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Abstract

In this manuscript, we introduce a linear approximation of the forward model of soft x-ray tomography (SXT), such
that the reconstruction is solvable by standard iterative schemes. This linear model takes into account the three-
dimensional point spread function (PSF) of the optical system, which consequently enhances the reconstruction data.
The feasibility of the model is demonstrated on both simulated and experimental data, based on theoretically estimated
and experimentally measured PSFs.
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1. Introduction

Soft x-ray tomography (SXT) refers to the x-ray mi-
croscopy technique in which tomographic imaging is done
using low-energy x-rays. In particular, the x-ray energy
range lies within the “water window”, i.e., between the
K-absorption edges of oxygen (2.34 nm; 530 eV) and car-
bon (4.4 nm; 280 eV) [1]. As the name suggests, water is
relatively transparent to the x-rays within this region. In
biological samples, the contrast comes from the natural
variation of bio-organic molecules making this region es-
pecially suitable for imaging of these kinds of samples. In
the past decades, soft x-ray microscopy has emerged as a
unique tool to study 3D organization of single cells [3, 6,
28]. From simple yeast to complex eukaryotic cells. SXT
grants an unprecedented contrast and spatial resolution,
filling the information gap between light and electron mi-
croscopy [33, 30, 10, 5, 17, 4].

The three-dimensional reconstruction of a sample is ob-
tained, by solving for its spatial distribution of absorption
from a series of projection from many different viewing
angles around a central rotation axis. A key assumption
has traditionally been that these images can be regarded
as images of classical projections [37], meaning that the
resolution would be limited by that of the optical system,
r ∝ λ/NA, where λ is the wavelength of the illuminating
light and NA is the numerical aperture of the objective
lens. Diffraction limited optics are, however, also charac-
terized by a maximum depth of field as DOF ∝ λ/NA2,
introducing a limit of sample size where the image forma-
tion can be approximated by this kind of parallel projec-
tion [24], and where the effect of the optics can be modeled
by a depth independent point spread function (PSF).
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Figure 1: The relation between resolution and the depth of field for
an ideal lens and monochromatic light. The diffraction limit shown
here is defined as r = 0.61λ/NA for NA = 1. The water window
shows accessible resolution and depth of field for soft x-ray energy
range.

In principle, both a sufficient depth of field and a good
resolution can be obtained by increasing the energy (de-
creasing λ) and decreasing the NA (see Fig. 1). However,
natural contrast in bio-organic samples is limited to the en-
ergy region of the water window, making such optimization
impossible. This means that, especially for larger samples,
SXT resolution suffers from the depth-dependent optical
PSF.

Limited DOF is a known problem in electron microscopy,
where tilting of the sample may extend part of the sample
out of focus, and approximate solutions exist to correct
for it in the tomographic reconstruction. The so-called
defocus-gradient correction, which was first introduced by
Jensen and Kornberg [11], involves computational correc-
tion of the effects of a depth-dependent defocus and was
incorporated to the well-known back-projection algorithm.
The problem was revisited by Kazantsev et al. [13], in
which the method received rigorous mathematical justi-
fication. This kind of correction has also been applied
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in Fourier space [36, 35], which can reduce the compu-
tational times up to two orders of magnitude. However,
these corrections are not directly applicable in SXT due
to the difference in image formation [16].

In SXT the problem of limited DOF has only recently
been addressed, and thus far only experimentally. This
has been done by acquiring multiple images at different
focus and using a depth-dependent weight on their back-
projection to account for their different foci [32], by using
through-focus imaging to then computationally extract the
ideal projection [22] or by a wavelet based fusion of recon-
structions with different foci [19].

Recently, a forward model of image formation in SXT
was proposed [24, 25], including rigorous mathematical
work [15, 14]. Based on this model, the feasibility and
practical application of PSF corrections was shown by Otón
et al. [23], where a depth independent correction was ap-
plied to SXT data, leading to higher contrast in the ob-
tained reconstruction.

In this manuscript we further generalize the image for-
mation in soft x-ray tomography developed by Otón et al.
[24]. By applying a linear approximation on the model, the
effects of a depth dependent PSF can be incorporated into
existing iterative reconstruction methods. We present nu-
merical results that show the method is applicable even if
the sample is out of focus, or larger than the depth of field.
Finally, experimental results show an increase in contrast
of a reconstructed image of mouse lymphocytes.

2. Image formation in soft x-ray tomography

The understanding of image formation is an impor-
tant step in any imaging techniques. It allows to choose
the best image acquisition strategies and most suitable
reconstruction methods. In tomography, the model of im-
age formation has been traditionally based on the Radon
transform [29], which is the ideal linear transform (pro-
jection) of the specimens attenuation coefficients onto a
plane. The projection is linked to the experimental im-
age formation through the Beer-Lambert law, such that
the attenuation of the intensity along the ray-paths, Li,
through the sample can be given by∫

Li

µLi
(t) dt = − ln

(
Ii
Ii0

)
. (1)

Here µLi
(t) is the linear absorption coefficient (LAC) of

the specimen along the ray-path, and Ii and Ii0 are the
attenuated and un-attenuated intensities along the ray-
path, respectively.

Although this is a convenient model and a good ap-
proximation for highly elongated point spread functions,
the image formation in x-ray tomography based on, e.g.,
diffraction lenses may differ substantially from such ideal
model of parallel projections. Despite of this difference, it
is beneficial to link the model of image formation in SXT

to Eq. (1), so that many available reconstruction meth-
ods [21, 12, 9] become available.

Recently, the specifics of the optical system in SXT
were integrated into a model of image formation [24, 25].
The model assumes, that propagation of the field, at the
vicinity of the sample, can be done by parallel propagation,
which is valid if the NA of the system is small enough.
On the other hand, the model assumes incoherent image
formation on the detector, which is reasonable if the NA
of the condenser and objective lens are matched, so that
the image Iim formed at the detector plane x2 = (x2, y2)
is given by

Iim(x2)− I0im(x2) =∫
R

(
−µ(x1, z)I(x1, z0)e

∫ z
z0

−µ(x1,t) dt
)
∗ ∗ |hz(x1)|2 dz,

(2)

where I(x1, z0) is the local field intensity at some position
z0 before the sample, ∗∗ : R2 → R2 is the convolution
operator in two dimensions, and hz(x1) is the impulse re-
sponse of the optical system. Iim(x2) and I0im(x2) denotes
the recorded images, the latter a reference image with-
out a sample (see Fig. A.7 for details). Depending on the
optical setup of the system, these assumptions might not
necessarily hold true [31, 20].

Otón et al. [24] describes two cases in which a known
solutions exist. In one case, when the impulse response
hz(x1) is a delta function, the model coincides with Eq. (1).
In the other case, the impulse response hz(x1) is indepen-
dent of the axial position z. As a result, the ideal Beer-
Lambert projections can be recovered by deconvolution of
the transmission images, after which conventional recon-
struction schemes can be applied.

For a more general solution, in our work, we seek a
linear approximation to the forward model Eq. (2), so the
image formation in SXT can be expressed as

− ln
Iim
I0im
≈ Ahµ, (3)

where Ah is a linear projection matrix incorporating the
PSF of the system, µ is here a discretized, vector repre-
sentation of the LAC.

By following the steps of Otón et al. [24], and building
up the left hand side of Eq. (3). The finite difference (see
Appendix for details), yields a linear approximation of the
form

Ahµ =

∫
R

µ(x, z) ∗ ∗hz(x)
2

dz, (4)

where Ah is a projection matrix but now incorporating
the depth dependent PSF.

3. Numerical results

To validate our, now linear, image formation model, we
first performed numerical simulations on a phantom sam-
ple, Fig. 2, consisting of binary circles of different sizes.
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Figure 2: The binary phantom of used for the numerical test. The
colormap shown here is scaled with the LAC value of the solid. Fig. 3

Projection images through the phantom sample were cal-
culated using the non-linear model of Eq. (2) on a larger
(L = 9971) discrete grid. The sinograms were down-
sampled to size L = 256 before tomographic reconstruc-
tions. To avoid inversion crimes, the size of high-resolution
grid was chosen as a prime number, so that neither the
reconstruction or deconvolution was done in the same dis-
crete grid as the calculated phantom.

The theoretical PSF was calculated according to the
dimensions of the reconstruction grid and was determined
as in Ref. [37], by the converging illumination emerging
from a circular lens aperture based on the Huygens-Fresnel
principle [2]. The LAC of the phantom was scaled so that
the minimum transmission was 0.5I0.

As a proof of concept, a PSF with a DOF of ± 128, i.e.,
enclosing the whole sample, and a Rayleigh resolution of 8
units was considered. Two measurements were done, one
in-focus case, where the PSF was centered on the center
of rotation and one out-of-focus, where the focal spot was
shifted to the edge of the image. The sampling criteria of
n > L(π/4) was used for reference and the reconstructions
were made using 201 projections2. The final projections
were distorted by adding Poisson noise.

Three different reconstructions (as shown in Fig. 3)
were obtained by solving Eq. (3) by using the Conjugate
Gradient Method on the Normal Equations (CGNE): a
conventional minimization using the Beer-Lambert approx-
imation, the depth-independent correction of [24], and the
linear PSF model.

In CGNE, the iteration number can be viewed as a reg-
ularization parameter for the solution [8] and running too
many iterations will result in amplifying high frequency
signals and result in noisy reconstructions. The optimal

1All lengths describing the numerical validation, are in units of
pixels.

2The odd number of projections is convenient, as it ensures that
the same sampling could be used for both 180 and 360◦. If n is even,
and the sampling is done over 360◦, the angles will be at a π shift
and do not provide any additional sampling if the PSF is in focus
and symmetric with respect to the defocus.

In
fo

cu
s

Beer-Lambert Deconvolution Linear PSF

O
ut

of
fo

cu
s

Figure 3: Reconstructions using Beer-Lambert approximation (left)
global deconvolution (middle) and PSF projection (right) for two
different PSF kernels (far left), both an in-focus PSF (top row) and
an out-of-focus PSF (bottom row). Here the images were relatively
noiseless with I0 = 106. Image intensity is the same as for the
reference, i.e., the one shown in Fig. 2.

stopping iterations will of course be data dependent. So
as to ensure a fair comparison of the phantom images,
we used the oracle knowledge of the phantom to find the
highest peak-signal-to-noise-ratio (PSNR)

PSNR(x,xref) = 20 log10

[
max(xref)−min(xref)

〈(x− xref)
2〉

]
. (5)

This was done by keeping track of the best solution within
the reconstruction scheme and halting when no improve-
ment over the best solution had been recorded within 5
iteration. For the reconstructions shown in Fig. 3 with
I0 = 106 the stopping iteration numbers for the Beer-
Lambert, deconvolution and PSF reconstructions, respec-
tively were 20,21, and 138 for the in focus PSF, and 20,
21, and 136 for the out of focus PSF.

The optimal deconvolution for the depth-independent
correction of [24] was done in two steps — first, noiseless
Beer-Lambert projection images were as a convolution ker-
nel to solve for the optimal depth-independent PSF. This
2D kernel was then used to deconvolve the projection im-
ages, using the oracle knowledge of the same Beer-Lambert
projections as a stopping criteria by minimizing the l2-
norm of the residual.

As seen in Fig. 3, for a centered PSF, the result is as ex-
pected. The Beer-Lambert approximation shows smooth-
ing of the edges, characteristic to the PSF. In this case,
as the assumption of a depth independent PSF is valid, a
proper solution to the inversion exist [24] and global filter-
ing of the projection images yields a good reconstruction
result. The linear PSF inversion is similar in quality, but in
the case of centered PSF, the depth independent PSF re-
constructions have the benefit of much faster convergence.

In the case where the sample is not positioned in the
center of PSF, the Beer-Lambert reconstruction clearly
shows the artifacts of the defocus. In this case, no suit-
able global filter exists and the reconstructions based on
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Figure 4: The PSNR Eq. (5) for the reconstructions of the numerical
phantom sample as a function of intensity. The solid and dotted lines
show 180◦ and 360◦ rotation acquisition strategies, respectively.

projection image deconvolution does not improve on the
results with respect to BL. Such artifacts are not present
in the linear PSF reconstruction.

In numerical simulation, where the projection matrix
corresponding to the PSF is known, the linear approx-
imation performs well for the tomographic inversion, as
shown in Fig. 3. In practice, however, the image quality
is often limited by noise, which makes the inversion prob-
lem highly unstable. To investigate in the stability of the
inversion, the numerical experiment was repeated using
different noise levels. Shown in Fig. 4 the PSNR of the
recovered image as a function of the intensity count. As
all images were distorted with Poisson noise, a lower count
corresponds to a higher noise level. For all cases, the lin-
ear PSF inversion provides the highest PSNR and is most
resilient to the effects of this noise. For methods when the
model of image formation is insufficient, the quality seems
to saturate as image quality increases. In this regime, the
image model error dominates over the error caused by the
noise in the images.

For out of focus PSF, one can stabilize the reconstruc-
tions by taking images over a full, i.e 360◦, rotation range.
In this fashion, though a sample is not fully in focus at
one rotation angle, the sampling at a 180◦ shift provides
additional information, as a different part of the sample
will be in focus. Such acquisition can be seen as a modifi-
cation to the method suggested by Selin et al. [32], where a
depth-dependent weight was introduced in the reconstruc-
tion scheme to account for projections acquired at differ-
ent foci. In our case, the projection matrix Ah servers a
similar function. Such acquisition scheme leads to better
reconstruction results in comparison to the 180◦ rotation,
using the same number of projections, with all methods.
As seen from the right side image of Fig. 4, the results
are even more substantial for the depth independent re-
construction schemes.

4. Experimental results

In order to test the method on experimental data, the
PSF of the optical system first has to be measured. The
measured PSF can then be used to calculate the neces-
sary weights for the projection (and back-projection) op-
erators used in the reconstruction. The experimental work
was performed at the National Center for X-ray Tomogra-
phy at the Advanced Light Source of the Lawrence Berke-
ley National Laboratory (LBNL). The data was acquired
on the XM-2 soft X-ray microscope [18]. The XM-2 is
equipped with a cryogenic rotation stage with full 360◦

range to enable tomographic data collection from cryo-
preserved samples. The optical setup consists of two aper-
ture matched Fresnel Zone Plates, with a relatively low NA
(0.234), thus the assumptions needed for Eq. (2) should be
fairly well met. However, although the theoretical frame-
work rests on the assumption of incoherent image forma-
tion, it puts no restrictions into the actual linear operator
Ah and when measuring the PSF, it is straightforward to
incorporate also other effects in the projection matrix, such
as various aberrations, distortions, or a spatially varying
PSF.

4.1. Measuring the system PSF

To measure PSF of the soft x-ray microscope optics, we
prepared the phantom sample composed of gold nanoparti-
cles. Spherical gold nanoparticles with diameter of 100 nm
(Nanopartz, Cat.No. AR11-100-NB-50) were deposited
with a microloader on a 100 nm thick silicone nitride mem-
brane (Silson LtD, Ref.10402101) and then spread by a
gentle flow of warm air. The distribution of nanoparticles
was confirmed by optical microscopy in dark field mode.
The areas with single isolated particles were selected for
imaging with x-ray microscope. The regions of interest
were imaged with a set of 30 through-focus images with
1 µm step size and 150 ms exposure time each. For each
set of radiographs, 20 reference images were acquired with
the same exposure time. The radiographs were recorded
by a charge-coupled-device camera (Andor IKon-L) with
an effective pixel size of 16 nm. A reference profile was
obtained by fitting the theoretical intensity function,

p(x) = I0 exp

[
−2µ

√
R2 − (x− xc)2

]
, (6)

to the experimental data of the in focus image. Here, I0 is
the initial intensity, µ is scaled LAC, and xc is center of a
sphere.

The PSF was determined by maximum-likelihood (ML)
deconvolution [34, 38]. Essentially, we assume that the
image of a single bead can be written in form y = p∗∗h+ε,
where the measured signal y is composed of a convolution
between the bead profile, p, the PSF, h, and an additional
noise term ε. The ML solution for the PSF can now be
found iteratively, using the fitted theoretical bead profile
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Figure 5: The sagittal slice (along x-ray propagation) of the extracted
PSF and transverse slices (0.5 µm·0.5 µm) at positions with respect
to the focus. The length of the PSF shown here is 18 µm. The shown
image intensity is scaled with the maximal value of the PSF.

Eq. (6), with the Richardson-Lucy algorithm:

hk+1 = hk

[
y

p ∗ ∗hk
p̂

]
. (7)

A full 3D PSF was obtained by bilinear interpolation,
an example of a PSF extracted in this way is shown in
Fig. 5, from which transverse slices give the needed 2D
convolution kernels, hz for Eq. (4). The full-width-at-half-
maximum of the gaussian peak in focus corresponds to
57 nm, and a maximum loss of intensity of 20 % [2, p. 441]
along the axial direction gives a DOF of ± 4.7 µm.

4.2. Experimental validation: imaging of mouse B cell

To test the applicability of the method for experimen-
tal data, the method was used to reconstruct tomographic
images of mouse lymphocytes. To have full angle rotation
during the acquisition, the cells were loaded into thin-wall
glass capillaries with a micro loader [26]. For cryo-fixation,
the capillaries were rapidly plunged into a liquid propane
cooled by liquid N2. The data acquisition was done by
sequentially rotating the capillary with 2◦ increments for
180◦ with an exposure time of 300 ms per image. A se-
ries of 10 reference images were taken before and after
the scan, that were used to normalize the data. The pro-
jection images were aligned using an updated version of
the previously developed automatic registration software
AREC3D [27].

The tomographic image was reconstructed in three dif-
ferent ways using CGNE, viz.:, A reference image using the
Beer-Lambert approximation, a reconstruction where the
intensity images are deconvolved with a 2D PSF, i.e., the
solution to Eq. (2) if the PSF is not depth-dependent, and
using the linear PSF approximation presented in this pa-
per. The 2D kernel for the deconvolution was obtained by
taking the average of all the measured 2D kernels within
the DOF of the PSF. The deconvolution was performed

on the transmission images using RL deconvolution, and
stopped before significant ringing was observed3.

In Fig. 6 we show details of the reconstructions showing
endoplasmic reticulum for the three different reconstruc-
tions. The linear PSF approximation performs as well as
the deconvolution method, which can, in this case, be con-
sidered to be a proper solution to the inversion as the DOF
of the PSF spans the whole sample. Both PSF corrected
reconstructions show an increase of contrast with respect
to the Beer-Lambert approximation. The effect is less pro-
nounced in the in-plane reconstruction, where image qual-
ity is limited by the relatively sparse sampling.

5. Conclusions

In this work we have introduced a linear approximation
to the reconstruction of tomographic x-ray data, including
the effect of the point spread function of the optics. We
show numerically, that the approximation is well suited
for the inversion of the SXT data both when the PSF acts
as depth-independent blur as well as when the sample is
partially out of focus.

For experimental measurements, the PSF inversion in-
creases contrast in the image, especially of edge features,
and provides similar results as compared to deconvolution.
Numerical results show that the introduced inversion us-
ing a projection matrix including the PSF is more resilient
to noise than its deconvolution-based counterpart. This,
however, comes at a price, since the reconstruction us-
ing the PSF incorporated projection matrix is both com-
putationally more expensive, and converges significantly
slower.

The presented model tackles current limitations of SXT
and provides new ways of data acquisition. For a prop-
erly sampled and focused PSF, the linear PSF approxi-
mation enables use of higher NA optics, as the limited
depth of field can be computationally amended. The re-
sults in Fig. 4 predict a possible way to extend the depth
of field experimentally by shifting the focus to either side
of the sample and taking a full 360◦ rotation data set.
This would allow one to circumvent the traditional limi-
tations of diffraction limited optics Fig. 1 and extend the
effective depth of field with respect to the resolution. In
other words, it would either enable imaging current sam-
ples with a higher NA, thus a higher resolution, or extend-
ing the DOF of current imaging systems, allowing for full
3D reconstructions of larger samples.

We expect the method to be generally applicable also
for other tomographic systems, as log as the assumption
of a linear image formation can be met.

3Of course, as the experimental data lacks oracle information this
could not be done in as rigorous manner as for the phantom sample,
so the “best” result had to be qualitatively determined by visual
inspection.
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Figure 6: An in-plane slice (plane orthogonal to the axis of rotation) and a transverse plane of the reconstruction of a mouse B-cell. The two
rows show regions of interest (3.5 µm·3.5 µm) from the corresponding slice. The arrows correspond to line profile depicted in the corresponding
leftmost plot, which shows the LAC profile along the line.
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Appendix A. Linear approximation of the image
formation

The model of Otón et al. [24] is based on two assump-
tions, in which the measured projection is a result of the
attenuated light passing through the sample, blurred by
the PSF of the objective lens. We assume firstly, that
there exists an impulse response function hz(x1,x2) (see
e.g. Refs [2] and [7] for details), such that the intensity
field at the image plane, Iim(x2), can be expressed by lin-
ear transport of an (un-attenuated) field intensity U at
position z,

Iim(x2, z) = [U(x1, z)]
2 ∗ ∗ [hz(x1,x2)]

2
, (A.1)
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Iim(x2, z)

µ(x1, z)

∆z

z

Figure A.7: The PSF projection is constructed by assuming the im-
age of a “partially cut” sample can be incoherently transferred to
the image plane by linear transport. The resulting image I of the
whole sample can be constructed by finite difference by adding slices
of thickness dz.

where we define x1 and x2 as two sets of coordinates,
corresponding to the planes perpendicular to the optical
axis at z1 and z2 and ∗∗ : R2 → R2 is the convolution
operator in two dimensions. The second assumption is,
that the local field propagation within teh sample can be
done by parallel wave approximation.

For cleaner notation, we construct hz(x1,x2) so that it
includes all linear scaling (magnification, inversion), thus
we can express the field transfer simply as a 2D convolution
of the local field plane and a 2D PSF [hz (x)]

2
. Using these

assumptions Otón et al. [24] construct the derivative of Izim
with respect to z by considering a partially cut sample and
adding to it slices of thickness ∆z (see Fig. A.7).

Following the derivation by Otón et al. [24], we con-
struct the image formation by finite difference of the im-
age, but applying this directly on the logarithm of the
normalized image, that is we seek an approximation to
the normalized image

f(x, z) = ln
Iim(x, z)

Iim(x, z)
:= f(z), (A.2)

where we drop the explicit notation of x for cleaner no-
tation. Constructing the finite difference and substituting
for the linear transfer in Eq. (A.1) yields

ln
Iim(z + ∆z)

Iim(z)
= ln

U (z + ∆z)
2 ∗ ∗h (z + ∆z)

2

U(z)
2 ∗ ∗h(z)

2 (A.3)

For the left hand side, we note that from the series expan-
sion

ln(x) = (x− 1)− 1

2
(x− 1)

2
+ . . . , (A.4)

we can neglect higher order terms as, x ≈ 1. For the right
hand side, making the same approximation as Otón et al.
[24] we propagate the field coherently (to linear accuracy)

U (z + ∆z)
2 ≈ U(z)

2 − U(z)
2
µ(z)∆z, (A.5)

and as the PSF can be assumed smooth, we can also as-
sume that

U(z)
2 ∗ ∗h (z + ∆z)

2

U(z)
2 ∗ ∗h (z)

2 ≈ 1. (A.6)

yielding

f(z + ∆z)− f(z)

∆z
≈ −U(z)

2
µ(z) ∗ ∗h (z + ∆z)

2

U(z)
2 ∗ ∗h(z)

2 . (A.7)

To get rid of the final non-linear terms, we assume that
U(z)

2
is smooth enough, such that

(U(z)
2 ∗ ∗h(z)− U(z)

2
)/U(z)

2 � 1, (A.8)

yielding

f(z + ∆z)− f(z)

∆z
≈ −µ(z) ∗ ∗h (z + ∆z)

2
. (A.9)

Integrating on both sides of this finite difference approxi-
mation of the derivative, we get

log
Iim
I0im
≈
∫
R

−µ(z) ∗ ∗h2z dz. (A.10)

With suitable discretization, we can now express the right
hand side as a linear projection matrix Ahµ, yielding our
approximation, Eq. (3).

Appendix A.1. Validity of the linear approximation

To test the assumptions for the forward model, we cal-
culated the difference on the three forward models of a
reconstruction of a biological sample taken with XM2 on
beamline 2.1 at the ALS in LBNL [18]. In Fig. A.8 we
show the error of a Beer-Lambert projection and our lin-
ear PSF approximation, respectively, as compared to the
non-linear projection model of Eq. (2). It is evident that
the error of the linear approximation is negligible except
for at the edges of the samples. This is expected, as the
samples in XM2 are mounted in capillary tubes. The cap-
illary tubes produce large gradients in the LAC, where the
assumption of a relatively smooth local field in Eq. (A.8)
is expected to fail.
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