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Abstract

Motivation: ChIP-seq is used extensively to identify sites of transcription factor binding or regions
of epigenetic modifications to the genome. The fundamental bioinformatics problem is to take ChIP-seq
read data and data representing some kind of control, and determine genomic regions that are enriched in
the ChIP-seq versus the control, also called “peak calling.” While many programs have been designed to
solve this task, nearly all fall into the statistical trap of using the data twice—once to determine candidate
enriched regions, and a second time to assess enrichment by methods of classical statistical hypothesis
testing. This double use of the data has the potential to invalidate the statistical significance assigned
to enriched regions, or “peaks”, and as a consequence, to invalidate false discovery rate estimates. Thus,
the true significance or reliability of peak calls remains unknown.
Results: We show, through extensive simulation studies of null hypothesis data, that three well-known
peak callers, MACS, SICER and diffReps, output optimistically biased p-values, and therefore optimistic
false discovery rate estimates—in some cases, orders of magnitude optimistic. We also propose a new
wrapper algorithm called RECAP, that uses resampling of ChIP-seq and control data to estimate and
correct for biases built into peak calling algorithms. RECAP also enables for the first time local false
discovery rate analysis, so that the likelihood of individual peaks being true positives or false positives
can be estimated based on their re-calibrated p-values. RECAP is a powerful new tool for assessing the
true statistical significance of ChIP-seq peak calls.
Availability: The RECAP software is available at www.perkinslab.ca.

1 Introduction

Chromatin Immunopreciptation followed by high-throughput sequencing, or ChIP-seq, has become a
central approach to mapping transcription factor-DNA binding sites and studying the epigenome [16, 12,
21]. ChIP-seq is the primary technique employed by a number of highly successful large-scale genomics
projects, including ENCODE [6, 3], modENCODE [5, 19], the NIH Roadmap Epigenomics Project [2, 13],
and the International Human Epigenome Consortium [23]. Collectively, these projects have generated
over 10,000 ChIP-seq data sets at a cost of 10s or 100s of millions of dollars, while other, smaller-scale
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projects have generated many more. Thus, understanding exactly how much information we can or
should extract from such data is a question of paramount importance.

Bioinformatics analysis of ChIP-seq data is a multi-stage process [14], with the end goal of iden-
tifying genomic regions enriched for ChIP-seq signal—the regions that represent locations of possible
transcription factor (TF)-DNA binding, or histone positions, or chromatin marks, etc. There are numer-
ous algorithms for identifying ChIP-seq enriched regions, or peak-calling (e.g., [8, 25, 30, 22, 24, 29, 11,
18, 27, 1, 20]). Because ChIP-seq data is noisy, virtually all peak calling algorithms output peaks (i.e.,
enriched regions) with associated p-values. These p-values are useful for ranking peaks in decreasing
order of confidence, and estimating false discovery rates at different significance thresholds. But how
well can we trust the p-values produced by peak callers?

Although approaches to peak calling differ in a number of ways, many follow a common two-stage
pattern: First, candidate peaks are identified by analyzing the ChIP-seq data, and second, those candi-
date peaks are evaluate for significance by comparing ChIP-seq data with some kind of control data. (Or,
in the case of differential enriched region detection, two ChIP-seqs may be compared to each other.) The
problem with this design, as already pointed out by Lun and Smyth [15], is that it commits the statistical
sin of using the data twice. More specifically, the ChIP-seq data is used to construct hypotheses to test
(the candidate peaks), and then the same ChIP-seq data, along with control data, is used to test those
hypotheses by means of classical statistical hypothesis testing. In general, when the hypothesis and the
test both depend on the same data, classical p-values cannot be trusted.

To be more concrete, let us consider three specific algorithms that we chose to focus on in this paper:
MACS [30, 10, 9], SICER [29, 28], and diffReps [20]. We chose to study MACS because it is, at present,
the most highly cited peak caller, and it is used by the ENCODE and modENCODE consortia for analysis
of their data. SICER is another widely used and high-cited algorithm, but one designed more for the
detection of the broad, regional enrichment characteristic of certain chromatin marks. This suits some
of our experiments below, although MACS is also able to detect such regions, particularly when used in
“broad peak” mode. diffReps is designed to solve the differential enrichment problem—the comparison of
two ChIP-seqs instead of a ChIP-seq and a control—which again comes up in certain of our experiments.

Let us consider why MACS [30, 10, 9] may produce biased p-values. After fragment size estimation and
read shifting, MACS scans a fixed-width window across the genome, counting ChIP-seq reads. An initial
p-value is assigned to each window by comparing its read count to the expectation under a Poisson model
with rate parameter that depends on window size, genome size, and total reads in the ChIP-seq data
set. If that initial p-value is less than or equal to 10−5 (a parameter the user can specify), the window is
deemed enriched compared to a flat background model. Overlapping enriched windows are then merged,
resulting in candidate peak regions. The candidate peak regions are then tested for enrichment versus
the control, and that p-value is attached to the candidate peak. Both the initial selection for enriched
windows and the merging of windows tend to result in candidate peaks that have substantial numbers
of reads. In particular, these candidates are far more likely than some randomly selected region to be
enriched in comparison with the control. In other words, by construction, the candidate peaks are very
likely to not conform to some null hypothesis of no enrichment in ChIP-seq versus control. As such, we
expect the output p-values to be unduly biased towards apparent statistical significance, even if there is
actually no underlying difference between ChIP-seq and control data distributions.

For SICER [29, 28] there are similar sources of bias. SICER counts ChIP-seq reads in predefined,
non-overlapping windows, and initially marks each window as eligible (statistically enriched compared to
a uniform background model) or ineligible (not enriched). It then constructs islands out of a sequence of
eligible windows interrupted by at most a fixed number of ineligible windows. It again tests these islands
for enrichment compared to a uniform background model, discarding those that are not significantly
enriched. Finally, the remaining islands, which constitute the candidate peaks, are assigned p-values
by comparing ChIP-seq reads to control reads. The construction process twice biases attention towards
regions enriched for ChIP-seq reads, so that the resulting candidates are highly likely to appear enriched
versus control.

In diffReps [20], as in MACS, a fixed-size window is stepped across the genome, with low-count
windows being discarded. (The exact definition of low-count is complex; we refer the reader to their
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paper for details.) For remaining windows, enrichment versus control is assessed by comparing ChIP-
seq reads versus control reads by one of several possible statistical tests, and again, windows that are
not enriched are discarded. Finally, any remaining windows that overlap are merged to form candidate
peaks, and one final enrichment test of ChIP-seq versus control is performed to generate a p-value for
that peak. In this case, two initial stages of selection—one versus a uniform model of sorts, and one
versus the control itself—highly bias attention towards regions where ChIP-seq appears enriched versus
control. Again, even if the underlying ChIP-seq and control distributions are the same, this focusing
of attention on differences before the final p-value calculation can make it falsely appear as if there are
regions of significant enrichment.

When peaks’ p-values are wrong, it creates a host of other problems as a side effect. For one thing,
we no longer have a good basis for choosing a p-value cut off for reporting results. Relatedly, we do
not know how much we can trust any given peak, or even the set of peaks as a whole. If a peak has
a p-value of 10−10, we might feel that is very likely to be indicating true transcription factor binding
or epigenetic modification. But if the peak caller is biased, so that the real statistical significance of
such a peak is only 10−1, then perhaps we should not put much stock in it after all. False discovery
rate estimates, which are also reported by most peak callers, are virtually meaningless when based on
p-values that are themselves incorrect. Another problem arises if we try to compare results from different
peak callers. To make comparisons “fair”, we might restrict both peak callers to the same raw p-value
(or false discovery rate) cut-off. But if one algorithm has highly biased p-values and the other does not,
then this comparison will hardly be fair.

One approach to unbiased peak-calling would be to develop a new peak calling approach from scratch,
in a way that avoids double use of the data. However, given that there are already many programs
available that seem largely satisfying in terms of identifying and ranking candidate peaks, and only
their significance is in question, we chose a different approach. We asked whether the p-values of peaks
generated by these programs could be recalibrated, to correct their bias. Happily, we found this to be
largely possible through the new RECAP method that we introduce. RECAP stands both for the goal
or our approach, recalibrating p-values, and the method by which it is done, resampling the read data
and calling peaks again.

RECAP is a wrapper algorithm that is compatible with most any peak caller, and in particular
MACS, SICER and diffReps, for which we provide wrapping scripts. RECAP repeatedly resamples from
ChIP-seq and control data according to a null hypothesis mixture. It then applies the peak caller to
the resampled data, estimating the distribution of p-values under the null hypothesis of no difference
between ChIP-seq and control. It uses the CDF of that estimated distribution to adjust the p-values
produced by the peak caller on the original (not resampled) data.

We show that on a variety of different types of null hypothesis ChIP-seq data, where there is no
actual enrichment, this produces p-values that are approximately uniformly distributed between zero
and one—as should be the case for well-calibrated statistical hypothesis testing. RECAP also allows
local false discovery rate analysis. This means that for each peak, we can assess the likelihood that it
is a true positive or a false positive, based on its p-value. This gives a more intuitive way of choosing a
significance cut-off for peak calling, and allows us to look at whether default cutoffs (such as the 10−5

raw p-value cutoff in MACS) are overly conservative or still too loose. In summary, RECAP allows for
much more rigorous and rational analysis of enrichment in ChIP-seq data, while allowing researchers to
continue to use the peak calling algorithms they already prefer and have come to depend on.

2 Results

2.1 MACS, SICER and diffReps produce biased p-values

To test whether peak-callers produce biased p-values, we generated 10 simulated null hypothesis data
sets. In each data set, both ChIP-seq and control data comprise foreground regions and background
regions. Foreground regions are 500bp long and spread approximately 20-25kb apart along a hg38-
sized genome, and are the same for both ChIP-seq and control. Each ChIP-seq and control data set
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had 30,882,698 reads—one per 100 basepairs of the genome on average. 10% of the reads were placed
uniformly randomly within the foreground regions, while the remainder were placed uniformly randomly
within the background regions. Figure 1A shows a zoom-in on part of one of the randomly generated
ChIP-seq data sets and its matching control.

We ran MACS, SICER and diffReps on these data sets, using default parameters with one exception.
We set p-value or FDR cut-off thresholds at or as close as possible to 1.0, so that all candidate peaks,
regardless of significance, would be reported. Figure 1B shows histograms of the p-values of the peaks
produced by each program, for one of the 10 simulated ChIP-seq–control data set pairs. These histograms
show that the distributions of p-values are complex. They are rough with “spikes” of varying heights at
different locations. This is especially visible for diffReps, but it is true of all three peak callers. Spikes
in the distributions occur when multiple candidate peaks have the exact same numbers of ChIP-seq and
control reads, so that the assessed statistical significance is exactly the same. The rough appearance
of the distributions is observable at many scales. For example, if one restricts attention to peaks with
significance p ≤ 10−5 or some other such conservative threshold, one continues to see irregularly spaced
spikes of varying heights where multiple peaks have the exact same p-value.

In addition to being complex, the p-value distributions are also far from uniform (which they should
be for this null hypothesis data, if p-values were well-calibrated). This is visually clear from Figure 1B,
where the horizontal dashed lines indicate the uniform distribution, and from Figure 1C, where we plot
the empirical cumulative distribution functions (CDFs) of the p-values of the three programs. Well-
calibrated p-values should have empirical CDF close to the thin black diagonal line. Although we will
momentarily introduce a different statistic for quantifying deviation from uniformity, a simple KS-test
shows that the three p-value distributions of the programs are statistically significantly different from
the uniform distribution (p ≈ 0 incalculable small for all three).

Figure 1D shows the same empirical CDFs, but plotted on log-log axes. This plot is informative
because most p-values are close to zero, and it is difficult to see their distribution on linear axes. Again,
this plot shows that all three algorithms produce p-values that are optimistically biased compared to the
expectation under a uniform distribution of p-values. But it is now much more clear that diffReps’s p-
values are the closest to being uniformly distributed, whereas MACS’s and SICER’s p-value distributions
are farther afield. The curve for SICER, in fact, grows worse as p-value get smaller; SICER seems
particularly prone to outputting highly significant p-values. Motivated by this log-log plot of empirical
CDFs, we propose a measure of deviation from uniformity. For a given set of N p-values, we let N1/N be
the fraction of those p-values in the range [0.1, 1], N2/N be the fraction in the range [0.01, 0.1), and more
generally Ni/N be the fraction in the range [10−i, 10−i+1). Then we quantify deviation from uniformity
by the statistic

D = meani:Ni>0| log10(Ni/N)− log10(9× 10−i)|
In words, this is the absolute difference between the logarithm of the number of peaks that should be in
a p-value bin and the logarithm of the number of peaks that actually are in the bin, averaged over the
non-empty bins. If a set of p-values is uniformly distributed on [0, 1], so that 90% of them fall in [0.1, 1],
9% fall in [0.01, 0.1), etc., then D evaluates to zero. Non-uniform distributions produce higher values of
D. An advantage of this measure compared, for example, to the statistic used by the KS-test is that it
pays equal attention to p-values at many different significance levels. In contrast, the KS-test looks at the
maximum difference between the empirical CDF and the theoretical uniform CDF. For the SICER data,
for example, this maximum occurs at p = 1, where approximately 40% of the peaks are. But the peaks
with such high p-values are not of any biological interest, so it is undesirable for a performance metric
to emphasize them to the exclusion of all else. If, for instance, the SICER p-values below p = 0.1 were
well-calibrated, then we would be quite happy to ignore any non-uniformity that occurs above p = 0.1.
For the present data, the deviations of the three algorithms’ p-value distributions evaluate to D ≈ 2.9
for MACS, B ≈ 4.1 for SICER, and D ≈ 0.8 for diffReps.

Although we will quantify bias and its removal more thoroughly in the next section, several important
points remain regarding biases in the p-values produced by these programs. First, our results are not an
artifact of the precise way the simulated null hypothesis ChIP-seq and control data sets were generated.
For example, we also generated data with similar foreground regions but with 20% of reads in the
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Figure 1: MACS, SICER and diffReps peak callers produce biased p-values. (A) Visualization of part of
a simulated ChIP-seq read data set, with 500bp foreground regions every 20-25kbp, where read density is
greater. Control data was generated similarly, with matching foreground regions, so a null hypothesis of no
enrichment in ChIP-seq versus control is true for every possible genomic region. (B) Peaks called by the three
algorithms have p-values that are not uniformly disributed between zero and one, as should be the case for
this null hypothesis data if p-values were wellcalibrated. (C,D) Empirical cumulative distribution functions
on linear (C) and log (D) axes also show the discrepancy from the uniform distribution. (E,F,G) Empirical
CDFs when we vary the percentage of reads in the foreground and background (BG), continue to show
bias, although the amount changes. (H) When using 24 real ChIP-seq data sets from the ENCODE project,
matched as 12 pairs of replicate ChIP-seqs, we see even greater deviation from the uniform distribution
(although this is only an approximation of null hypothesis data).
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foreground and 80% in the background. We also generated data with broad foreground regions of 4kbp
containing 30% of the reads, leaving 70% for the background. For these data sets, we run MACS in
broad peak mode. In all cases, we continue to see deviation from uniformity in the p-value distributions
(Figure 1E-G). Second, it is important to notice that the degree of bias in these p-value distributions
(again, more careful quantification is coming in the next section) differs for the different types of data
and for the different algorithms. This means that there is no universal correction that can be applied to
the p-values, to bring them into line. That is, whatever way we can find to remove bias much operate in
a way specific to the data being analyzed, and the program being used to call peaks.

Finally, it is important to note that evidence of bias can be seen in real data, not just simulated data.
To show this, we turned to ChIP-seq data from the ENCODE consortium [6, 3]. Somewhat arbitrarily,
we chose to analyze data sets from the K562 cell line, as this is the cell line for which the most data
sets are available. We identified all experiment that included two replicate ChIP-seq experiments and
two matching controls (there were 88 such) and arbitrarily chose the first dozen of these for analysis.
In an attempt to approximate null hypothesis-like conditions, but using real data, we called peaks on
each ChIP-seq data set using its ChIP-seq replicate as control. The resulting p-value CDFs for MACS
specifically (the peak caller used by the ENCODE consortium) are shown in log-log format in Figure
1H. As with our simulated data, we see all the CDFs are optimistically biased, in some cases returning
dramatic p-values reaching nearly 10−200. Thus, we believe the p-value bias is not just some artificial
theoretical concern, but a genuine concern that is observable and should be expected in the analysis of
real data.

2.2 RECAP: A wrapper algorithm that removes bias from peak-caller
p-values

Our approach to recalibrating p-values is based on empirically estimating an expected CDF for those
p-values under a suitable null hypothesis. As shown above, that null hypothesis must be specific to the
ChIP-seq and control data sets, as different data sets produce different distributions of p-values. And of
course, the recalibration must by different for different peak-calling algorithms, as different algorithms
produce different distributions of p-values for the same data. We put forth the null hypothesis that the
ChIP-seq and control read data sets are drawn from the same distribution across the genome. That is, if
we were to view each read as an i.i.d. sample where different positions on the genome would have different
probabilities of being sampled, then we assume the sampling distribution of ChIP-seq and control are
identical. Some work [4, 17] has explicitly attempted to estimate such distributions, but we will use a
simpler mechanism for our p-value recalibration.

The RECAP algorithm is summarized below. From this point onward, we begin referring to the
ChIP-seq data set as the “treatment” data. The reason for this is that the algorithm remixes ChIP-seq
and control data into new data sets, and it would be confusing to call such remixed datasets by the name
”ChIP-seq” when really they contain control data. (That said, we continue to call the control data by
that name, as we know of no commonly-used term that could take its place.)

The RECAP algorithm
• Input: Two read data sets T (treatment) and C (control), peak-calling algorithm A, and repeats

number R

• Call peaks: Use algorithm A on data sets T and C, to generate peaks P with p-values p =
(p1, p2, . . . , pn)

• Model CDF of p-values under null hypothesis:
– Compute the union of all reads U = T ∪ C
– For i = 1 to R do:∗ Randomly divide U into mock treatment Ti and control Ci, with the same numbers of

reads as T and C respectively

∗ Call peaks using A on data sets Ti and Ci generating peaks with p-values pi =
(pi1, p

i
2, . . . , p

i
ni

)
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Figure 2: RECAP recalibrates peak callers’ p-values to a near-uniform distribution. (A) Log-log plot of the
empirical CDF of recalibrated p-values for MACS, SICER and diffReps, on the simulated, 10% foreground,
null-hypothesis data. (B) Reductions in deviation statistic, which measured difference from uniform distri-
bution, for the RECAP recalibrated p-values for several types of simulated data (10 data sets each) and 12
matched pairs of ENCODE replicate ChIP-seq data.

– Combine all re-sampled p-values to estimate null CDF

F (x) =
|(i, j) : pij ≤ x|∑

i
ni

• Output: Original peak set P with recalibrated p-values
p′ = (F (p1), F (p2), . . . , F (pn))

The intuition behind the algorithm is that if the null hypothesis holds, we can simulate new-but-
similar treatment and control data sets by resampling from the combined reads of the original treatment
and control. If we do that repeatedly, and call peaks each time, we can estimate an average-case distribu-
tion of p-values for similarly-distributed data. Implicitly, this approach makes several assumptions. One
assumption is that there even exists some notion of p-value distribution, given by F , that can be esti-
mated. In principle, it is possible that every resampling of the data would generate peaks with radically
different p-values or produce no peaks at all. If this were true, the “average” p-value distribution would
not exist or would not be meaningful as a point of comparison for the original p-values p. In preliminary
testing of all three algorithms, we found that while the numbers of peaks called could vary considerably
between different resamples (particularly for MACS), the distributions of p-values were largely the same.
Furthermore, a peak caller that did generate wildly different p-values for similar data sets would prob-
ably not be considered a good algorithm, due to lack of robustness. Second, our method assumes that
every peak’s p-value in each of the R resamples can be viewed as i.i.d. samples from that distribution—
justifying the standard empirical CDF estimate we use for F . In principle, because peak-calling relies in
part on local read densities, it is possible for nearby peaks to have non-statistically independent p-values.
However, because these dependencies typically do not span a large portion of the genome, we expect the
independence assumption is reasonable.

We tested RECAP’s ability to correct bias in peak p-values on a variety of simulated and real null
hypothesis data sets. Figure 2A shows the results for the same 10%-reads, 500bp foreground region data
set used for Figure 1B-D. Comparing particularly Figure 2A with Figure 1D, we see that RECAP has
very substantially removed the bias. A quantitative assessment of bias before and after recalibration by
RECAP for peaks with greater read density, broader peaks, and replicate ENCODE data sets is in Figure
2B. In all cases, we see that p-value distribution bias, as quantified by our deviation statistic D, is very
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substantially reduced. It is especially succesfully for the simulated datasets, which we know definitively do
obey the null hypothesis of no enrichment between treatment and control. For the replicate ENCODE
data sets, the imperfection correction may indicate some small degree of genuine differences between
replicates. This would not be surprising, as the whole reason biological replicate ChIP-seq experiments
are performed is because we know enriched regions can appear somewhat different in each experiment.
Nevertheless, we claim that the results in Figure 2B show that RECAP successfully removes (or greatly
reduced) p-value bias for a variety of types of data for MACS, SICER and diffReps.

2.3 RECAP enables local false discovery rate analysis

When peaks are called for non-null hypothesis treatment and control data—that is, for data where the
treatment contains some genuine regions of enrichment compared to control—it is expected that some
of those peaks will correctly reflect regions of enrichment (true positives), but some may not (false
positives). Indeed, our results above with simulated null-hypothesis data show that the mere existence of
called peaks does not imply any genuine regions of enrichment, regardless of the p-value. Nevertheless,
we might expect that called peaks with smaller (i.e., more significant) p-values are more likely to be true
postives than false positives. The methods of local false discovery rate analysis provide one way that
this intuition can be formalized, so that we can estimate the probability of any called peak being a true
positive versus a false positive.

To demonstrate this idea, we first generated non-null hypothesis simulated data for analysis. The
treatment data had 10% of its reads randomly placed in 500bp foreground regions, which were randomly
spaced throughout a simulated human genome 20-25kbp apart. The remaining 90% of reads were spread
uniformly through the remainder of the genome. The control data, however, had no such foreground
regions, and rather had 100% of its reads spread uniformly over the human genome. We applied MACS,
SICER and diffReps to this data. Figure 3A shows the distribution of raw p-values for each of the
algorithms. As we have seen before, many peaks are called with highly significant p-values, reaching
approximately 10−15, and the fractions of peaks found with such small p-values far exceeds what one
would expect from null hypothesis data. Indeed, for SICER in particular, so many of its peaks are called
with p-values in the range 10−15 to 10−5 that there are hardly any peaks with less significant p-values
such as 10−2 or 10−1.

We then appiled RECAP to remove bias from those p-values, with the results shown in Figure 3B.
Unlike what we saw above, where RECAP brought the p-value distribution into line with the null hypoth-
esis expectation (see Fig. 2), on this data even the recalibrated p-values are substantially enriched with
values near zero (especially 10−6 to 10−4). This, of course, is because of the genuinely-enriched regions in
our simulated treatment data set. In Figure 3C, in the leftmost set of bars, we can confirm that although
re-calibrating p-values substantially reduces their deviation from the null hypothesis expectation, there
remains a significant deviation, due to the truly enriched regions.

Because we generated the treatment and control data ourselves, we know for each peak whether
it overlaps a treatment foreground region (true positive) or does not (false positive). We divided the
recalibrated p-values into half decades: 100 to 10−0.5, 10−0.5 to 10−1, 10−1 to 10−1.5, etc. In each of
these bins we calculated the number of true positive and false positive peaks, and we calculated from
those the empirical local false discovery rate—i.e. the number of false positives divided by the total
number of peaks within that p-value bin. The results are shown Figure 3D. For all three algorithms, we
see that peaks with the smallest p-values are almost entirely true positives, or equivalently, the local false
discovery rate is nearly zero. However, as the p-value increases, the local false discovery rate increases.
So for example, for MACS at a recalibrated p-value of approximately 10−2.5, about half of the peaks are
true positives, but the other half are false positives. If we were analyzing real data, local false discovery
rate information would be useful in telling us how much we should believe in any individual peak, and
perhaps also for choosing an appropriate re-calibrated p-value cutoff for reporting peaks. However, for
real data we cannot perform this same local false discovery rate computation, because we do not know
what the truly enriched regions of the treatment data are. The question then becomes, how can we
compute or estimate local false discovery rates when the ground truth is not known?
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Figure 3: RECAP enables local false discovery rate analysis, which provides probabilities of peaks being true
positives or false positives, based on their recalibrated p-values. (A) Fractions of peaks called at different p-
value levels (binned into powers of 10), for MACS, SICER and diffReps, on 10% foreground data that includes
genuine enrichment of treatment versus control. (B) Fractions of peaks found at different recalibrated p-
values. (C) Deviation statistic measuring non-uniformity in raw and recalibrated p-values, for different types
of data. (D) Empirical local false discovery rates at different p-value levels (binned into half powers of 10),
for the three algorithms on 10% foreground data. (E) Comparison of empirical local false discovery rates
with theoretically estimated rates, based on a Bayesian two-class analysis. (F,G) Empirical CDFs for raw
(F) and recalibrated (G) p-values for 24 ENCODE Chip-seq dataset called against their matched controls.
(H) Theoretical local false discovery rate estimates, based on RECAP recalibrated p-values.9
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To estimate local false discovery rates for an arbitrary pair of treatment and control data set, after
peak calling and recalibrating p-values, we propose a two-class Bayesian approach that is well established
in the statistical literature [7]. We present this approach in a formulation assuming our re-calibrated
p-values have been grouped into N bins, with bin boundaries p0 = 0 < p1 < p2 < . . . < pN−1 < pN = 1.
We use Pi = (pi−1, pi] to denote the ith p-value bin. We view the total set of peaks as a mixture of true
positives and false positives, with the a priori probability that a peak is a false positive being π0, and
the a priori proabibility of a peak being a true positive being π1 = 1−π0. Further, we imagine that false
positive peaks have p-values distributed according to some density f0 on [0, 1], while true positive peaks
have p-values with a presumably-different distribution f1 on [0, 1]. These densities imply the probability
of a false positive peak having a p-value p in bin Pi, which we write as

P (p ∈ Pi|FP ) =

∫ pi

p′=pi−1

f0(p′)dp′ .

And similarly for the p-value of a true positive peak we can write

P (p ∈ Pi|TP ) =

∫ pi

p′=pi−1

f1(p′)dp′ .

If all these quantities, π0, π1, f0, and f1 where known, then for any given p-value bin Pi we could compute
a local false discovery rate—that is, the chance that a peak with p-value p in that bin is a false positive,
as follows:

LFDR(p) = Pr(FP |p ∈ Pi)

=
Pr(p ∈ Pi|FP )Pr(FP )

Pr(p ∈ Pi)

=
Pr(p ∈ Pi|FP )π0

Pr(p ∈ Pi|TP )π1 + Pr(p ∈ Pi|FP )π0
.

Lacking knowledge of the probabilities in this model, we can instead resort to a combination of theoretical
and empirical approximations. First, if one believes, as we have tried to establish above, that in the
case of null hypothesis data our false positive peaks’ re-calibrated p-values are approximately uniformly
distributed on [0, 1], then we can estimate:

Pr(p ∈ Pi|FP ) ≈ pi − pi−1 .

This helps with the numerator of our equation, and depends crucially on the recalibration of p-values by
RECAP. The same approximation can not be made for raw, biased p-values.

For the denominator, we can estimate simply by the empirical fraction of peaks with p-values falling
in a certain bin.

Pr(p ∈ Pi|FP )π0

Pr(p ∈ Pi|TP )π1 + Pr(p ∈ Pi|FP )π0
= Pr(p ∈ Pi) ≈ ni

n
,

where we have a set of n peaks called for our data, and ni is the number of those peaks with p-values in
bin Pi. With these approximations, our local false discovery rate estimate becomes

LFDR(p) =
(pi − pi−1)π0n

ni
.

This still leaves us without an estimate for the multiplicative factor π0. Although more sophisticated
approaches may be possible, here we recommend the simple expedient of ignoring the term (or equiva-
lently setting π0 = 1, which can be viewed therefore as an upper bound on the true local false discovery
rate, or a good approximation in the case that many false positive peaks are called over all).

We applied this approach to estimate theoretical local false discovery rates, and compared them with
the empirical local false discovery rates in our simulated data (Figure 3E). The results show that for
this data set at least, the theoetical and empirical numbers are well-correlated across a wide range of
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p-values, with no more than an order of magnitude or two error in any p-value bin for any algorithm.
Although this degree of error is not trivial, it is far better than raw p-values might lead one to believe,
and shows for the first time that we can establish reasonable bounds on the probabilities of individual
peaks being true positive or false positives.

We then sought to extend our results to the real ENCODE data, to see the effect of p-value recali-
bration and local false discovery rate estimation there. We used all 24 ChIP-seq data sets describe above
(which happen to be in 12 pairs of two replicates) and 24 matched controls as specified by the ENCODE
data portal. We focused exclusively on MACS for this analysis, as otherwise the combinations of so
many datasets and peak callers becomes overwhelming. Figure 3F shows the empirical CDFs of raw
p-values, which contain peaks of extraordinarily significant p-values. After recalibration of p-values by
RECAP, the empirical CDFs come closer to a uniform distribution (Figure 3G), but are still not close
to uniform—a result of genuine regions of ChIP-seq enrichment versus control. Finally, we computed
local false discovery rates as a function of half-decade-binned recalibrated p-values, as described above
(Figure 3H). These local false discovery rates range from approximately 10−6 for peaks with the smallest
recalibrated p-values (near 10−5) up to nearly one (i.e., almost all false positives) for peaks with clearly
non-significant recalibrated p-values. Because these are real data sets, we lack ground truth, and so
cannot say for certain how accurate the local false discovery rate estimates are. However, one interesting
note we can make is that the default MACS raw p-value cut-off of 10−5 is recalibrated by RECAP to an
average value of about p = 0.0203. Combined with our observation above that MACS on simulated data
was generating empirical false discovery rates above 50% at a recalibrated p-value of p = 10−2.5 ≈ 0.0031
(Figure 3D), this should at the very least give us pause. It is possible that MACS’s default and seemingly
stringent raw p-value cut off of 10−5 is not stringent enough to avoid significant numbers of false positive
peaks.

3 Discussion

In this paper we have looked at the question of how statistically significant are peak calls in ChIP-seq
data. We argued that, for various reasons, a range of peak-callers likely have optimistic biases built into
them, such that the actual significance of called peaks is not clear. Using simulated null hypothesis data
with different amounts of background noise and with either narrow or broad foreground regions—regions
where read densities are higher than in the rest of the genome, but equivalently high in treament and
control, so that there is no differential enrichment—we documented this optimistic bias in three widely-
used peak-callers, MACS, SICER and diffReps. Also importantly, we showed that the amount of bias
differs between algorithms and between data sets, so that there is no simple, universal correction that
can be applied to correct the problem. With such miscalibration of p-values, we have no real, accurate
knowledge of the statistical significance of any given peak, and, although this was not a focus of our
paper, no way of comparing the significance of results from different approaches.

We then described RECAP, a wrapper algorithm that re-samples from the combined treatment and
control data to estimate p-value distributions when a null hypothesis of no differential enrichment is true.
RECAP uses that information to compute a data set-specific correction to peak p-values when peaks
are called on the treatment versus the control. We showed that RECAP can virtually eliminate bias in
p-values generated from null hypothesis data. In turn, this allowed us to contruct, for the first time for
ChIP-seq peak-calling, an estimator of local false discovery rate—a Bayesian posterior probability (or
bound) that any given peak represents a region of true enrichment or not, based on its re-calibrated p-
value. We believe this approach will have profound implications for the assessment of the true statistical
signficance of candidate enriched regions, for setting p-value thresholds for reporting enriched regions,
and for comparing outputs of alternative programs. And, although we did not provide any details here,
we should point out that local false discovery rates can be trivially converted into the (global) false
discovery rates with which bioinformaticians are more familiar [7]. So, RECAP allows rigorous false
discovery rate analysis for ChIP-seq peak calling as well. Software implementing our approach, and in
particular RECAP wrapper scripts that work specifically with the inputs and outputs of MACS, SICER
and diffReps, can be found on our lab website at www.perkinslab.ca.
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While RECAP is a complete system as it stands, there are a number of possible directions for
improvement. For one, we have made a very coarse approximation in the local false discovery rate
calculation that the a priori probability of a false positive is close to or bounded by one. If for some
algorithms or data sets, large numbers of false positive peaks are not output, despite calling peaks at a
loose p-value threshold, then our approximation will tend to overestimate the local false discovery rate; in
other words, we will be pessimistic about peaks being false positive as opposed to true positive. Another
simplification we have made in our estimates is binning p-values into decades or half-decades for our
frequency analyses. We deemed this straightforward and adequate for demonstrating the possibility of
recalibrating p-values and local false discovery rate analysis. However, more sophisticated methods for
density estimation, such as kernel-based or smoothing methods [26], might yield improvements in the
approach. Finally, we have focused here on re-calibration of p-values where one treatment is compared
against one control. It is becoming more of a standard practice, including in the ENCODE project in
particular, to employ at least two biological-replicate ChIP-seqs and matching controls. Thus, expanding
our framework to accommodate multiple treatment and control inputs is another important avenue for
improvement.

Finally, although we have focused here on ChIP-seq peak-calling, it is entirely reasonable to think that
similar problems with p-value calibration may occur in other areas of high-throughput data analysis. For
example, this may occur in DNA variant-calling, where complex conditions of uni- or bi-directional read
coverage or other types of pre-filtering are sometimes applied before candidate variants are tested statis-
tically. This double-usage of the data, to both select hypotheses for testing and to compute significance
for those hypotheses, is a recipe for biased p-values. Perhaps in such cases, a similar read-resampling
scheme could be used to calibrate p-values output by different variant callers.
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