the VAFs of individual SNVs. With a smaller number
of SNVs, multiple orderings can be sampled and the trajectories combined.

If no CNA reconstruction is available, TrackSig assumes that each SNV is in a region of normal copy
number and TrackSig estimates CCFs in autosomal regions by setting:

CCFi =
2∗VAFi

Purity
, (2)

where Purity is the purity (i.e. proportion of cancerous cells) of the sample. If purity is not provided, TrackSig
assumes Purity = 1.

If a CNA reconstruction is available, TrackSig uses it when converting from VAF to CCF. In regions
of subclonal CNAs, making this conversion requires a phylogenetic reconstruction16, 20. As such, we filter
SNVs in these regions out when ordering SNVs in order to avoid this time consuming operation. However,
TrackSig can make use of orderings of SNVs in regions of subclonal CNAs if provided by a phylogeny-aware
method16, 21. Also, TrackSig assumes there is a maximum of one variant allele per cell, and thus estimates
CCF by setting:

CCFi =
(2+Purity∗ (CNi−2))

Purity
∗VAFi, (3)

where Purity is the purity of the sample, and CNi is the clonal copy number of the locus. If the clonal CNA
increases the number of variant alleles per cell, this will lead to CCFs larger than one. As such, these cases
are easily detected and corrected.

TrackSig sorts SNVs in order of decreasing estimated CCF and use the rank of the SNV in this list as a
“pseudo-time” estimate of its time of appearance. Note that this estimate will have a non-linear relationship to
real time, if the overall mutation rate can vary during the tumour’s development. If some of the SNVs can be
interpreted as clock mutations, an SNV’s rank can be converted into an estimate of real time (see, e.g,9 for
details).

2.1.2 Constructing a timeline
To derive an estimate of the activity trajectory, TrackSig converts the SNV ordering into a set of time points
with non-overlapping subsets of the SNVs. TrackSig first partitions the ordered mutations into bins of 100
mutations and interpret each bin as one time point. The timeline of the cancer is the collection of the time
points. TrackSig reports signature activity trajectories as a function of points in the timeline. Note that it does
not use any information about subclones when partitioning the SNVs and that it is only using CCFs for the
SNV from a single sample.

2.2 Computing activities to mutational signatures
To estimate activity trajectories, TrackSig partitions the timelines into sets containing one or more time points.
Within each of these sets, it estimates signature activities using mixture of discrete distributions. Full details of
the model are provided in the appendix A. In brief, TrackSig models each signature as a discrete distribution
over the 96 types and it treats the mutation count vector over the 96 types as a set of independently and
identically distributed samples from a mixture of the discrete distributions corresponding to each signature.
The mixing coefficients of these distributions are interpreted as their activities for the mixture model that
produced the set of mutations. TrackSig fits these activities using the Expectation-Maximization algorithm22.

2.3 Detecting change-points
TrackSig identifies change-points in the timeline where there are discernible differences in the activity of
mutations in the time points before and after the change-points. Specifically, the change-points delineate
the partitions of the timeline into sets of mutations with approximately constant activities. TrackSig fits
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activities for this set, as described above. This procedure generates piecewise constant activity trajectories
for each signature. To select change-points, we adapt Pruned Exact Linear Time (PELT)23, an optimal
segmentation algorithm based on dynamic programming. We impose complexity penalty at each time point
that is equivalent to optimizing the Bayesian Information Criteria (BIC) (see Supplement B for details). To
reduce variance in our estimates of the signature activities, we do not allow partitions to be smaller than 4
time points (400 mutations).

We compute the BIC criteria the following way. Change-points split the timeline into (# changepoints+1)
sections. In each section, TrackSig fits the signature activities, which have to sum to one. Therefore there are
(# signatures−1) free parameters per section, or (# changepoints+1) · (# signatures−1) free parameters in
total. As such, BIC objective takes the following form:

BIC =−2lnL̂ +(# changepoints+1) · (# signatures−1) · ln(# timepoints), (4)

where L̂ is the likelihood of the current model.

2.4 Correcting cancer cell fraction greater than 1
If the number of variant alleles per cell is increased by a clonal copy number change, TrackSig’s CCF
estimates might be greater than 1. To correct for this, when displaying activity trajectories, it merges all
the time points that have average CCF ≥ 1 into one time point. As such, the first time point can contain
more than 100 mutations. To determine a signature activity at this new time point, TrackSig simply takes an
average activity of all merged time points (those having CCF ≥ 1).

2.5 Bootstrapping to estimating activity uncertainty
TrackSig estimates uncertainty in the activity estimates by bootstrapping the mutations and refitting the
activity trajectories. Specifically, it takes the random subset of N mutations by sampling uniformly with
replacement from the N unfiltered SNVs in the sample under consideration. Using the pre-assigned CCF
estimates, we sort the SNVs in decreasing order, as above, re-partition them into time points and recompute
activity estimates. The trajectories obtained from bootstrapped mutation sets have the same number of time
points, however the average CCF for each time point can change. We use these bootstrapped trajectories to
compute uncertainty estimates for the sizes of activity changes.

3 Results
TrackSig was applied to the 2,552 whole-genome sequencing samples with more than 600 SNVs contained
within the white and grey lists of the Pan-cancer Analysis of Whole Genomes (PCAWG) group. The results
of these analyses are described elsewhere17. Here we describe the simulations establishing TrackSig’s
performance characteristics and provide some methodological details of TrackSig’s use in PCAWG.

3.1 Choice of mutation signatures
Following Alexandrov et al.2, we classify mutations into 96 types based on their three-nucleotide context.
Point mutations fall into 6 different mutation types (i.e., C -> [AGT] and T -> [ACG]) excluding complemen-
tary pairs. There are 16 (4*4) possible combinations of the 5’ and 3’ nucleotides. Thus, SNVs are separated
into 96 (K = 16∗6 = 96) types.

Within the context of PCAWG, we use the set of 48 signatures developed by PCAWG-Signature group.
The first 30 of those signatures are slightly modified versions of original signatures defined by Alexandrov
et al.2, 12 and have the same numbering and interpretation. The original 30 signatures are described at
COSMIC1. Signature analysis methods, including TrackSig, fit activities for only a subset of the signatures.
These signatures are called the active signatures. The activities for the non-active signatures are clamped to

1http://cancer.sanger.ac.uk/cosmic/signatures
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(b) Chronic lymphocytic leukemia

Figure 1. Activity trajectories for two samples. Each plot is constructed from VAF data from one tumour
sample. Each line is an activity trajectory that depicts inferred activities for a single signature (y-axis) as a
function of decreasing CCF (x-axis). Signatures are indicated by colour. The thin lines are trajectories from
each of 30 bootstrap runs. The bold line depicts the mean activities across bootstraps. The vertical lines
indicate time points in the original dataset, and are placed at the average CCF of their associated mutations.
As such, the distance between time points in the plot is inversely proportional to the density of the mutations
near that CCF. Changes in activity trajectories are not necessarily aligned with vertical bars because mean
CCFs of time points change across bootstraps. Frequency of changepoints between two vertical bars is
indicated by shade, the darker shades indicate higher density of change-points. Subclonal boundaries are
shown in red vertical lines. Subclonal information is not used in trajectory calculation and is only shown for
comparison. (a) Breast cancer sample In clonal signatures remain constant with dominating signature 3
(associated with BRCA1 mutations). In the subclone activity to signature 3 decreases and is replaced by
SNVs associated with APOBEC/AID (signatures 2 and 13). (b) Chronic lymphocytic leukemia sample
Signature 9 (somatic hypermutation) dominates during clonal expansion and drops from 55% activity to
almost zero in the subclone. Signature 5 compensates for this change.

zero. For example, signature 7 is associated with ultraviolet light has been detected almost exclusively in
skin cancers2. As such, it is only assigned active status in skin cancers. In our analysis, we use the active
signatures reported by PCAWG-Signature group. For analyses based on COSMIC signatures, one can use
active signatures per cancer type is provided on COSMIC website. TrackSig can also be used to automatically
select active signatures, as described in a later section.

3.2 Signatures with most changing activities
In this section we analyze the variation of signature activities on PCAWG data across time and across samples.
We compute the maximum change of the signatures in each sample, which is simply the difference between
maximum and minimum activity of the signature. To assess whether a signature change is statistically
significant, we perform the following procedure. We permute the mutations in each sample and run the
trajectory estimation on the permuted set. Since permuted mutations are not sorted in time, we expect no
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change in the activity trajectories over time. The maximum activity change that we observe on permuted set
of mutations does not exceed 5% in any sample. Therefore, we will consider signature changes below 5% to
be insignificant (Fig. 2).
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Figure 2. Distribution of maximum signature activity changes across 2486 PCAWG samples. The red line
shows the threshold of 5%, below which we consider changes to be insignificant. (a) Changes on random
orders of mutations where we don’t expect to see change in activities. (b) activity changes in TrackSig
trajectories across all samples (on mutations sorted by CCF). Frequency axis shows the number of samples
where we observe the certain activity change.

As shown by Figure 3, samples typically have only two or three signatures with high activities. These
signatures are usually the most variable (up to 87.2% max change, 12% on average). Other signature have low
activity and remain constant. On average 3.6% of overall activity is explained by low-activity signatures (with
activity <5%). Low-activity signatures most likely appear due to the uncertainty of our signature activity
estimates. As mentioned in section 3.4, a mean standard deviation of signature activities of 2.9%, thus, we
remove signatures with activity less than 5% as they within two standard deviations of 0%.

0 20 40 60 80 100

●Rank 1
●Rank 2

●Rank 3
●Rank 4

●Rank 5
●Other

Mean activities ranked within a tumor

 % mean activity

−100 −50 0 50 100

●●Rank 1
●●Rank 2

●●Rank 3
●●Rank 4
●●Rank 5

●Other

Corresponding max changes

% max change

Figure 3. Left: Mean signature activities ranked from the largest to the smallest within each sample. Only
the top 5 signatures with the highest activities in a sample are shown. Right: Maximum changes of signature
activities for the corresponding signatures on the left plot. The changes below 5% are omitted as insignificant.

3.3 Trends in signature change per cancer type
The majority of samples have a signature change: 76.1% of samples have a max change >5% in at least one
signature; 48.4% of samples have change >10%. However, the number of signature changes correlates to
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some extent with the number of mutations in the sample. Out of samples with less than 10 timepoints (tp)
only 26.3% of samples have a change >5% compared to 80.4% across the rest of the samples (see distribution
on fig. 4).
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Figure 4. Proportion of tumours that have a significant change greater than 5% activity depending on the
number of time points in a sample. Each bar corresponds to the range of number of time points in a sample.

3.4 Bootstrapping
We assess the variability in activity trajectories by performing bootstrap on the PCAWG data. We sample
mutations with replacement from the original set and re-calculate their activities and change-points. We
perform 30 bootstrap runs for each sample. Fig. 1 shows examples of bootstrapped trajectories from two
samples (breast cancer and leukemia).

Signature trajectories calculated on bootstrap data are stable. The mean standard deviation of activity
values calculated at each time point is 2.9%. We also evaluate the consistency of signature changes across
the entire activity trajectory: size of signature change and location of the change-point. The mean standard
deviation of the signature change is 5.3% across the bootstraps. This standard deviation does not exceed 5%
in 55.8% of samples (does not exceed 10% in 94.3% of samples, fig. C.1).

In TrackSig the number of change-points is calculated during activity fitting does vary across bootstrap
samples. We observe 1.02 standard deviation in the number of change-points. To assess the variability in the
location of the change-points, we matched nearby change-points between bootstrap samples and measured
their average distance in CCF. Because the number of change-points can change between samples, as a
reference, we randomly choose one of the samples that has a number of change-points equal to the median
number of change-points among all samples. Then, in all other bootstrap runs, we match each change-point
to the closest run in the reference. We found that location of the change-points is consistent across bootstraps:
on average, change-points are located 0.093 CCF apart from the closest reference change-point.

3.5 Simulations
To test TrackSig’s ability to reconstruct the activity trajectories, we generate a set of simulated samples with
known ground truth. Simulations have 50 time points (average number of time points in PCAWG samples).
Each simulation has four active signatures. Two of those signatures are 1 and 5, which are nearly always
active in the PCAWG samples. For the remaining two signatures, we test all possible combinations of the
other 46 signatures. Thus, we have 1035 (= 46 choose 2) different signature combinations.

We generate simulations with 0 to 3 change-points that are placed randomly on the timeline. For each
segment on the timeline, we sample signature activities from a symmetric Dirichlet distribution with all
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parameters αi = 1, in other words, all activity vectors are equally likely. Finally, we sample 100 mutations
from the discrete distribution derived using the sampled activities as mixing coefficients for the four signatures.

The simulations mimic the input from the real data (100 mutations per time point). In earlier simulations,
we evaluated bin sizes up to 500, and found that 100 mutation bins provided an excellent balance between
accuracy and sensitivity (data not shown).

Next, we run TrackSig on the simulated data and compare the reconstructed activity trajectories to the
ground truth. We remove change-points with small change, that is, where activities of all signatures change by
less than 5% in reconstructed trajectories. This threshold is derived in section 3.2 from permutation analysis.

We computed the absolute difference between predicted activities and the ground truth at each time point
and take the median across all time points and all four signatures. We called this the median per simulation
difference. On the simulations with no change-points, the median of these median per simulation differences
is 0.7% On simulations with 1 to 3 change-points, this median increases slightly to 2%. The cumulation
distribution of the median per simulation differences is shown in fig. 5.

For the PCAWG data, we report the maximum activity change (MAC) across activity trajectory17. The
maximum change is the difference between maximum and minimum activity across all time points in a
sample. We also report the direction of change (down if maximum occurs before minimum and up otherwise).
Here, we evaluate TrackSig’s accuracy in these estimates on the simulated data. The MAC discrepancies
between the estimated and ground-truth trajectories is less than 5% in 83.2% of cases across all signatures in
all simulations (fig. 5b).

To compare the direction of the activity change, we divide signatures into three categories: with decreasing
activity, increasing activity and no activity change (if max change is less than 5%). The direction of maximum
change is consistent in 95.2% of all signatures across all simulations.

To compute number of false positives and false negatives, we use modified criteria that accounts for the
sliding-window smoothing. Specifically, we count a true positive detection if at least one of predicted change-
points occur with three time points of an actual one. A false negative is when no predicted change-points are
within three time points of an actual change. This criteria is identical to the one we use to evaluate whether a
change-point supports a subclonal boundary17. We deem a predicted change-point a false positive if it occurs
more than three time points away from the closest actual change-point.

Table 1 shows the percentage of simulations where we observe the certain number false positives. On
average, we observe 0.12 false positives per simulation. We detect 0.02 false negatives on average per
simulation.

3.6 Choosing active signatures
Only a subset of signatures are active in a particular sample, and this subset is largely determined by a cancer
type. For the analyses reported above, we use a set of active signatures provided by PCAWG, which contains
a list of active signatures per sample (on average, four per sample). For COSMIC signatures the list of active
signature per cancer type is available on the website. However, such data is frequently unavailable. Here we
explore different ways to select the active signatures, comparing them to those selected by PCAWG-Signature
group. Note that is all the approaches described below it is sufficient to fit the signatures to overall mutation
counts without separating mutations into time points. Once active signatures are selected, they can be used to
compute the activity trajectories across time.

TrackSig supports three ways to determine active signatures. The first is to simply use the full set
of signatures to fit the data. The second is to use all signatures reported as active in the cancer type
under consideration. The final is to fit activities using one of the two previous methods, and use as active
signatures only those signatures with activities greater than a threshold (by default, 5%) in the initial fit.
We evaluated each strategy by compared the active signatures selected by TrackSig with those reported by
PCAWG-Signature group.

For the first strategy, we used all 48 signatures and we found on average, 44.7% of overall activity
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Figure 5. Simulation results. (a) Median activity difference between the reconstructed trajectories and the
ground truth. Lines correspond to the simulations with 0, 1, 2 or 3 change-points. The median in computed
across all signatures and time points in the sample. (b) Distribution of MAC discrepancies between between
estimated activities and ground truth.
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Figure 6. Example of the simulation with three change-points. (a) Reconstructed sample (b) Ground truth

assigned by TrackSig is assigned to the active signatures selected by PCAWG-Signature group. Each
incorrect signatures gets 1.3% of activity on average. In other words, the incorrect activity is widely
distributed among the signatures. Therefore, we recommend constraining the number of signatures by one of
the approaches described below.

Fitting only the cancer-specific signatures improves the correspondence to 68.7% of the total activity on
average. Using sample-specific sets reduced the initial set of potentially active signatures from 48 down to 12
on average (ranging from 4 signatures in Lower Grade Glioma to 24 signatures in Liver Cancer). In this case,
we observe that signature 5 and 40 are the most prevalent among the incorrect signatures, having the average
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Table 1. Simulation results. False positives and false negatives versus change-points in the ground truth.
Each cell shows the percentage of simulations that have certain number of false positives/negatives
(normalized within the column). See main text for definition of positive and negative time points. The last
row of the table shows the average number of false positives per simulation.

# true change-points
0 1 2 3

# false positive
change-points (FP)

0 0.909 0.896 0.9 0.889
1 0.06 0.083 0.087 0.106
2 0.024 0.019 0.011 0.005
3 0.005 0.002 0.002 0
4 0.002 0 0.001 0

Avg # of FP per simulation 0.130 0.128 0.118 0.116

# false negative
change-points (FP)

0 1 0.992 0.962 0.947
1 0 0.008 0.038 0.049
2 0 0 0 0.003

Avg # of FN per simulation 0.0 0.008 0.038 0.058

activity of 14% and 12.6% respectively in the samples where they are supposed to be inactive.
Finally, we fit activity for all 48 signatures and then re-fit only those with the high activity (for in-

stance, >5%), we exactly recover the active signatures reported by PCAWG-Signature group.
Fitting either per-cancer or per-sample signatures results in more activity mass to be on the correct

signatures and speeds up the computations. Therefore, we recommend choosing per-cancer or per-sample
signatures instead of using activities from the full set.

4 Summary and Conclusions

TrackSig reconstructs the evolutionary trajectories of mutation signature activities by sorting point mutations
according to their inferred CCF and then partitioning this sorted list into groups of mutations with constant
signature activities. TrackSig estimates uncertainty in the location of the change-points using bootstrap.
TrackSig is designed to be applied to VAF data on SNVs from a single sample, however, it can be applied to
sorted lists of point mutations derived from subclonal reconstruction algorithms.

Change-points often correspond to boundaries between subclones17. By reconstructing changes in
mutation activities, TrackSig can potentially help identify DNA damage repair processes disrupted in the cell
and, in doing so, help inform treatment11.

4.1 Relationship to previous work
Previous approaches estimate signature activities for a group of mutations without considering their timing
(e.g. deconstructSigs13). Therefore, the attempts to compare activity changes across evolutionary history
have relied on pre-specified groups of mutations, such as those occurring before or after whole genome
duplications7, 9, 19, 24 or those classified as clonal or subclonal1, 9. The approaches mentioned above are
limited to 1) the samples where the certain events have occurred or to 2) the ability of other methods to
reconstruct subclonal structure of the tumour. The number of time point bins remains restricted to the number
of subclones (only 2.6% of our samples have more than 2 subclones).
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TrackSig uses the distributions of mutation types to group mutations. Compared to previous approaches,
TrackSig allows to look at the timeline tumour development at greater resolution, where the number of time
points increases with the number of mutations. We have shown that this leads to more sensitive detection
of changes in signature activity. In particular, TrackSig can detect new subclones that are missed by VAF
clustering methods17. We also provide a way to infer active signatures instead of fitting all signatures that are
available.

Another important innovation of TrackSig is the used of CCF as a surrogate for evolutionary timing.
Similar ideas have been used in human population genetics, where variant allele frequency to get relative
order of mutations along the ancestral lineage25. In population genetics, allele frequency is calculated across
individuals, while we calculate VAF across cell population within a single sample. In TrackSig we introduce
a way to calculate cancer cell fraction (CCF) using VAF and use it as a timing estimate instead of VAF. We
further improve the estimates by correcting them for CNAs.

4.2 Applicability to other mutation types
In TrackSig, the number of mutation types is provided as a parameter and is not fixed to 96 types. Because of
this, it is straightforward to generalize TrackSig to reconstruct the activities of different mutation signatures
or different mutations, so long as these mutations can be approximately ordered by their evolutionary time
and each mutation can be classified into one of a fixed number of categories. In this paper, we ordered
SNVs by decreasing CCF. This same strategy could be naturally extended to indels for which the infinite
sites assumption is also valid. The infinite sites assumption should also be valid for structural variants (SVs)
associated with well-defined breakpoints, thus permitting TrackSig to be used to track activities to recently
defined SV signatures24. The CCFs of SVs can be estimated using the VAFs of split-reads mapping to their
breakpoints26. Because they cover larger genomic regions, infinite sites is less valid for CNAs, although it is
possible to approximately order clonal CNAs based on the inferred multiplicity of SNVs affected by them9.

TrackSig also requires a pre-defined set of mutation signatures, each of which is a probability distribution
over the mutation types. However, if these signatures are unavailable, they can be defined by non-negative
matrix factorization, or Latent Dirichlet Allocation27, if counts across mutation types are available from
multiple cancer samples.

The alternative way to obtain more comprehensive view of tumour development is to recover evolution tree
of the tumour and investigate mutations separately within each node of the tree. The root node corresponds to
clonal expansion, while each of the child nodes denote the subclones. This structure can be reconstructed
using a variety of algorithms including PhyloWGS16, 21, 28, which builds a subclone tree based on mutation
cancer cell fraction and copy number. These methods assign mutations to one of the nodes of subclonal
hierarchy, allowing to analyze mutational signatures independently for each subclone.

4.3 Sensitivity to misorderings of the SNVs
TrackSig assumes that ordering SNVs by CCF recovers the order in which they accumulated in the genomes
of ancestral cells, thus, our conclusions are sensitive to the correctness of this assumption. With a large
number of SNVs, we do not expect large deviation in activity trajectories due to a small amount of uncertainty
in CCF. Indeed, TrackSig’s activity trajectory varied little in bootstrap samples. For this same reason, we do
not expect activity trajectories to be impacted if a small fractions of SNVs violate the infinite sites assumption
due to high, regional mutation rates.

However, these trajectories can be impacted by incorrect ordering of a large numbers of SNVs. These can
occur in two ways. First, misordering can occur if a CNA changes the number of SNV allele’s per cell. For
example, daughter cells can fail to inherit SNVs in their mother cells due to a loss of heterozygosity (LOH).
If a CNA reconstruction is available, TrackSig will correct for any detected clonal LOH when ordering SNVs,
and will not attempt to order SNVs in regions affected by subclonal CNAs, thereby resolving this difficulty.
However, if a CNA reconstruction is not available, or it is inaccurate, the accuracy of the activity trajectories
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can suffer.
Second, SNV ordering can be incorrect when a single sample contains SNVs from subclones from

different branches of the cancer phylogeny. In these circumstances, there is not a single linear order for
the activities, and furthermore late occurring subclones on a different branch can have higher CCF than
earlier ones occurring in the sample. However, in lung cancer, for example, few biopsies contain SNVs from
branching subclones19.

Note that a subclone can only be misordered if its CCF is less than 50% due to the Pigeonhole Principle1,
so the ordering by CCFs in guaranteed to be correct up until 50% CCF. Furthermore, if there is a change in
signatures in the misordered subclone that is not reflected in the minor branch, misordering due to branching
could be diagnosed by the presence of oscillations in the activity trajectories. To address this issue, when
assessing overall change in signature activity, we computed the difference between the lowest and highest
activities for each signature. This difference will be consistent regardless of ordering. If a phylogeny was
available, one could use the phylogeny rather than CCF to order the mutations and run TrackSig separately
on each branch.

4.4 Accounting for overall mutation rate
The timelines reconstructed by TrackSig are computed with a fixed number of mutations in each bin. If
overall rate of generating mutations in tumour was constant, our timeline would correspond to the real time.
However, tumour mutation rate often accelerates throughout development29, 30. Although the changing rate
does not affect our analysis, the estimates of the pseudo-time might not be linearly related to real time.

Estimating changes in overall mutation rate is difficult. A possible way to correct for this is to adjust
the time line based on activities of signatures 1 and 5. It was suggested that signatures 1 and 5 operate as
cell "clock" as the number of mutations contributed by these signatures is be proportional to the age of the
individual6. However, it requires additional data, such as tumour samples from the same patient at different
time steps and the medical history when these samples were taken. Determining the association between our
pseudo-time estimates and real time is left for further investigation.

Our method TrackSig provides further insight how signature profile changes throughout tumour develop-
ment. We show that through signatures analysis we can detect major events in tumour evolution, notably,
transitions to a new subclone. Mutational signatures provide a unique way to recover tumour evolution path,
track activities of mutational processes, adjust the treatment strategy and detect changes in therapy response.
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A Computing activity to mutational signatures
We apply topic modeling31 to infer signature activities.Withing the time point, we separate mutation separate
into K mutation types. Mutation types relate to vocabulary in topic modeling. The types used in TrackSig
are described in section 3.1. Then we use mixture of discrete distributions to infer signature activities. We
describe this model below.

We represent each mutation as a K-dimensional binary vector – "one-hot-encoding" of a mutation type.
"One-hot-encoding" of a mutation of type k is a binary vector where k-th component is equal to 1, and other
components are zeros.We will denote x(n) to be the "one-hot-encoding of mutation n. A sample containing N
mutations is represented as a N×K binary matrix X, where each column corresponds one mutation.

x(n) =



0
0
...
1
...
0

 ; x(n)k =

{
1, mutation n belongs to type k
0, otherwise

(5)

A mutation process is represented as a distribution over mutation types, known as a "mutation signature".
We will denote signature multinomials as K-dimensional probability vectors µµµ i, where i = {1..M} is an index
over signatures. Signatures are fixed and are not updated during the training.

We aim to estimate signature activities πππ – the proportion of mutations generated by each signature.

We will use the following notation:
K – number of mutation types
M – number of signatures
N – number of mutations
x(n) – K-dimensional binary vector of mutation n
x(n)k – k-th component of vector x(n)
µµµ iii – i-th signature (K-dimensional vector)
µik – k-th component of vector µµµ iii
πππ – signature activities (mixture coefficients, M-dimensional vector)
πi – i-th component of πππ (signature activity of signature i)
zn – signature assignment for mutation n

We represent mutation matrix X as a mixture of signature multinomials µµµ111, ..µµµKKK with mixture coefficients πππ:

X∼Multinomial(N;
M

∑
i=1

πi µµµ iii) (6)

We denote zn to be the signature assignment of mutation n. The probabilities of mutation n to be assigned
to i-th signature are equal to the mixing coefficients:

p(zn = i|πππ) = πi; i ∈ {1..M} (7)

The probability of a mutation n to be generated by signature i is given by:

p(x(n)|zn = i,πππ,µµµ111, ..µµµKKK) =
K

∏
k=1

µ
x(n)k
ik ; i ∈ {1..M}; n ∈ {1..N} (8)

Then log likelihood of the collection of mutations in a sample:
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logL (X|πππ,µµµ111, ..µµµKKK) =
N

∑
n=1

log p(x(n)|πππ,µµµ111, ..µµµKKK) =

N

∑
n=1

log
M

∑
i=1

p(x(n)|zn = i,πππ,µµµ111, ..µµµKKK)p(zn = i|πππ)
(9)

To estimate the activities, we fit mixing coefficients πππ in each bin using Expectation-Maximization (EM)
algorithm22. The EM algorithm iterates between updating a posterior distribution over zn and updating an
estimate of the mixing coefficients πππ

We start with initializing EM algorithm with uniform mixing coefficients:

π
(0)
i =

1
M

; i ∈ {1..M} (10)

Then, we repeat the following E-step and M-step until the algorithm converges.
In E-step, at the t-th iteration, the posterior probabilities of mutation assignments to signatures are

estimated as such:

p(zn = i|x(n),πππ(t−1),µµµ111, ..µµµKKK) = π
(t−1)
i

K

∏
k=1

µ
x(n)k
ik ; i ∈ {1..M}; n ∈ {1..N} (11)

In M-step we update the estimates of the mixing coefficients:

π
(t)
i =

1
N

N

∑
n=1

p(zi|x(n),πππ(t−1),µµµ111, ..µµµKKK); i ∈ {1..M} (12)

The algorithm has converged when the value of π is updated by less than 0.001 between iterations.
The resulting mixture coefficients as the activities of the mutational signatures. We show the activities as
percentage for the convenience of interpretation.

B Pruned Exact Linear Time (PELT) Algorithm
We adapt Pruned Linear Exact Time (PELT)23 algorithm to detect change points in activity trajectories given
cost function (likelihood) and BIC penalty. PELT is based on dynamic programming and uses heuristics to
prune the set potential change-points, thus reducing the computational time.

In this section, we will use the following notation:
T – number of time points
P – number of change-points
M – number of signatures

B.1 Locating change points
As described in 2.1.2, we separate mutations into bins 100 mutations, each of which represents one time point.
Our input is the set of mutation counts across 96 types for each time point: y1:T = (y1, . . . ,yT ). We aim to
find P change-points, or in other words, P+1 segments. We denote τ1:P = (τ1, . . . ,τP) to be the boundaries
for our segments, meaning each segment will contain the data points yτi−1 ..yτi .

Given a set of change-points we can compute the likelihood of the data the following way. We fit
mutational signatures within each segment (treating all mutations within each segment as one bin) and
compute the likelihood L̂ (yτi−1 ..yτi) as described in A. The total likelihood is the sum of likelihoods in each
segment:
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L̂ =
P+1

∑
i=1

L (y(τi−1+1):τi)

We aim to minimize the Bayesian Information Criterion (BIC):

BIC =−2lnL̂ + k · ln(T )

where k is the number of parameters in our model and T is the number of time points. In our case
k = (P+1) · (M−1) as we fit (M−1) signature activities in (P+1) segments (recall that signature activities
sum to 1).

We adapt PELT objective to minimize the BIC criterion. PELT aims to minimize sum of cost functions at
each time point, while using a penalty β for each placed change-point

minimize
P+1

∑
i=1

C (y(τi−1+1):τi)+β (P+1)

Intuitively, we are trying to select changepoints which result in the lowest cost (or highest likelihood)
while reducing the penalty associated with adding changepoints. We set the parameters as follows to make
the PELT equivalent to BIC:

C =−2L̂ ; β = (M−1) ln(T )

TrackSig-PELT algorithm find the change-points as follows. The algorithm starts with finding partial
solution in a subset of the timeline and then increases the search space until change-points are the whole
timeline are located. An algorithm keeps track of the time points Rτ∗ that satisfy the pruning condition and
which will be considered as potential change-points at further iterations. At each iteration τ∗, the algorithm
considers adding a new change-point out of the set of available time points Rτ∗. To score a potential new
change-point, the algorithm refits the activities in bins formed by a potential change-point. It finds a time
point τ ′ with the smallest likelihood and adds it to the list of change-points cp. Then the list of available time
points Rτ∗ is updated: the potential change-points are removed from further consideration if the increase in
likelihood associated with this change-point does not exceed the complexity penalty β .

B.2 Pruning
PELT provides an improvement in runtime by pruning certain change-points from consideration. We prune
time point t if for all t < s < T :

C (y(t+1):s)+C (y(s+1):T )+β ≤ C (y(t+1):T ) (13)

Intuitively, the cost placing the last changepoint prior to T at t will always be higher than cost of placing
the last changepoint prior to T at s. Given this result, we can eliminate t as a potential changepoint for all
iterations of the dynamic programming algorithm as it will never be optimal going forwards.
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Algorithm 1 TrackSig PELT Method (Killack and Eckley 2012)

Input: Mutation counts at each time step (y1,y2, ..yT )
1: Initialize: Set β = (M−1) ln(T ); F(0) = 0; cp = {}; R1 = {0}
2: for τ∗ = 1, ...,T do
3: Calculate F(τ∗) = minτ∈Rτ∗ [F(τ)+C (y(τ+1):τ∗)+β ], where C (y(τ+1):τ∗) =−2L̂ (y(τ+1):τ∗)
4: Let τ ′ = argminτ∈Rτ∗ [F(τ)+C (y(τ+1):τ∗)+β ]
5: Append τ ′ to cp
6: Set Rτ∗+1 = {τ ∈ Rτ∗ ∪{τ∗} : F(τ)+C (yτ+1:τ∗)+β ≤ F(τ∗)}
7: end for
8: return cp – a set of change-points
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C Supplementary figures and tables

Table 2. Simulation results. Predicted change-points versus change-points in the ground truth. Each cell
shows the percentage of simulations which have certain number of estimated change-points (normalized
within a column). Note that due to smoothing, there might be several predicted change-points that correspond
to the same change-point in the ground truth. In this case, predicted change-points have to be located no
more than 3 time points away from the ground truth.

# true change-points
0 1 2 3

# predicted
change-
points

0 0.91 0.004 0 0
1 0.061 0.9 0.019 0.001
2 0.024 0.078 0.898 0.037
3 0.006 0.02 0.075 0.861
4 0.002 0.001 0.009 0.091
5 0 0.001 0.001 0.002
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Figure C.1. Discrepancies in signature activities on bootstrap data. (a) Standard deviations of signature
activities at each time point for each signature across bootstraps. (b) Standard deviations of activity change at
each time point for each signature across bootstraps.
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