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Abstract	

Conservation	of	DNA	sequence	over	evolutionary	time	is	a	strong	indicator	of	function,	and	gain	or	

loss	of	sequence	conservation	can	be	used	to	infer	changes	in	function	across	a	phylogeny.	Changes	

in	evolutionary	rates	on	particular	lineages	in	a	phylogeny	can	indicate	shared	functional	shifts,	and	

thus	can	be	used	to	detect	genomic	correlates	of	phenotypic	convergence.	However,	existing	

methods	do	not	allow	easy	detection	of	patterns	of	rate	variation,	which	causes	challenges	for	

detecting	convergent	rate	shifts	or	other	complex	evolutionary	scenarios.	Here	we	introduce	

PhyloAcc,	a	new	Bayesian	method	to	model	substitution	rate	changes	in	conserved	elements	across	

a	phylogeny.	The	method	assumes	several	categories	of	substitution	rate	for	each	branch	on	the	

phylogenetic	tree,	estimates	substitution	rates	per	category,	and	detects	changes	of	substitution	

rate	as	the	posterior	probability	of	a	category	switch.	Simulations	show	that	PhyloAcc	can	detect	

genomic	regions	with	rate	shifts	in	multiple	target	species	better	than	previous	methods	and	has	a	

higher	accuracy	of	reconstructing	complex	patterns	of	substitution	rate	changes	than	prevalent	

Bayesian	relaxed	clock	models.	We	demonstrate	the	utility	of	PhyloAcc	in	two	classic	examples	of	

convergent	phenotypes:	loss	of	flight	in	birds	and	the	transition	to	marine	life	in	mammals.	In	each	

case,	our	approach	reveals	numerous	examples	of	conserved	non-exonic	elements	with	

accelerations	specific	to	the	phenotypically	convergent	lineages.	Our	method	is	widely	applicable	to	

any	set	of	conserved	elements	where	multiple	rate	changes	are	expected	on	a	phylogeny.	
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Introduction	

One	of	the	major	revelations	of	comparative	genomics	has	been	the	discovery	of	regions	of	

the	genome	falling	well	outside	protein-coding	genes	that	nonetheless	exhibit	considerable	levels	of	

conservation	across	evolutionary	time	(Bejerano	et	al.	2004;	Siepel	et	al.	2005;	Woolfe	et	al.	2005;	

Venkatesh	et	al.	2006;	Lindblad-Toh	et	al.	2011).	Changes	in	conservation	of	elements,	such	as	

conserved	non-coding	or	non-exonic	elements,	in	a	subset	of	lineages	is	often	associated	with	

altered	regulatory	activity	and	ultimately	phenotypic	divergence	(Mclean	et	al.	2011;	Booker	et	al.	

2016).	Numerous	studies	have	used	changes	in	sequence	conservation	of	conserved	elements	as	

means	to	identify	regulatory	regions	which	may	be	of	particular	importance	for	lineage-specific	

phenotypes.	For	example,	Pollard	et	al.	(2006)	identified	202	regions	accelerated	in	the	human	

genome	but	conserved	in	other	vertebrates,	some	of	which	are	RNA	genes	and	tissue-specific	

enhancers.	Holloway	et	al.	(2016)	identified	4,797	regions	accelerated	at	the	base	of	therian	

mammals,	many	of	which	are	noncoding	and	located	close	to	developmental	transcription	factors.		

Booker	et	al.	(2016)	discovered	166	bat-accelerated	regions	overlapping	with	enhancers	in	

developing	mouse	limbs,	including	one	that	likely	regulated	expression	of	the	HoxD	cluster	

important	for	forelimb	development.	Such	studies	demonstrate	that	noncoding	elements	play	a	

crucial	role	in	molding	morphological	diversity	across	diverse	clades.	

Phenotypic	convergence,	in	which	the	same	function	or	morphology	evolves	multiple	times	

independently,	often	due	to	adaption	to	similar	environmental	changes,	is	generally	believed	to	be	a	

strong	signature	of	natural	selection	(Kishida	et	al.	2007;	Brawand	et	al.	2008;	Stern,	2013;	

Meredith	et	al.	2014).	However,	we	generally	do	not	have	a	robust	understanding	of	the	genomic	

changes	underlying	phenotypic	convergence	(Wray,	2013;	Rosenblum	et	al.	2014).	Do	convergent	

phenotypes	arise	from	repeated	use	of	the	same	underlying	genetic	elements,	or	do	they	arise	via	

independent	genetic	pathways	(Orr,	2005;	Tenaillon	et	al.	2012;	Parker	et	al.	2013;	Storz,	2016)?		

Convergence	at	the	molecular	level	can	arise	because	of	identical	substitutions,	and	convergent	rate	

changes	can	arise	via	consistent	shifts	in	substitution	rate	in	genomic	regions	influencing	particular	

phenotypic	targets	of	natural	selection	(Chikina	et	al.	2016;	Partha	et	al.	2017).	In	this	paper,	we	

focus	on	detecting	genomic	regions	with	convergent	shifts	of	substitution	rate	that	are	correlated	

with	convergent	phenotype	changes.	These	regulatory	elements	are	often	quite	short,	ranging	from	

a	few	base	pairs	to	several	thousand,	and	hence	may	require	sensitive	tools	to	detect	branches	of	

the	tree	with	different	substitution	rates.			
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Statistical	tests	for	rate	changes	along	a	phylogeny	have	been	a	part	of	phylogenetic	

methodology	for	several	decades,	and	are	closely	tied	to	tests	for	a	molecular	clock	(Huelsenbeck	

and	Crandall	1997;	Huelsenbeck	and	Rannala	1997).	Several	existing	relaxed	clock	models	

(Drummond	and	Suchard,	2010;	Heath	et	al.	2012)	explicitly	model	substitution	rate	variation	

across	phylogeny.	The	random	local	clock	model	implemented	in	BEAST	(Drummond	and	Suchard,	

2010)	assumes	an	indicator	variable	for	rate	change	at	each	node,	enumerating	all	possible	local	

clock	configurations,	and	estimates	the	location	and	magnitude	of	rate	changes	between	local	clock	

regions	on	the	phylogeny.	These	methods	allow	users	to	both	estimate	a	phylogeny	and	divergence	

times	while	allowing	for	rate	variation	among	lineages,	but	are	less	powerful	at	detecting	

evolutionary	shifts	in	rate	that	are	correlated	with	a	specific	phenotype	change	as	they	do	not	

explicitly	incorporate	such	correlations	in	the	model.	Moreover,	although	highly	accurate	and	useful	
for	validating	various	clock	models,	these	methods	are	not	easily	scalable	to	genome-wide	data	

such	as	is	typically	encountered	when	testing	for	rate	changes	in	conserved	elements	across	a	clade	

for	which	whole-genomes	have	been	sequenced	(McLean	et	al.	2011;	Booker	et	al.	2016;	Holloway	

et	al.	2016).		

Molecular	clock	tests	are	closely	linked	to	tests	for	associations	between	rate	shifts	and	

specific	convergent	phenotypes	on	the	tree,	and	several	recent	methods	have	been	proposed	to	

identify	these	associations.	The	“Forward	Genomics”	method	(Hiller	et	al.	2012;	Prudent	et	al.	

2016)	tests	the	significance	of	the	Pearson	correlation	between	normalized	substitutions	and	

hypothetical	phenotypic	states	on	each	branch.	Chikina	et	al.	(2016),	studying	protein-coding	genes	

with	convergent	substitution	rate	shifts	in	marine	mammals,	quantified	the	difference	of	relative	

substitution	rates	between	“terrestrial”	and	“marine”	branches	using	a	non-parametric	test	

(Wilcoxon	rank	sum	test);	the	same	approach	has	subsequently	been	extended	to	non-coding	

regions	(Partha	et	al.	2017).	The	PHAST	method	(Hubisz	et	al.	2011)	tests	a	model	allowing	

substitution	rates	shift	in	a	specified	subset	of	branches	against	a	null	model	with	constant	rate	for	

all	branches	using	likelihood	ratio.	However,	these	methods	for	detecting	genomic	regions	with	

parallel	substitution	rate	changes	are	generally	limited	to	testing	a	single	pre-specified	shift	pattern	

on	a	phylogeny,	which	is	less	powerful	since	many	possible	shift	patterns	would	be	congruent	with	

a	correlation	with	phenotypes	of	extant	species.	Furthermore,	as	we	show	here,	these	methods	do	

not	always	distinguish	among	strong	acceleration	in	a	single	tip	branch,	weaker	acceleration	across	

multiple	clades	and	acceleration	on	lineages	other	than	the	target	lineages.	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/260745doi: bioRxiv preprint 

https://doi.org/10.1101/260745


	 5	

Other	model-based	methods	do	not	require	pre-specified	shift	patterns,	but	have	other	

limitations.	Coevol	(Lartillot	and	Poujol,	2011)	jointly	models	parameters	of	substitution	process	

(e.g.	substitution	rates)	and	continuous	phenotypes	as	a	multivariate	Brownian	process	and	

outputs	the	posterior	distribution	of	the	correlation	between	phenotypes	and	substitution	

parameters,	but	does	not	allow	for	discrete	phenotypes.	To	our	knowledge,	the	only	model-based	

method	for	associating	molecular	rate	changes	with	discrete	phenotypes	and	which	considers	

multiple	patterns	of	rate/character	transitions	is	TraitRate	(Mayrose	and	Otto,	2011;	Levy	Karin	et	

al.	2017).	This	method	models	the	probability	of	rate	shifts	along	a	fixed	ultrametric	tree,	an	

approach	that	was	shown	to	deteriorate	the	performance	in	practice	(Mayrose	and	Otto,	2011).	

Additionally,	TraitRate	only	estimates	the	likelihood	ratio	indicating	the	association	between	

sequence	evolution	and	a	given	trait;	it	does	not	model	the	pattern	of	shifts	in	substitution	rate	

explicitly.	

Here,	we	introduce	PhyloAcc,	a	Bayesian	method	to	model	multiple	substitution	rate	

changes	on	a	phylogeny.	PhyloAcc	does	not	require	pre-determination	of	the	history	of	rate	shifts	

but	instead	relies	on	estimating	the	conservation	state	of	each	branch	for	a	given	element	based	on	

sequences	of	extant	species.	The	method	allows	each	genomic	region	tested	to	have	a	different	

pattern	of	shifts	of	substitution	rate.	Using	Markov	Chain	Monte	Carlo	(MCMC)	(Liu,	2001)	to	

sample	from	the	posterior	distribution,	PhyloAcc	outputs	the	most	probable	evolutionary	pattern	of	

rate	shifts	as	well	as	its	uncertainty	for	each	genomic	region.	PhyloAcc	also	evaluates	the	strength	

of	the	association	between	rate	shifts	at	a	genomic	region	and	phenotypic	states	using	Bayes	factors	

(Kass	and	Raftery,	1995).	Unlike	previous	methods	using	maximum	likelihood	estimators	of	

substitution	rates	and	a	single	pattern	of	rate	shifts,	PhyloAcc	considers	the	uncertainty	of	

estimated	substitution	rates	and	all	possible	changes	of	substitution	rates	by	marginalizing	all	

nuisance	parameters	either	numerically	or	analytically	given	the	phenotypes	of	extant	species.		To	

demonstrate	the	power	of	PhyloAcc	on	real	data,	we	apply	the	method	to	two	classic	examples	of	

phenotypic	convergence:	loss	of	flight	in	birds	(Mitchell	et	al.	2014;	Sackton	et	al.	2018)	and	

transition	to	marine	life	in	mammals	(McGowen	et	al.	2014;	Foote	et	al.	2015;	Chikina	et	al.	2016).	

In	both	cases,	we	use	genome-wide	data	from	hundreds	of	thousands	of	conserved	elements	to	

identify	those	elements	with	specific	patterns	of	convergent	rate	shifts	associated	with	our	target	

phenotype,	revealing	novel,	putative	regulatory	regions	that	may	be	repeatedly	associated	with	

these	evolutionary	transitions.	
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New	Approaches	

Hierarchical	Bayesian	Phylogenetic	Model:	Overview	

The	goal	of	our	model	is	to	identify	branches	on	a	phylogeny	on	which	particular	genomic	

elements	change	their	substitution	rate.	We	take	as	input	a	phylogenetic	tree,	with	branch	lengths	

representing	the	expected	number	of	substitutions	along	each	branch	averaged	across	the	genome.	

Such	a	starting	tree	is	often	available	from	phylogenomic	studies	and	branch	lengths	can	be	

estimated,	for	example,	from	a	class	of	sites	thought	to	be	neutral,	such	as	four-fold	degenerate	sites	

(Hubisz	et	al.	2011).	We	assume	that	the	substitution	process	follows	a	standard	continuous	time	

Markov	process.	To	model	rate	variation,	we	introduce	the	relative	substitution	rate	per	branch,	r,	

such	that	the	expected	number	of	substitutions	along	a	given	branch	for	a	given	element	will	be	r	

times	the	background	average.	Given	many	genomic	elements	of	interest	are	relatively	conserved	

and	short	in	length,	estimating	substitution	rates	for	each	branch	accurately	is	difficult,	as	the	

number	of	substitutions	which	are	informative	will	often	be	very	low.	To	overcome	this	challenge,	

we	use	a	local	clock	model	where	the	substitution	rate	of	a	given	branch	is	expected	to	correlate	

with	that	of	its	parent	branch,	and	hence	will	be	informed	by	more	substitutions.		

We	assume	that,	for	each	element,	a	limited	number	of	rate	categories	occur	on	the	

phylogeny.	We	define	𝒁𝒊 = (𝑍&', 𝑍&), … , 𝑍&+)	to	denote	the	latent	conservation	state	on	each	of	n	

branches	for	element	i;	the	substitution	rate	for	each	element,	ri	on	a	branch	depends	on	its	latent	

conservation	state.	The	transitions	in	𝐙	are	modeled	as	a	Markov	Chain,	i.e.	the	state	of	a	branch	

only	depends	on	the	state	of	its	parent	branch.	The	transition	probability	matrix	of	𝐙	is	denoted	by	

𝛷.	Such	a	model	permits	independent	gain	and	loss	of	conservation	on	multiple	lineages	and	also	

encourages	nearby	branches	to	have	the	same	state	and	substitution	rate,	which	is	reasonable	for	

closely-related	species	and	branches	in	a	phylogeny	and	is	also	a	common	assumption	in	

phylogenetics	(Thorne,	1998;	Rannala	and	Yang,	2007).	The	posterior	distribution	of	𝐙	indicates	

where	changes	of	substitution	rates	occur	in	the	tree,	and	the	posterior	ratio	of	substitution	rates	

for	each	latent	state	indicates	the	magnitude	of	change.	The	procedure	is	illustrated	in	Figure	1	and	

Supplementary	Figure	S1.	

To	test	a	priori	patterns	of	substitution	rate	shifts	that	might	be	associated	with	phenotype	

changes,	we	compare	the	marginal	likelihoods	of	three	nested	models	by	restricting	the	transition	

probability	matrix	𝛷	in	some	or	all	lineages:	a	null	model	without	the	specified	shift	pattern,	a	

lineage-specific	model	satisfying	the	specific	test	pattern,	and	a	full	model	allowing	arbitrary	shifts.	
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We	then	compute	two	Bayes	factors,	𝐵𝐹1 = 2(3|56)
2(3|57)

	and	𝐵𝐹2 = 2(3|56)
2(3|59)

,	where	𝑃(𝑌|𝑀∗)	is	the	

marginal	likelihood	of	data	set	Y	under	model	0,	1	or	2,	as	criteria	to	identify	DNA	elements	with	

specific	evolutionary	patterns.	A	larger	Bayes	factor	implies	stronger	evidence	from	the	sequence	

data	in	support	of	the	specified	pattern	of	rate	shift	(M1).	

	

FIG.	1:	Illustration	of	the	use	of	PhyloAcc	to	detect	multiple	accelerations	and	test	hypotheses	using	Bayes	Factors.	The	left	

panel	shows	the	Bayesian	phylogenetic	model;	right	panel	shows	some	examples	of	acceleration	patterns	in	three	nested	

models:	null	(M0),	 lineage-specific	(M1)	and	full	model	(M2),	respectively.	Our	method	can	recover	shifts	of	substitution	

rate	such	as	the	top-left	figure	and	select	target-accelerated	elements	fitted	by	M1	(not	M0).	In	the	trees,	target	species	are	

shown	as	blue;	branch	lengths	represent	the	background	substitution	rates	and	branch	colors	indicate	the	latent	states	of	

substitution	rate	for	a	given	element.		

	

Specific	model	for	detecting	multiple	accelerations	

We	focus	on	a	model	of	conserved	element	evolution,	in	which	particular	elements	initially	

evolve	at	some	background	rate,	become	conserved	at	the	root	or	some	other	branch	on	the	

phylogeny,	and	later	potentially	lose	conservation	in	some	lineages	and	thus	evolve	with	an	

accelerated	rate.	We	designate	a	conserved	state	with	a	lower	substitution	rate	than	sequences	

used	to	estimate	background	branch	lengths	(𝑟' < 1);	an	accelerated	state	with	a	substitution	rate	

higher	than	that	of	the	conserved	state	(𝑟) > 𝑟');	as	well	as	a	background	state	with	the	same	

substitution	rate	as	those	used	in	the	input	tree	(𝑟A = 1,	by	definition).	Informally,	this	model	

M0

M1

M2

Bayes factor selection of elements with specific patterns of rate shiftDetect shifts in substitution rate

Z = 1

background
conserved
accelerated
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captures	a	process	by	which	conservation	arises	as	a	transition	from	background	to	conserved	state	

and	is	subsequently	lost	as	when	changing	from	the	conserved	to	accelerated	state,	although	the	

framework	of	PhyloAcc	is	flexible	enough	to	model	alternate	scenarios.	Note	that	in	this	model	the	

accelerated	rate	is	defined	relative	to	the	conserved	rate,	not	the	background	rate,	and	thus	

accelerated	rate	can	be	less	than,	equal	to,	or	greater	than	the	defined	background	rate,	as	long	as	it	

is	greater	than	the	conserved	rate.	This	allows	us	to	model	a	variety	of	scenarios	whose	biological	

interpretation	might	include	partially	relaxed	constraint	or	positive	selection	with	a	rate	greater	

than	background.	Future	extensions	of	phyloAcc	with	more	rate	categories	could	allow	these	

alternatives	to	be	distinguished.	For	example,	it	is	straightforward	to	model	multiple	acceleration	

states	in	which	a	given	element	loses	conservation	deeper	or	more	recent	on	a	branch	in	

independent	clades,	and	thus	have	different	numbers	of	substitutions	realized	on	affected	branches,	

or	to	allow	for	a	loss	of	conservation	state	followed	by	a	positive	selection	state	with	r	>>	1.	

Although	our	model	is	flexible,	it	is	ultimately	agnostic	as	to	the	biological	processes	ascribed	to	the	

various	estimated	rate	classes	(see	Discussion).		

Formally,	each	branch	is	in	either	the	background,	conserved	or	accelerated	state	(i.e.	ZCD ∈

{0,1,2}, 𝑠 = 1,2, … , 𝑛),	with	substitution	rates	𝑟&A = 1, 𝑟&' < 1	and	𝑟&) > 𝑟&',	respectively	for	element	i.	

We	will	refer	to	branches	in	state	ZCD=2	with	rate	𝑟&)	as	“accelerated”,	but	we	note	that	this	

acceleration	is	relative	to	the	conserved	rate,	𝑟&'.	Such	branches	will	always	have	rates	greater	than	

that	of	the	conserved	state,	but	could	in	principle	have	rates	lower	than	the	background	rate	𝑟A =

1.	Given	that	our	candidate	genomic	regions	(e.g.	CNEEs)	are	mostly	conserved,	we	expect	that	for	

any	element	most	branches	are	in	the	conserved	state.	In	practice,	most	branches	in	the	accelerated	

state	do	indeed	have	estimated	values	of	𝑟&)>	1,	with	only	a	small	percentage	having	values	<	1.		

To	model	how	changes	in	latent	conservation	state	occur	along	the	phylogeny,	we	start	by	

assuming	that	each	element	is	in	either	the	background	or	the	conserved	state	at	the	root	of	the	

tree.	In	this	way	we	can	account	for	the	fact	that	each	element	may	not	be	conserved	in	all	species	in	

the	tree,	especially	when	distant	outgroups	are	included.		We	assume	that	Dollo’s	irreversible	

evolution	hypothesis	(Gould,	1970)	holds	for	transitions	from	conserved	to	accelerated	states,	so	

that	along	each	lineage	𝑍&M	can	transit	from	a	background	to	a	conserved	state,	and	then	to	an	

accelerated	state	but	not	the	reverse	(Felsenstein,	1973).	By	the	irreversibility	assumption,	the	

transition	probability	matrix		𝐙,	has	a	simplified	form:	𝛷& = N
1 − 𝛼& 𝛼& 0
0 1 − 𝛽& 𝛽&
0 0 1

R,	where	𝛼& 	is	the	

probability	of	gain	conservation	and	𝛽& 	is	the	probability	of	loss	of	conservation.	The	model	allows	
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different	transition	probabilities	𝛷	for	each	element,	thereby	allowing	each	element	to	be	

characterized	by	distinct	evolutionary	patterns.		

As	with	many	rate	models,	we	assume	a	Gamma	distribution	for	the	priors	of	element-wise	

substitution	rates	(𝑟&'	and	𝑟&)).	Different	hyperparameters	of	the	priors	for	𝑟&'	and	𝑟&)	distinguish	

conservation	states.	By	adjusting	the	hyperparameters	of	the	priors,	the	substitution	rate	for	the	

accelerated	state	can	be	made	stochastically	higher	than	that	of	conserved	state	a	priori.	The	

hyperparameters	of	the	priors	are	estimated	by	the	sequence	data	from	all	elements	in	the	data	set,	

most	of	which	will	likely	not	change	rate	across	the	tree	(Supplementary	Text).	This	approach	pools	

information	from	all	elements	to	make	estimates	of	substitution	rates	and	latent	states	more	

reliable.	Such	pooling	plays	a	larger	role	in	cases	where	only	a	few	branches	are	accelerated,	and/or	

few	substitutions	occur	per	element.	We	used	a	Beta	prior,	which	is	conjugate	to	the	likelihood	

function	of	Z,	for	the	state	transition	probabilities	(𝛼& 	and	𝛽&)	for	computational	convenience.		

In	summary,	the	model	has	four	parameters	for	each	element:	substitution	rates	in	

conserved	and	accelerated	states	(𝑟&'	and	𝑟&)),	transition	probabilities	to	conserved	and	accelerated	

states	(𝛼& 	and	𝛽&);	and	two	latent	random	variables	for	each	species	or	branch	on	the	tree:		the	

ancestral	sequences	and	conservation	states	Z.		Our	method	iteratively	updates	unobserved	DNA	

sequences	of	ancestral	species,	latent	states	Z,	substitution	rates	r	and	state	transition	probabilities	

𝛷	for	each	element	by	using	collapsed	Gibbs	sampling	(Liu,	1994)	and	adaptive	Metropolis-Hasting	

algorithms	(Roberts	and	Rosenthal,	2009)	and	outputs	draws	from	the	posterior	distribution	of	Z.	

The	resulting	output	can	be	used	to	reconstruct	the	sequence	of	shifts	in	rate,	including	the	number	

of	independent	accelerations	of	a	particular	element,	and	quantifies	the	uncertainty	of	where	in	the	

tree	(on	which	branch)	accelerations	occur.	It	also	supplies	posterior	distributions	of	substitution	

rates	r,	indicating	the	magnitude	of	rate	shifts	(Supplementary	Text).		

Testing	parallel	accelerations	in	target	species	

To	test	for	an	association	between	rate	shifts	and	a	set	of	pre-specified	target	lineages	

(phenotypically	convergent	species),	for	each	element	we	compare	marginal	likelihoods	between	a	

null	model	assuming	no	acceleration	in	any	lineage,	and	alternate	models	allowing	either	

accelerations	only	in	lineages	associated	with	the	convergent	trait	or	accelerations	in	arbitrary	

lineages.	In	the	null	model	(M0),	all	branches	are	in	either	the	background	or	conserved	state;	in	the	

lineage-specific	model	(M1),	substitution	rates	on	the	branches	leading	to	target	species	with	the	

trait	of	interest	can	be	accelerated	while	all	other	branches	must	be	in	either	the	background	or	
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conserved	state;	in	the	full	model	(M2),	the	latent	conservation	states	Z	can	take	any	configuration	

across	the	phylogeny,	in	our	implementation	here,	provided	that	Dollo’s	irreversibility	assumption	

on	conservation	states	is	not	violated.		

Formally,	for	M0	we	restrict	the	transition	probability	from	conserved	to	accelerated	state	

(𝛽)	to	be	zero	for	all	branches,	and	for	M1	we	restrict	𝛽 = 0	only	to	branches	connecting	the	root	to	

non-target	species.	In	our	applications,	we	assume	𝛽 = 0	for	branches	within	outgroups	in	all	three	

models	such	that	all	outgroup	species	cannot	be	in	an	accelerated	state.	To	compare	models,	we	

compute	the	marginal	likelihood	𝑃(𝑌|𝑀&)	for	each	model	and	compute	two	Bayes	factors,	BF1	and	

BF2	as	described	above,	as	criteria	to	identify	DNA	elements	accelerated	exclusively	in	target	

lineages.	Including	BF2	to	identify	elements	with	a	specific	evolutionary	pattern	is	crucial	to	

exclude	elements	accelerated	in	non-target	species	not	associated	with	the	specific	phenotypic	

change,	which	might	include	regulatory	elements	with	broader	functions.	The	model	and	selection	

procedure	are	illustrated	in	Figure	1.			

Results	

Applications	of	PhyloAcc	to	examples	of	phenotypic	convergence	

To	demonstrate	the	power	of	PhyloAcc,	we	conducted	a	simulation	to	compare	the	ability	of	

PhyloAcc	to	distinguish	various	patterns	of	rate	shifts	where	previous	methods	cannot.		We	then	

focus	on	two	classic	cases	of	convergent	evolution:	loss	of	flight	in	palaeognath	birds	(Mitchell	et	al.	

2014;	Sackton	et	al.	2018)	and	the	transition	to	marine	environments	in	mammals	(McGowen	et	al.	

2014;	Foote	et	al.	2015;	Chikina	et	al.	2016).	We	start	by	simulating	data	under	the	phylogenetic	

model	for	birds	or	mammals	to	verify	the	performance	of	our	method,	and	then	test	for	non-coding	

elements	accelerated	one	or	multiple	times	in	flightless	birds	or	marine	mammals.	We	compared	

PhyloAcc	with	three	alternative	methods	for	selecting	lineage-specific	accelerated	elements:	phyloP	

in	phast,	which	tests	for	clade-specific	acceleration	using	a	likelihood	ratio	test	(Pollard	et	al.	2010),	

and	two	two-step	procedures	that	first	estimate	branch-wise	substitution	rates	using	PAML	(Yang,	

2007)	and	then	measure	the	correlation	between	rates	and	traits	using	either	Wilcoxon	rank	sum	

test	(denote	as	PAML+Wilcoxon)	or	phylogenetic	ANOVA	(Revell,	2012;	denoted	as	PAML	+	

phylANOVA).	
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Simulation	study:	avian	topology	

To	verify	our	ability	to	detect	the	correct	evolutionary	pattern,	we	simulated	DNA	elements	with	

different	patterns	of	rate	shifts	(i.e.	different	𝐙s)	using	a	tree	mirroring	a	recent	phylogeny	of	birds	

(Jarvis	et	al.	2014),	augmented	by	new	genomes	from	palaeognathous	birds	(Sackton	et	al.	2018).		

Recent	phylogenetic	work	supports	the	conclusion	that	the	ratites	(including	ostrich,	emu,	

cassowary,	kiwi,	rheas,	and	the	extinct	moas	and	elephant	bird)	are	paraphyletic,	implying	

convergent	loss	of	flight	in	these	lineages	(Harshman	et	al.	2008;	Baker	et	al.	2014;	Mitchell	et	al.	

2014;	Yonezawa	et	al.	2017;	Sackton	et	al.	2018).	This	scenario,	in	which	target	lineages	are	

clustered	in	paraphyletic	clade,	is	particularly	challenging	for	existing	methods.		In	most	of	our	

simulations,	we	set	the	length	of	each	element	to	be	200	bp,	which	is	about	the	median	length	in	

real	data	(Sackton	et	al.	2018).	We	also	simulated	one	example	with	different	element	lengths	to	

test	the	robustness	of	PhyloAcc.	We	generated	9	cases	with	different	numbers	of	independent	

accelerations	either	within	ratites	and	tinamous	or	neognath	birds:	1)	all	branches	are	conserved;	

2)	only	kiwi	clade	accelerated;	3)	only	ostrich	accelerated;	4)	only	emu/cassowary	branches	

accelerated;	5)	only	rhea	clade	accelerated;	6)	all	ratites	accelerated	except	ostrich	and	moa;	7)	all	

ratites	accelerated;	8)	both	ratites	and	volant	tinamous	accelerated;	9)	Five	random	species	of	non-

ratite	birds	(Neognaths	plus	tinamous)	accelerated	(Supplementary	Fig.	S4).	The	total	length	of	

branches	on	which	acceleration	occurs	increases	from	cases	1	to	8.	We	designed	case	8	to	

demonstrate	the	specificity	of	our	method,	since	the	volant	tinamou	clade	resides	within	the	ratite	

clade,	making	it	difficult	to	distinguish	genomic	elements	accelerated	from	the	ancestor	of	both	

tinamous	and	ratites	from	those	only	accelerated	in	ratites.	In	each	case,	we	simulated	500	

elements	whose	conserved	and	accelerated	rates	are	generated	randomly	from	gamma	

distributions	(Supplementary	Fig.	S5C,	Materials	and	Methods).	The	average	proportion	of	

nucleotides	differences	per	element	between	pairs	of	species	varies	from	0.06	(case	1)	to	0.13	(case	

8).		We	first	filtered	out	elements	with	𝐵𝐹2 < 1,	a	result	indicating	that	species	other	than	target	

lineages	(ratites	in	this	case)	might	be	accelerated.	We	then	ranked	all	other	elements	based	on	

BF1.	Similarly,	each	element	was	ranked	and	selected	based	on	the	test	statistic	or	p-values	output	

by	other	methods.	

To	test	the	sensitivity	and	specificity	of	our	method	in	discerning	target-specific	accelerated	

elements	from	non-accelerated	elements,	we	mixed	the	simulated	accelerated	elements	with	some	

non-accelerated	elements	from	case	1	for	each	of	the	six	ratite	accelerated	cases	from	cases	2–7.	

Receiver	operating	characteristic	(ROC)	curves	resulting	from	varying	selection	thresholds	are		
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FIG.	2:	Simulated	results	on	avian	topology.	(A)	ROC	curves	for	PhyloAcc,	phyloP	and	PAML+Wilcoxon,	PAML+phylANOVA	

in	different	ratite	acceleration	cases.	(B)	ROC	curves	for	PhyloAcc	and	phyloP	in	different	ratite	acceleration	cases	and	
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different	lengths	of	elements.	We	treated	elements	with	each	acceleration	pattern	(case	2–7	separately)	as	positive	and	all	

conserved	elements	(case	1)	as	negative,	and	compared	sensitivity	and	specificity	of	PhyloAcc	to	others.		

	

shown	in	Figure	2A.	Not	surprisingly,	among	different	acceleration	cases,	all	methods	achieve	a	

higher	sensitivity	when	more	accelerated	target	lineages	are	present.	PhyloAcc	consistently	

performed	the	best	(except	for	the	ostrich-accelerated	case	(case	3),	in	which	phyloP	is	the	best)	at	

detecting	elements	accelerated	among	ratites	based	on	BF1,	whose	distribution	for	different	ratite-

specific	accelerated	and	background	elements	is	shown	in	Supplementary	Figure	S6A.	Since	phyloP	

performs	similarly	or	better	than	PAML+Wilcoxon	and	PAML	+	phylANOVA,	we	mainly	focus	on	

comparisons	with	phyloP,	over	a	variety	of	sequence	lengths:	100,	200,	and	400bp	(Fig.	2B).	Both	

methods	perform	better	with	longer	sequences	and	PhyloAcc	is	better	for	all	lengths	in	most	cases.	

PhyloAcc	is	also	robust	to	different	choices	of	the	priors	for	substitution	rates	(Supplementary	Fig.	

S7).	Thus,	under	a	variety	of	evolutionary	scenarios,	PhyloAcc	has	high	power	to	detect	lineage-

specific	rate	shifts	in	conserved	elements.		

Since	phyloP	can	only	test	one	pre-defined	shift	along	a	tree,	a	shift	that	moreover	is	usually	

not	known	with	certainty	a	priori,	we	tested	two	common	choices	of	accelerated	branches:	all	tips	

of	target	species	and	all	subtrees	within	target	lineages,	which	is	the	acceleration	pattern	inferred	

by	parsimony	(Materials	and	Methods).	With	the	second	choice	of	accelerated	branches,	phyloP	and	

PhyloAcc	have	comparable	performances	and	phyloP	is	only	better	for	shorter	sequence	in	some	

cases	(Supplementary	Table	S1).	

To	compare	false	positive	rates	(FPRs)	of	different	methods,	we	mixed	100	elements	from	

cases	2-9	together	and	with	5000	elements	without	acceleration	from	case	1,	a	situation	that	

imitates	the	small	proportion	of	target-specific	accelerated	elements	in	real	data.	Positive	outcomes	

include	cases	2-7,	in	which	accelerations	occur	only	within	target	species;	other	cases	involve	

negative	cases,	in	which	either	no	acceleration	occurs	or	accelerations	occur	outside	target	lineages.	

At	5%	FPR,	all	methods	except	PhyloAcc	could	only	identify	a	small	number	of	true	target-specific	

accelerated	elements,	because	they	incorrectly	selected	elements	from	case	8	as	target-specific	

accelerated.	In	contrast,	PhyloAcc	successfully	identified	almost	all	the	target-specific	accelerated	

elements	across	all	cases	at	low	false	positive	rate	(Supplementary	Table	S2).		

The	main	reason	for	the	superior	performance	of	PhyloAcc	in	terms	of	controlling	FPR	is	

that	PhyloAcc	will	not	select	elements	accelerated	in	non-target	lineages,	e.g.	in	case	8	where	

acceleration	occurs	in	the	ancestors	of	ratites	and	tinamous.	Other	methods	are	not	designed	to	
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control	for	this	case;	indeed	the	test	statistic	from	phyloP	or	the	two-step	methods	can	be	even	

larger	in	case	8	than	in	some	target-specific	accelerated	cases.	As	an	example,	we	showed	the	

distribution	of	log-likelihood	ratio	output	by	phyloP	compared	with	log-BF1	and	log-BF2	by	

PhyloAcc	in	different	cases	(Supplementary	Fig.	S5B).	In	case	8,	log-BF2	is	less	than	-5	for	95%	

elements,	because	only	the	full	model	(M2),	which	allows	for	rate	shifts	on	arbitrary	branches,	fits	

the	data	adequately.	Thus,	almost	all	elements	are	reported	as	not	target-specific.	By	contrast,	very	

few	elements	have	log-BF2	less	than	0	in	cases	1-7,	since	the	Bayes	factors	favor	the	simpler	model	

if	both	models	fit	the	data	equally	well	(Supplementary	Fig.	S6B).	Thus,	our	method	achieves	high	

specificity	using	BF2	as	a	filtering	criterion.		In	additional	simulations	(Supplementary	Fig.	S5A),	we	

show	that	our	method	has	a	lower	false	positive	rate	and	a	higher	power	in	identifying	elements	

with	a	shift	in	substitution	rate	within	a	set	of	species,	and	is	thus	well	suited	to	identify	either	

shared	or	independent	rate	changes.	

Inferring	the	pattern	of	acceleration	of	individual	genomic	elements	

We	confirmed	that	PhyloAcc	can	recover	the	true	pattern	of	acceleration	(pattern	of	latent	

states)	for	individual	genomic	elements	by	comparing	the	model	estimated	latent	states	to	the	true	

simulated	values.	For	each	simulated	element,	we	compared	the	posterior	probability	of	Z	under	

the	full	model	output	from	PhyloAcc	with	the	true	simulated	pattern	and	defined	the	result	as	

“correct”	if	the	posterior	probabilities	of	the	true	latent	state	on	each	branch	are	all	above	0.7.	

Accuracy	is	then	defined	as	the	proportion	of	correctly	detected	elements.	In	our	simulations,	the	

ratio	between	accelerated	and	conserved	rates	is	typically	around	5 ∼ 10,	and	the	accuracy	is	above	

60%	in	all	cases.	The	accuracy	is	limited	primarily	by	the	posterior	uncertainty	of	conservation	

state	on	short	branches	due	to	the	lack	of	sufficient	signal	on	those	branches.	

Previous	methods	selecting	accelerated	elements	on	particular	branches	do	not	always	

distinguish	different	patterns	of	acceleration	from	the	score	they	produce.	To	illustrate	this,	we	

compared	the	log-likelihood	ratio	using	phyloP	and	the	p-value	from	Wilcoxon	rank	sum	test	

(Pollard	et	al.	2010;	Chikina	et	al.	2016)	in	the	simulation	cases	above.	Since	these	scores	depend	on	

both	the	magnitude	and	pattern	of	acceleration,	it	is	not	hard	to	find	elements	with	the	same	log-

likelihood	ratios	and	p-values	having	either	strong	acceleration	in	a	single	lineage,	multiple	

independent	accelerations	or	a	weak	acceleration	over	an	entire	clade.	As	shown	in	Supplementary	

Figure	S3,	the	second	element	is	accelerated	convergently	in	all	target	species	(case	7)	and	thus	

more	likely	to	be	associated	with	the	convergent	phenotype.		But	the	p-values	of	both	likelihood	

ratio	test	and	Wilcoxon	rank	sum	test	cannot	distinguish	between	this	pattern	and	one	in	which	all	
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ratites	and	tinamous	are	slightly	accelerated	(case	8)	or	in	which	only	one	lineage	is	accelerated	

(case	3).	In	contrast,	PhyloAcc	can	identify	both	example	1	and	2	as	ratite-accelerated	elements,	

indicted	by	large	log-BF1,	but	can	also	exclude	element	3	because	it	has	a	negative	log-BF2.		

To	compare	the	ability	of	PhyloAcc	and	other	software	to	apply	rate	shifts	to	specific	

branches,	we	turned	to	BEAST2	(Bouckaert	et	al.	2014),	since	phyloP	cannot	output	the	pattern	of	

acceleration	on	each	branch.	We	designated	the	pattern	detected	by	BEAST2	as	correct	if	the	

posterior	probability	of	rate	shifts	on	branches	with	true	state	transitions	is	above	0.7	and	below	

0.3	for	others.	As	seen	in	Figure	3,	the	accuracy	of	both	methods	increases	as	the	ratio	between		

FIG.	3:	Comparison	of	accuracy	recovering	substitution	rate	shift	patterns	between	BEAST2	and	PhyloAcc	in	each	

simulation	case.	In	each	case,	we	ordered	and	categorized	the	simulated	elements	into	10	equal-sized	groups	according	to	

the	ratio	between	substation	rates	of	accelerated	and	conserved	states	(the	quantiles	of	𝑟)/𝑟'	in	each	group	are	shown	in	

Supplementary	Fig.	S8A).	X-axis	shows	the	boundary	of	the	ratio	in	each	group;	red	curves	are	the	accuracy	of	PhyloAcc	

(using	different	priors	on	substitution	rates)	and	blue	curves	are	of	BEAST2.	c1	and	c2	are	Gamma(5,0.04)	and	
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Gamma(1,0.2)	respectively,	narrow	and	wide	prior	for	conserved	rate;	n1	and	n2	are	Gamma(10,0.2)	and	Gamma(4,0.5)	

respectively,	narrow	and	wide	prior	for	accelerated	rate.	“cXnX”	means	a	combination	of	them.	“BEAST2	exact”	shows	the	

accuracy	recovering	the	true	pattern;	while	“BEAST2	extend”	shows	the	accuracy	allowing	“loss-regain”	pattern.	

	

accelerated	and	conserved	rates	increases,	since	the	conservation	state	of	short	internal	branches	is	

easier	to	determine	when	we	observe	more	substitutions,	which	will	tend	to	occur	when	

accelerated	rates	are	high.	In	accordance	with	accuracy,	for	PhyloAcc,	BF1	is	also	increases	with	the	

rate	ratio,	and	BF2	stays	below	zero	and	decreases	as	𝑟)/𝑟'	grows	in	cases	8	and	9	(Supplementary	

Fig.	S6C).	

BEAST2	has	a	comparable	accuracy	when	no	clade	or	a	large	clade	is	accelerated,	but	

performs	worse	than	PhyloAcc	in	cases	with	multiple	independent	rate	shifts	(e.g.	cases	7	and	9)	or	

with	rate	shifts	on	short	branches	(e.g.,	case	2).	The	model	implemented	in	BEAST2	allows	

transitions	between	conserved	and	accelerated	rates	in	both	directions.	As	a	consequence,	BEAST2	

tends	to	misplace	the	origin	of	an	acceleration	at	a	node	deeper	than	the	true	node	and	then	infer	a	

regain	of	conservation	in	the	clade	whose	rate	is	unchanged.	For	example,	in	the	case	in	which	only	

the	rhea	clade	is	accelerated	(case	5),	some	elements	are	estimated	as	accelerated	at	the	ancestor	of	

rheas,	kiwis,	emu	and	cassowary,	and	then	regain	conservation	in	this	clade	except	for	rheas.	There	

might	be	too	few	substitutions	on	these	short	internal	branches	for	BEAST2	to	determine	their	

conservation	state.	Even	when	this	type	of	“loss-regain”	pattern	inferred	by	the	algorithm	are	

counted	as	correct,	PhyloAcc	still	performed	better	(Fig.	3).		We	also	show	that	our	model	can	

recover	the	true	conservation	state	with	a	high	certainty	(posterior	of	true	latent	state	is	around	1)	

for	all	but	the	shortest	branches	(Supplementary	Fig.	S8B	and	Fig.	S9),	and	that	it	also	appears	

robust	to	the	presence	of	indels	in	the	alignment	(Supplementary	Fig.	S10).	

Simulation	study:	mammalian	phylogeny	

We	next	sought	to	validate	our	method	in	a	second	simulation	study,	this	time	focusing	on	

the	common	scenario	where	a	convergent	phenotype	arises	in	multiple,	distantly	separately	

lineages	on	a	phylogeny.	We	used	a	recent	tree	for	62	mammals	(Murphy	et	al.	2004),	focusing	on	

the	transition	to	marine	habit	(Foote	et	al.	2015;	Chikina	et	al.	2016),	and	simulated	DNA	elements	

under	different	patterns	of	substitution	rates	variation.	We	compared	PhyloAcc	with	phyloP,	

PAML+Wilcoxon	and	PAML+phylANOVA	in	various	cases:	1)	all	lineages	conserved;	2)	cetaceans	

(dolphin	and	killer	whales)	accelerated;	3)	pinnipeds	(seal	and	walrus)	accelerated;	4)	manatee,	

seal	and	dolphin	accelerated,	i.e.	one	species	from	each	of	the	three	independent	lineages;	5)	all	five	

marine	mammals	accelerated;	6)	pinnipeds	and	panda	(sister	lineage	of	pinnipeds)	accelerated;	7)	
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species	descending	from	the	common	ancestor	of	cat	and	pinnipeds	(Supplementary	Fig.	S11).	

Cases	2	through	5	are	marine	mammal-specific	accelerated	cases,	whereas	6	and	7	is	a	case	of	non-

specific	acceleration.	The	average	proportion	of	per-element	nucleotides	differences	between	pairs	

of	species	ranges	from	0.09	(case	1)	to	0.12	(case	7).	

We	conducted	an	analysis	similar	to	that	of	the	avian	data	set	to	compare	the	sensitivity	and	

specificity	of	PhyloAcc	and	other	methods	for	identifying	substitution	rate	shifts.	PhyloAcc	has	

higher	sensitivity	to	detect	genomic	elements	accelerated	within	marine	mammals	than	other	

methods,	will	exclude	elements	accelerated	in	species	other	than	marine	mammals	by	the	BF2	

criterion	(Supplementary	Fig.	S12),	and	the	FPR	drops	below	5%	when	selecting	elements	with	log-

BF2>0	and	log-BF1>0	(Supplementary	Fig.	S12B).	In	combination	with	the	avian	simulation,	these	

results	suggest	that	the	sensitivity	and	specificity	of	PhlyoAcc	is	expected	to	be	high	for	a	wide	

range	of	evolutionary	scenarios	regardless	of	the	topology	of	target	species	on	the	phylogenetic	

tree.					

Detecting	accelerated	CNEEs	in	real	data:	avian	case	

We	next	applied	PhyloAcc	to	detect	ratite-accelerated	conserved	non-coding	regions	based	

on	a	set	of	284,001	CNEEs	identified	in	birds	(Sackton	et	al.	2018).	Using	PhyloAcc,	we	identified	

786	CNEEs	with	strong	evidence	for	ratite-specific	acceleration	(log-BF1	>	20	and	log-BF2	>	0),	

among	which	80%	have	posterior	median	of	accelerated	rate	greater	than	1	under	full	model.	The	

rhea	clade	is	the	most	likely	lineage	to	be	accelerated	among	the	786	ratite-specific	accelerated	

CNEEs,	followed	by	kiwis,	with	the	ostrich	branch	less	likely	accelerated	among	all	ratites	(Fig.	4A).	

PhyloAcc	outputs	the	posterior	probability	of	the	conservation	state	on	each	branch,	which	are	

used	to	infer	how	many	species	of	ratites	are	accelerated	for	each	element	as	well	as	how	many	

independent	accelerations	occurred	within	ratites	(see	Supplementary	Text).	Many	of	these	CNEEs	

have	experienced	multiple	independent	accelerations	within	ratites:	54	(7%)	CNEEs	have	three	or	

more	expected	independent	accelerations;	175	(22%)	have	been	accelerated	2-3	times;	and	480	

(61%)	have	been	lost	1-2	times	(Supplementary	Table	S3;	Sackton	et	al.	2018).		

Among	CNEEs	that	show	strong	signals	of	acceleration	in	ratites	indicated	by	very	large	

Bayes	factors	(BF1),	many	are	accelerated	in	a	single	clade	with	one	acceleration	(e.g.	mCE600387	

accelerated	only	in	kiwis,	Fig.	4B)	while	some	are	accelerated	in	more	than	one	clade	(e.g.	

mCE1217964	accelerated	in	both	rheas	and	kiwis,	Fig.	4C).	These	are	interesting	candidate	

regulatory	regions	for	further	functional	studies	(e.g.	Sackton	et	al.	2018).		
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FIG.	4:	(A)	Number	of	elements	being	accelerated	per	branch	among	ratite-specific	accelerated	CNEEs.	Phylogeny	for	

avian	data	set	(only	some	species	in	neognathae	and	reptiles	are	shown	for	illustration).	Palaeognaths	consist	of	the	

flightless	ratites	and	volant	tinamous.	Ratites	are	shown	in	blue.	Branch	lengths	represent	the	background	substitution	

rates.	The	gradient	of	the	color	indicates	the	expected	number	of	elements	being	accelerated	under	the	full	model	on	that	

branch	among	786	ratite-specific	accelerated	CNEEs.	(B-C)	Examples	of	ratite-accelerated	CNEEs.	For	each	element,	the	

shift	pattern	of	substitution	rates	under	the	full	model	is	shown	on	the	left	represented	by	a	phylogenetic	tree	with	

branch	lengths	proportional	to	the	posterior	mean	of	the	substitution	rate	and	colored	by	the	posterior	mean	of	Z	(green	

is	the	conserved,	red	is	the	accelerated	and	purple	is	the	background	state).	Longer	and	redder	branch	indicates	

acceleration	occurred	at	a	higher	rate	or	earlier	on	the	branch	while	shorter	and	greener	one	means	later	on	the	branch	

or	no	acceleration.	Below	the	tree	shows	two	log-BFs	and	conserved	(r')/accelerated	rate	(r)).	In	the	sequence	alignment	

heatmap	on	the	right,	each	column	is	one	position,	each	row	is	a	species,	and	the	element	length	is	shown	below.	For	each	

position,	the	majority	nucleotide	(T,	C,	G,	A)	among	all	species	is	labeled	as	“consensus”	and	colored	as	orange;	others	are	

labeled	as	“substitution”	and	colored	as	blue;	unknown	sequence	is	labeled	as	“N”	and	colored	as	gray;	indels	are	shown	

as	white	space.	

	

Detecting	accelerated	CNEEs	in	real	data:	mammalian	case	

As	a	second	case	study,	we	examined	CNEEs	accelerated	in	marine	mammals.	Though	these	

mammals	exhibit	similar	phenotypes	upon	transition	to	marine	environments,	the	extent	of	

molecular	convergence	in	this	system	has	been	controversial,	and	largely	focused	on	protein-coding	

genes	(Foote	et	al.	2015;	Chikina	et	al.	2016).	Most	genes	with	convergent	sequence	signatures	are	
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physiological	and	structural	genes,	with	little	evidence	for	convergent	evolution	in	protein-coding	

genes	controlling	morphological	adaptations,	which	may	typically	involve	regulatory	regions	

(Carroll,	2008).	We	applied	PhyloAcc	to	283,369	CNEEs	identified	from	a	whole	genome	alignment	

of	62	mammalian	species,	and	identified	2106	elements	showing	evidence	of	substitution	rate	shifts	

specifically	in	marine	mammals,	with	examples	of	acceleration	on	a	single	(Fig.	5A)	and	multiple	

clades	(Fig.	5B).	Compared	with	a	random	control	group	of	mammals	(aardvark,	alpaca,	camel,		

	

FIG.	5:	(A-B)	Examples	of	marine	mammal-accelerated	CNEEs.	For	each	element,	the	shift	pattern	of	substitution	rates	

under	the	full	model	is	shown	on	the	left	represented	by	a	phylogenetic	tree	with	branch	lengths	proportional	to	the	

posterior	mean	of	the	substitution	rate	and	colored	by	the	posterior	mean	of	Z	(green	is	the	conserved,	red	is	the	

accelerated	and	purple	is	the	background	state).	Longer	and	redder	branch	indicates	acceleration	occurred	at	a	higher	

rate	or	earlier	on	the	branch	while	shorter	and	greener	one	means	later	on	the	branch	or	no	acceleration.	Below	the	tree	

shows	two	log-BFs	and	conserved	(r')/accelerated	rate	(r)).	In	the	sequence	alignment	heatmap	on	the	right,	each	

column	is	one	position,	each	row	is	a	species,	and	the	element	length	is	shown	below.	For	each	position,	the	majority	

nucleotide	(T,	C,	G,	A)	among	all	species	is	labeled	as	“consensus”	and	colored	as	orange;	others	are	labeled	as	
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“substitution”	and	colored	as	blue;	unknown	sequence	is	labeled	as	“N”	and	colored	as	gray;	indels	are	shown	as	white	

space.	(C-D)	Enriched	gene	ontology	(GO)	terms	(C)	and	mammalian	phenotypes	(D)	of	genes	near	marine-accelerated	

CNEEs.	Only	shown	top	20	terms	(all	of	them	with	FDR	<0.01)	

	
microbat,	and	David’s	myotis	bat)	with	no	obvious	shared	characters	but	matching	the	topology	of	

the	five	marine	mammals	(Supplementary	Fig.	S2B),	we	found	more	CNEEs	showing	substitution	

rate	shifts	in	marine	mammals	than	in	control	species	(2106	for	marine-accelerated	vs.	1472	for	

control-accelerated	elements	with	log-BF1>5	and	log-BF2	>	5).	We	observed	a	larger	Bayes	factor	

between	the	lineage-specific	model	and	the	null	model	for	marine-accelerated	elements	than	for	

control-accelerated	elements,	indicating	more	dramatic	changes	of	substitution	rates	affecting	

more	species	in	marine	mammals	(Supplementary	Fig.	S14).	In	addition,	more	marine-accelerated	

CNEEs	show	parallel	shifts	in	target	lineages	than	controls:	696	(33%)	of	marine-accelerated	

elements	show	acceleration	in	3	or	more	target	lineages	compared	to	374	(25%)	for	control-

accelerated	elements	(Supplementary	Table	S4);	93	(4.4%)	of	marine-accelerated	elements	show	

more	than	2	independent	accelerations	compared	to	33	(2.2%)	for	control-accelerated	elements	

(Supplementary	Table	S5).	To	control	for	the	chance	that	marine-accelerated	elements	are	

generally	accelerated	in	more	species,	we	compared	the	number	of	accelerated	non-target	species	

in	each	marine-accelerated	CNEEs	with	that	in	control-accelerated	CNEEs.	We	observed	

acceleration	in	only	a	small	number	of	non-targeted	species	for	marine-accelerated	CNEEs	and	

fewer	than	that	in	control-accelerated	CNEEs	(Supplementary	Fig.	S14).		

We	tested	for	functional	enrichment	of	genes	near	marine-accelerated	CNEEs	in	mammalian	

genomes	using	GREAT	(McLean	et	al.	2010).	Among	other	functions,	marine-accelerated	CNEEs	are	

predicted	to	regulate	genes	related	to	nervous	and	immune	system	including	protein	

polyglutamylation,	cerebellum	morphogenesis,	complement	activation,	and	hindbrain	

morphogensis;	these	genes	are	also	enriched	in	mammalian	phenotype	terms	such	as	olfactory	bulb	

granule	cell	layer	morphology,	hippocampus	layer	morphology,	and	subplate	morphology	(Figs.	5C-

D).	Many	of	the	enriched	functional	terms	are	related	to	morphological	traits,	which	reveals	

molecular	adaptations	overlooked	by	previous	studies,	which	focused	primarily	on	protein-coding	

genes.	Checking	individual	genes	associated	with	these	enriched	functional	annotations,	we	found	

several	genes	surrounded	by	multiple	top	marine-accelerated	CNEEs,	including	TTLL3,	a	beta-tublin	

polyglutamylase	modifying	microtubules	and	highly	expressed	in	nervous	system	(Ikegami	et	al.	

2006);	PROX1,	a	member	of	the	homeobox	transcription	factor	family,	associated	with	cerebellum	

morphogenesis;	C8B,	one	component	of	the	membrane	attack	complex,	and	in	the	complement	

pathway	as	part	of	the	body's	immune	response;	DAB1,	a	key	regulator	of	Reelin	signaling	pathway,	
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playing	an	important	role	for	neurogenesis;	KLF7,	a	transcription	factor,	crucial	for	neuronal	

morphogenesis	in	olfactory	and	visual	systems,	the	cerebral	cortex,	and	the	hippocampus	(Laub	et	

al.	2005);	FOXG1,	a	transcription	repressor,	essential	for	brain	development,	especially	for	the	

region	controlling	sensory	perception,	learning	and	memory	(Martynoga	et	al.	2005);	and	GAS1	and	

GLI2,	which	function	as	transcription	regulators	in	the	hedgehog	(Hh)	pathway,	important	for	

embryogenesis	(Martinelli	and	Fan,	2007).	In	contrast,	control-accelerated	CNEEs	are	enriched	in	

only	a	few	general	gene	ontology	(GO)	terms,	such	as	cell	fate	determination,	regulation	of	

transcription	and	translation	(Supplementary	Fig.	S15).	

PhyloAcc	software	

We	implemented	our	method	in	the	program	PhyloAcc,	which	was	written	in	C++,	tested	on	

Mac	and	Linux	system,	and	is	available	at	https://github.com/xyz111131/PhyloAcc.	It	requires	as	

input:	1)	a	rooted	phylogeny	in	.mod	format	(such	as	one	produced	by	phyloFit	in	the	PHAST	

package	(Siepel	and	Haussler,	2004)	);	2)	a	multiple	alignment	file	concatenating	sequences	of	all	

input	(conserved)	elements	in	FASTA	format;	3)	a	bed	file	with	the	position	of	each	individual	

element	in	the	coordinate	of	concatenated	alignment	file	(0-based);	4)	and	a	parameter	file.	The	

.mod	file	should	contain	the	transition	rate	matrix	Q	and	the	phylogenetic	tree	in	Newick	format	

with	branch	lengths	(in	units	of	substitutions	per	site)	for	background	(neutral)	sequences.	The	

parameter	file	contains	information	on	species	names	and	parameters	for	the	MCMC.	For	each	

element,	PhyloAcc	will	output	the	posterior	distribution	of	the	latent	conservation	state	(Z)	for	each	

branch,	indicating	neutral,	conserved	or	accelerated	states	under	the	null,	lineage-specific,	and	full	

models,	respectively,	and	the	marginal	log-likelihood	under	each	model	as	well	as	Bayes	factors.	

The	runtime	of	PhyloAcc	compared	to	BEAST2	is	shown	in	Supplementary	Text.	A	detailed	

description	of	the	usage	as	well	as	example	simulation	data	sets	and	results	are	available	in	the	

GitHub	repository.		We	also	provide	R	scripts	to	generate	figures	summarizing	the	rate	shift	

patterns	as	in	this	paper.	

Discussion	

PhyloAcc	provides	a	flexible	framework	to	detect	substitution	rate	changes	along	

phylogenetic	trees	based	on	multiply	aligned	DNA	sequences,	conditional	on	annotated	conserved	

sequence	elements	of	interest	(e.g.	from	PHAST	or	other	tools).	The	method	not	only	identifies	DNA	

elements	exhibiting	changes	of	substitution	rate	in	the	lineages	of	interest,	but	also	determines	the	

branches,	leading	to	either	single	or	multiple	lineages,	experiencing	changes	of	substitution	rate	
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(e.g.	Sackton	et	al.	2018).	We	show	here	that	PhyloAcc	outperforms	existing	methods	in	simulations	

across	a	wide	range	of	parameter	space.	Application	to	two	biological	datasets	(loss	of	flight	in	

ratites	and	shifts	to	marine	habitat	in	mammals)	revealed	a	number	of	noncoding	elements	

accelerated	independently	on	multiple	phenotypically	convergent	lineages,	suggesting	that	

molecular	convergence	in	regulatory	regions	may	be	commonly	associated	with	phenotypic	

convergence.		

The	idea	of	matching	sequence	divergence	profiles	of	either	protein-coding	genes	or	non-

coding	regions	with	repeated	losses	or	gains	of	a	given	trait	in	multiple	independent	lineages	to	

gain	insight	into	the	molecular	basis	of	phenotype	differences	was	first	proposed	as	“Forward	

Genomics”	by	Hiller	et	al.	(2012).	Since	then,	this	approach	has	been	used	in	various	groups	of	

organisms,	often	yielding	important	insights	into	genome	evolution	and	links	between	genotype	

and	phenotype	(Chikina	et	al.	2016;	Prudent	et	al.	2016;	Berger	et	al.	2017;	Partha	et	al.	2017;	

Roscito	et	al.	2017).	Compared	to	previous	methods	testing	a	pre-defined	evolutionary	history,	our	

method	can	distinguish	genomic	elements	with	multiple	independent	accelerations	within	a	target	

lineage	from	a	single	strong	acceleration	across	the	entire	lineage.	Our	method	also	achieves	a	low	

false	positive	rate	by	contrasting	the	marginal	likelihoods	of	models	either	allowing	or	prohibiting	

acceleration	outside	target	species.	Moreover,	by	averaging	over	the	parameter	space	in	competing	

models,	Bayes	factors	offer	a	method	of	identifying	accelerated	elements	that	is	more	robust	than	

previous	two-step	procedures	and	the	likelihood	ratio	test	implemented	in	phyloP.	Two-step	

procedures	that	first	use	point	estimates	of	branch-wise	substitution	rates	and	then	test	the	

correlation	between	rates	and	phenotypic	traits	often	ignore	the	uncertainty	in	estimating	branch-

rates,	which	is	quite	uneven	across	different	branches.	The	likelihood	ratio	test	between	constant	

rate	and	two-rates	models	is	not	appropriate	in	some	extreme	cases,	such	as	when	only	a	few	

branches	have	many	substitutions.			

The	core	utility	of	our	software	PhyloAcc	is	to	detect	changes	of	substitution	rate	on	a	tree	

for	many	conserved	DNA	elements,	yielding	the	posterior	distribution	of	substitution	rates	per	

conservation	state	(i.e.	𝑟'	and	𝑟))	for	each	element	on	each	branch,	from	which	the	direction	of	rate	

change	can	be	inferred.	In	the	current	implementation,	we	assume	the	same	substitution	rate	for	all	

accelerated	branches,	although	our	model	can	be	extended	to	allow	for	different	acceleration	rates	

for	each	independently	evolving	clade.	By	introducing	additional	latent	states,	this	extension	can	

also	allow	for	models	distinguishing	simple	loss	of	conservation	from	acceleration	due	to	natural	

selection	or	increased	mutation	rate.	In	addition,	via	Dollo’s	assumption	of	irreversibility,	our	
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model	allows	at	most	two	shifts	on	the	tree	for	each	lineage	on	the	phylogeny,	which	may	not	be	

efficient	for	detecting	elements	that	regain	conservation	after	an	ancient	episode	of	adaptation.	To	

relax	this	assumption,	we	could	adjust	the	transition	probability	matrix	of	conservation	states	(Z)	to	

allow	for	a	small	probability	of	transition	from	accelerated	to	conserved	state.	However,	in	many	

scenarios,	the	Dollo’s	assumption	is	helpful,	since	the	sequence	data	of	extant	species	often	do	not	

provide	enough	information	to	distinguish	consecutive	substitution	rate	changes	with	opposite	

directions	from	no	change	at	all,	as	illustrated	in	the	simulation	section	when	comparing	with	

BEAST2.	Additionally,	the	marginal	likelihood	is	more	difficult	to	compute	for	more	complex	

models.	Without	doubt,	our	model	is	more	specific	in	its	goals	than	those	implemented	in	more	

general	phylogenetic	packages	(Drummond	et	al.	2006;	Drummond	and	Suchard,	2010;	Heath	et	al.	

2012;	Ogilve	et	al.	2017).	As	currently	implemented,	it	is	efficiently	tailored	to	the	one	goal	of	

detecting	rate	shifts	in	genome-wide	noncoding	elements	on	a	phylogenetic	tree.	Further	

extensions	of	our	framework	would	allow	detection	of	rate	shifts	in	protein	coding	regions,	with	

advantages	to	distinguishing	various	closely	related	scenarios	similar	to	those	as	studied	here.	

Although	our	method	accounts	for	variation	in	background	substitution	rates	across	the	

tree,	the	background	rate	is	likely	not	constant	across	different	regions	of	the	genome,	a	pattern	

that	may	impact	our	method	and	other	previous	methods	(Hodgkinson	and	Eyre-Walker,	2011).	

However,	we	suspect	that	genome-wide	variation	in	the	local	substitution	rate	is	not	a	serious	issue	

for	our	model,	because	our	model	detects	acceleration	relative	to	the	conserved	substitution	rate	at	

each	genomic	locus.	Though	the	rate	of	background	substitution	is	constant	across	the	genome	in	

our	model,	in	our	examples,	only	a	few	outgroup	lineages	are	in	typically	in	the	background	state,	so	

the	actual	value	of	the	background	rate	has	relatively	little	impact	on	the	estimated	foreground	

rates.	Nevertheless,	the	priors	of	substitution	rate	should	reflect	genome-wide	variation	in	this	

background	rate.	For	example,	for	a	mutational	cold-spot,	both	the	conserved	and	accelerated	rate	

might	be	low	relative	to	the	genome-wide	average;	if	the	prior	for	the	accelerated	rate	is	too	high,	

the	accelerated	state	might	not	be	detectable;	whereas	for	a	mutational	hot-spot,	if	the	prior	for	the	

conserved	rate	is	too	low,	the	conserved	state	might	be	identified	as	background	or	accelerated.	

One	way	to	tackle	this	genome-wide	rate	heterogeneity	is	to	adjust	the	input	background	

substitution	rates	and	branch	lengths	on	the	phylogenetic	tree	for	different	segments	of	the	

genome,	though	this	may	introduce	a	degree	of	arbitrariness	in	the	decision	as	to	how	to	segment	

the	genome.		
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Another	major	issue	not	addressed	by	our	model	is	the	possible	heterogeneity	in	the	

topologies	of	gene	trees	across	elements	and	across	the	genome.		Heterogeneity	in	the	topology	of	

gene	trees	is	expected	to	occur,	especially	during	rapid	radiations	(Edwards	2009).	Mis-specifying	

the	phylogenetic	tree	can	lead	to	mis-estimation	of	substitution	rates	on	gene	trees	(Angelis	and	

dos	Reis,	2015;	Hahn	and	Nakhleh	2016;	Mendes	and	Hahn	2016).	Bayesian	multispecies	coalescent	

models	like	*BEAST	and	starBEAST2	consider	gene	tree	variations	and	can	give	more	accurate	

estimate	of	per-species	substitution	rates	(Heled	and	Drummond	2010;	Ogilvie	et	al.	2017).	It	is	

possible	to	combine	the	multispecies	coalescent	model	with	our	framework	to	test	the	correlation	

between	rate	shifts	and	phenotypes	per	genomic	region	accounting	for	phylogenetic	uncertainty	

due	to	gene	tree	error	or	incomplete	lineage	sorting.	This	can	be	done	by	summing	the	likelihood	

over	all	probable	gene	trees	given	a	species	tree	under	the	multispecies	coalescent	model,	and	then	

comparing	the	marginal	likelihood	integrating	out	the	uncertainty	of	gene	trees	under	different	

hypotheses.		

Although	in	our	examples	we	focus	on	loss	of	conservation	accompanied	by	faster	

substitution	rates,	we	do	not	attempt	to	distinguish	among	various	processes	—	different	types	of	

mutation,	increased	mutation	rates	or	natural	selection	—	producing	a	specific	pattern.	GC-biased	

gene	conversion	(gBGC)	is	one	of	the	factors	that	can	increase	local	substitution	rates	across	the	

genome	and	is	often	a	confounding	factor	for	the	detection	of	adaptive	evolution	(Duret	and	Galtier,	

2009;	Kostka	et	al.	2012;	Capra	et	al.	2013).	Focusing	on	the	avian	example,	we	observed	that	

ratite-accelerated	elements	have	a	higher	GC	content	in	ratites	(Supplementary	Fig.	S13),	which	

suggests	a	role	for	gBGC	in	acceleration.	Although	current	version	of	PhyloAcc	focuses	on	detecting	

acceleration	but	not	distinguishing	between	positive	selection	and	other	processes,	to	demonstrate	

an	approach	for	accounting	for	gBGC,	we	extended	our	method	to	jointly	model	gBGC	and	the	effect	

of	natural	selection	on	substitution	rates,	using	the	framework	that	Kosta	et	al.	(2012)	applied	to	

phyloP	(Supplementary	Text).	We	found	that	~30%	ratite-accelerated	elements	also	exhibited	

evidence	for	gBGC	in	accelerated	lineages.	We	also	provide	an	extended	version	of	PhyloAcc	online	

that	can	decouple	the	effect	of	gBGC	from	that	of	selection.		

Identifying	functions	of	regulatory	regions	is	still	a	challenging	task.	Linking	patterns	of	

sequence	evolution	from	diverse	species	with	organism-level	phenotypes	has	the	potential	to	shed	

light	upon	regulatory	functions	of	conserved	non-coding	regions.	Such	methodologies	are	still	in	

their	infancy.	For	example,	Marcovitz	et	al.	(2016)	used	parsimony	to	reconstruct	traits	and	genome	

transitions	and	estimate	their	correlations,	but	in	doing	so	were	unable	to	account	for	the	
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uncertainty	of	conservation	pattern	estimated	from	the	sequencing	data	or	the	probability	of	a	

chance	match	between	sequence	evolutionary	history	and	phenotype.		Our	method	can	be	extended	

to	provide	the	probability	of	a	match	between	evolutionary	profile	of	genetic	elements	with	

presence/absent	patterns	of	hundreds	of	traits	to	predict	phenotype-genotype	pairs,	an	extension	

of	the	“Reverse	Genomics”	approach	(Marcovitz	et	al.	2016).	Additionally,	our	model	could	be	

extended	to	study	functionally	related	genomic	regions	(e.g.	using	a	Dirichlet	process	as	prior	for	Z)	

based	on	similar	patterns	in	sequences	to	discover	novel	functional	groups	of	loci	that	may	or	may	

not	influence	known	physiological	and	morphological	traits.	For	example,	a	recent	method,	“CLIME”	

(Li	et	al.	2014;	Li	et	al.	2018),	uses	a	Bayesian	approach	similar	in	spirit	to	our	model	to	cluster	

phylogenetic	profiles	of	proteins	to	identify	functionally	related	proteins.	Jointly	modeling	a	group	

of	functionally	related	genomic	regions	in	different	species	will	provide	more	comprehensive	

insight	of	the	evolutionary	history	and	functional	interaction	of	regulatory	regions	(Marcovitz	et	al.	

2017).			

Materials	and	Methods	

Data	sources	for	bird	and	mammal	CNEEs	

We	obtained	a	whole	genome	alignment	of	42	species	(birds	and	non-avian	reptiles)	for	

ratite-accelerated	region	detection	from	Sackton	et	al.	(2018;	see	this	paper	for	full	details	on	data	

collection).	Conserved	regions	in	the	genome	alignment	were	called	by	PhastCons	using	the	Phast	

package	(Siepel	et	al.	2005).	A	total	of	284,001	CNEEs	were	extracted	as	DNA	regions	not	

overlapping	any	exons	and	at	least	50	bp	in	length.	Sequence	from	the	extinct	moa	was	

subsequently	added	to	CNEE	alignments	based	on	a	pairwise	moa-emu	whole	genome	alignment	

(see	Sackton	et	al.	2018	for	details).	For	the	mammalian	dataset,	we	started	with	the	UCSC	100-way	

vertebrate	alignment	(Blanchette	et	al.	2004;	

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/),	removed	all	non-mammalian	

sequences,	and	then	extracted	sequence	for	383,185	CNEEs	in	a	fashion	similar	to	that	for	birds	

(conserved	regions	identified	by	PHAST,	each	at	least	50	bp	and	not	overlapping	any	exons).	The	

list	of	species	is	in	Supplementary	Material.	We	filtered	out	CNEEs	with	poor	alignment	quality	in	

62	mammal	species	if	the	length	of	alignment	gaps	was	longer	than	80%	of	the	whole	alignment	in	

more	than	50	species,	yielding	283,369	candidate	CNEEs.	For	both	phylogenies,	we	obtained	branch	

lengths,	parameters	in	the	rate	matrix	of	the	nucleotide	substitution	model	(GTR,	General	Time	

Reversible)	and	equilibrium	nucleotide	frequencies	from	phyloFit	(Sackton	et	al.	2018	or	UCSC,	
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respectively)	using	background,	putatively	neutral	sequences	(in	our	case	fourfold	degenerate	sites;	

Siepel	et	al.	2005).		

Simulating	DNA	Sequences	

We	simulated	DNA	sequences	according	to	the	joint	model	of	sequences	and	conservation	

states	(equation	(2)	in	Supplementary	Text)	using	the	same	phylogenetic	tree	and	estimated	rate	

matrix	Q	from	sequence	alignments	as	in	the	avian	or	mammalian	data	set	using	an	in-house	

program.	For	the	ratite	simulation,	we	simulated	500	elements	in	cases	2-9	and	5000	elements	in	

case	1	with	length	200-,	100-	and	400-bp	under	different	configurations	of	Z.	For	the	mammal	

simulation,	we	simulated	500	elements	(200bp	each)	for	each	case.		The	conserved	rate	𝑟'	was	

sampled	from	𝐺𝑎𝑚𝑚𝑎(5,0.04)	and	the	accelerated	rate	𝑟)	was	sampled	from	𝐺𝑎𝑚𝑚𝑎(15,0.1),	

which	are	about	the	range	of	conserved	and	accelerated	rates	observed	from	real	data	

(Supplementary	Fig.	S5C	and	Fig.	S12D).		

Detecting	Substitution	Rate	Shifts	using	BEAST2		

We	used	BEAST	version	2.4	in	our	simulation.	The	control	file	was	generated	by	Beauti	

v2.4.7	with	a	fixed	tree	topology	and	branch	lengths,	the	parameters	of	the	substitution	model	

taken	at	the	true	values,	and	no	rate	variation	across	sites	within	an	element	(Supplementary	

material).	To	get	the	substitution	rate	shift	pattern,	we	used	the	random	clock	model,	which	has	a	

binary	variable	indicating	changes	of	rate	and	a	clock	rate	for	each	branch.	The	priors	(Gamma	

distribution	for	clock	rate	and	Poisson	distribution	for	shifts)	and	MCMC	updates	(total	106	

iterations	and	saved	every	103	steps)	are	set	as	default.	Finally,	we	discarded	first	20%	of	steps	as	

burn-in	and	extracted	the	posterior	distribution	of	the	indicator	variable	from	the	MCMC	log	file.	

Detecting	Substitution	Rate	Shifts	Using	PhyloP	

To	compare	the	performance	of	different	methods	for	selecting	elements	with	specific	

acceleration	patterns,	we	used	the	phyloP	program	from	PHAST	v1.3	with	the	options	--features	

(bed	file)	--method	LRT	--mode	ACC	--branch	(target	species)	in	our	simulations,	which	used	the	

likelihood	ratio	test	to	detect	acceleration	in	all	ratites	or	marine	mammals.		For	simulations	on	the	

mammalian	phylogeny,	we	only	specified	the	tip	branches	of	marine	mammals	as	accelerated,	

whereas	for	the	ratite	analysis	we	specified	both	tip	branches	and	the	clade	containing	all	ratites,	

which	requires	the	minimum	number	of	accelerations	(see	Supplementary	Text).		
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Detecting	Substitution	Rate	Shifts	Using	PAML	

We	first	estimated	the	branch	lengths	for	each	element	using	baseml	program	in	PAML	

(version	4.8).	We	used	“no	molecular	clock	model”	option,	GTR	(REV)	nucleotide	substitution	

model,	and	homogenous	rate	across	sites	within	a	region	(by	setting	alpha	=	0),	which	are	the	same	

settings	as	our	simulations.	For	details,	see	the	control	file	in	the	Supplementary	Material.	Then,	we	

did	a	nonparametric	test	(Wilcoxon	rank	sum	test)	and	phylogenetic	ANOVA	(using	phylANOVA	

function	in	the	R	package	phytools),	comparing	the	substitution	rates	in	ratites	with	other	species.	

We	obtained	the	p-values	or	test	statistics	from	both	tests	in	each	simulated	case.	

Function	Prediction	of	CNEEs	Using	GREAT	

To	predict	the	regulatory	functions	of	CNEEs	in	mammalian	data	set,	we	first	extracted	the	

genomic	coordinates	of	these	CNEEs	using	the	human	(hg19)	genome	as	reference.	To	associate	

CNEEs	with	nearby	genes,	we	used	the	“Basal	plus	extension”	(up	to	500Kb)	option	in	GREAT.	Then,	

we	compared	genes	associated	with	marine-	or	control-	accelerated	CNEEs	to	genes	near	all	CNEEs	

(background)	and	searched	for	any	functional	enrichment	in	GO	biological	processes	and	

mammalian	phenotypes	from	MGI.	We	only	retained	annotation	terms	that	contain	more	than	5	

genes	in	total,	including	at	least	2	genes	associated	with	accelerated	CNEEs	and	at	least	1.5-fold	

enrichment	of	tested	CNEEs	over	all	CNEEs.	
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