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Abstract 
 

In this paper, we propose a method to track trial-specific neural dynamics of 

stimulus processing and decision making with high temporal precision. By 

applying this novel method to a perceptual template-matching task, we tracked 

representational brain states associated with the cascade of neural processing, 

from early sensory areas to higher-order areas that are involved in integration 

and decision-making. We address a major limitation of the traditional decoding 

approach: that it relies on consistent timing of these processes over trials. Using 

a temporally unconstrained decoding analysis approach, we found that the 

timing of the cognitive processes involved in perceptual judgements can vary 

considerably over trials. This revealed that the sequence of processing states was 

consistent for all subjects and trials, even when the timing of these states varied. 

Furthermore, we found that the specific timing of states on each trial was related 

to the quality of performance over trials. 
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Introduction 
 

Neural processing of a stimulus and its use in guiding behaviour are highly 

dynamic. A given stimulus typically elicits a cascade of activation across the 

brain, including its multiple parallel as well as re-entrant pathways, starting with 

early feature analysis and leading to increasing integration and decision making 

(see, for example, Meyers et al., 2008, Harvey et al., 2012). But, to which extent is 

it possible to capture the progressive stages of this information-processing 

cascade related to stimulus processing from non-invasive human brain imaging 

data?  

 

An influential approach has been to use decoding models that capture how the 

current stimulus is represented in the brain activity (Norman et al., 2006; 

Haynes and Rees, 2006; Tong et al., 2012; Haxby et al., 2014; Grootswagers et al., 

2017).  Assuming we have a number of trials or repetitions of a certain process 

(e.g. the presentation of a stimulus), the standard approach for decoding is to 

separately train one classifier or regression model (depending on whether the 

stimulus is categorical or continuous) at each time point, by pooling together the 

data from all trials in the training set, and then testing for the accuracy of each of 

these models on a test data set (King and Dehaene, 2014). This can then be used 

to interrogate the temporal dynamics of the processes evoked by the stimulus 

(see e.g. Meyers et al., 2008; Carlson et al., 2011; Isik et al., 2013; Carlson et al., 

2013; Stokes et al., 2013; King et al., 2014). However this approach is, by 

construction, based on the assumption that these brain processes are 

synchronous across trials, i.e. the different stages of information processing start 

and finish at the same time within each trial.  

 

Here, we argue that assuming consistent timing over trials may be too 

restrictive, ignoring trial-to-trial variability in the dynamics. Furthermore, it can 

severely misrepresent the data by leading to a potentially false conclusion of 

persistent activity, artefactually created by the act of averaging across trials 

(Stokes and Spaak, 2016; Latimer et al., 2015; Lundqvist et al., 2016). Sometimes, 

this assumption can also induce the impression of having a high number and 

relatively rapid succession of distinct processing states, as a consequence of 

trial-to-trial variability in the onset and duration of a potentially much smaller 

succession of states. Such temporal variability of processing states could be 

ubiquitous. For example, different stages of information processing may start 

and finish at different time points in each trial, depending on different levels of 

arousal or selective attention at the time of stimulus onset, or as a result of 

learning and plasticity. 

 

In this paper, we propose a new framework based on the Hidden Markov model 

(Rabiner, 1989) and Bayesian variational inference (Vidaurre et al., 2016), for 

identifying representational brain states with high temporal resolution and with 

no assumption about the states having to occur at fixed time points on each trial. 

We refer to it as Temporally Unconstrained Decoding Analysis (TUDA). A 

functional, representational state is defined here as a decoding model that 

characterises a relation between brain activity and the current stimulus (Haynes 

and Rees, 2006). Each state is distinct from other states in describing how and in 
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which regions the brain represents the stimulus, such that a switch of state 

indicates that the decoding does not cross-generalise before and after the switch 

(i.e. the stimulus-specific pattern of activity has changed). TUDA thus estimates 

the decoding weights associated to each decoding model, and identifies when 

each decoding model is “active” for each trial. Crucially, this is done without 

restricting the model to be active at the same point in time on each trial.  

 

By applying this approach to magnetoencephalography (MEG) recordings in a 

perceptual judgement task, we found that, when allowing for this temporal 

flexibility, a reduced number of decoding models (fewer than six) is sufficient to 

explain the between-trial temporal differences in the data. This compares with 

standard decoding, which, with one model per within-trial time point (typically 

more than 100), cannot access this information at all. Furthermore, we found 

that the temporal dynamics of the decoding models correlate with behavioural 

changes over trials, lending additional support to the physiological relevance of 

between-trial temporal variability of the underlying neural processing cascade. 

To be able to meaningfully relate this information to behaviour is not only useful, 

but also proves the existence of tangible and interpretable differences in 

stimulus processing between trials. 
 

Results  

 
Decoding analysis (Figure 1a) is a popular tool for interrogating the temporal 

dynamics of stimuli representation in the brain. Here, we propose a new method, 

Temporally Unconstrained Decoding Analysis (TUDA), which finds decoding 

models, or states, that characterise how the current stimulus is represented in 

the brain at different points in time. Crucially, TUDA estimates the exact timing 

of the decoding models together with the decoding weights that define each 

decoding model. This approach requires many fewer parameters to predict the 

stimulus from the data than the standard decoding approach, which assumes 

consistent timing over trials, and fits one model per time point (Figure 1b). In 

exchange, TUDA adds a new degree of freedom: that is, when each decoding 

model is active in each trial, which is inferred in a data-driven manner.  

 

Here, we apply TUDA to sensor-space MEG data collected when subjects were 

performing a perceptual judgement task, in which they were shown an oriented 

visual grating stimulus and asked to compare it to a memorised template 

orientation to detect matches (the difference between these being referred to as 

the relative angle). The model was estimated separately for each participant (of 

which there were ten) and each session (of which there were two per 

participant), obtaining a set of decoding models and model time courses 

indicating the probability of each model being active at each time point within 

each trial. We estimated the model for different numbers of decoding models 

(K=3,4,5,6). More details about the method and the experimental paradigm are 

presented in the Methods section. 

 

Standard decoding misrepresents the data if trials are not synchronous 
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In order to show how standard decoding can misrepresent the data when 

stimulus processing is not synchronous across trials, we tested TUDA and the 

standard decoding approach on synthetic data. In this scenario, we generated 

synthetic data using three decoding models (each, a linear function mapping data 

to stimulus) that cycle through during the trial; that is, all trials start with 

decoding model 1, dwell some time until switching to model 2, then move to 

model 3, come back to model 1, and so on. Given a 300Hz sampling frequency 

and 1s trials, the dwell time varies between 0.066s (20 time points) and 0.166s 

(50 time points) for each decoding model visit and each trial. In this way, the 

between-trial variability regarding which model is active increases as we 

progress through the trial. Specific details on the nature of the simulations can be 

found in the SI.  

 

Figure 2a illustrates the performance of TUDA on these simulated data (see the 

SI also for a complete description of the results). The difficulties for the standard 

decoding approach in ignoring between-trial variability (and by using a larger 

number of decoding models than it exists) are illustrated in Figure 2b,c. We 

computed the Pearson correlation between sets of regression coefficients for 

each pair of models, and grouped the models according to their similarity. The 

results are shown in Figure 2b, where we can see a large fragmentation into 

several different models. If we now assess the performance of each decoding 

model on held-out trials we can obtain an across-time generalisation matrix 

(King and Dehaene, 2014). This is shown in Figure 2c, using cross-validated 

explained variance (CV-R2) as the summary statistic. It can be observed that the 

trials generalise sharply at the beginning of the trials, since decoding model 1 is 

always active at start. Then, the pattern becomes blurrier as a consequence of 

the increasing between-trial temporal variability. Standard interpretations of 

this result would artefactually suggest that brain activity gains in persistency 

(generalisation) at the end of the trials, when, in reality, the models’ dwell time is 

the same across the entire trial. 

 

The neural processes relevant to the task are not synchronous across trials 

 

Using a model with K=5 decoding states, Figure 3a shows when each of the five 

inferred decoding models (represented using a different colour) is active as a 

function of time. This is shown for a subset of the trials ordered by reaction time 

(RT). Note that the decoding is, by necessity, carried out separately for each 

session, and so here we are presenting the results for a single participant and 

session. However, these results are representative of the results across the 

whole dataset (see SI). Underneath, Figure 3b shows the average occupancy 

(that is, the mean over all trials) of each decoding model as a function of time. We 

next show the extent of temporal variability of the decoding models for the 

proposed approach, i.e. when we do not constrain the trials to have the same 

decoding dynamics. For this purpose, we chose one of the decoding models that 

had a clear peak in the average occupancy time course, and took all trials where 

the model was active at the time of maximum model occupancy (represented by 

the marked peak in the bottom panel). In Figure 3c, histograms for the starting 

and finishing times of these model occurrences reveal large temporal variability.  
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We next investigated the extent to which accounting for between-trial temporal 

differences impacts the prediction accuracy of the model. Normally this would be 

estimated using cross-validation. However, TUDA uses both the data and the 

stimulus in combination to estimate the decoding model time-courses (see 

Methods). This means that the stimulus information for a held-out trial gets used 

to estimate the decoding model time course for that trial (as well as for 

predicting the stimulus). We correct for this bias through the use of surrogate 

data, to calculate an Adjusted CV-R2 measure (see Methods), allowing us to 

compare between different TUDA approaches and standard decoding. 

 

Figure 3d shows Adjusted CV-R2 for TUDA when we model between-trial 

temporal differences and when we do not, for different numbers of decoding 

models (K). As a reference, the horizontal line represents CV-R2 for standard 

decoding. The accuracy when modelling between-trial temporal differences is 

orders of magnitude larger than when ignoring such differences, highlighting the 

importance of these differences, and is also superior to the standard decoding 

approach despite using fewer models.  

 

Finally, if between-trial temporal variability is such an important factor, we 

argue that, when ignoring this variability, the TUDA predictions should be 

significantly worse for those time points with greater diversity in decoding 

model allocation. For K=5, Figure SI-1a shows, for the same illustrative session 

used before, CV-R2 as a function of time for the traditional decoding approach 

and TUDA. The peaks of accuracy closely correspond to the peaks of activation of 

the decoding models as shown underneath (where there are less between-trials 

temporal variability). Using all sessions, Figure SI-1b shows, for each time-point 

(represented as a dot), trial variability in the assignment of a decoding model in 

training (measured as the variance of the model time courses across trials) 

versus estimation accuracy in testing (measured using CV-R2); the Pearson 

correlation coefficient is 0.47 (p-value <0.0001, permutation testing).  

 

Sequences of states and their relation to behaviour 

 

If between-trial temporal variability has a neural origin, then we might also 

expect it to relate to behaviour. We next analysed reaction time (RT) data, which 

was collected for all trials where the subjects pressed the button (i.e. when 

participants judge that the presented angle matched the template angle in their 

working memory). We discarded all trials with no button press. Importantly, we 

first regressed the absolute relative angle out of the model time courses and the 

RTs. This is necessary because RT could have a direct correlation with the 

relative angle: smaller relative angles might make participants more confident, 

leading to faster responses. Without this precaution, a relation between the 

model time courses and RT could be trivially driven by the actual relative angle, 

instead of the intrinsic between-trial variability that we are interested in. 

 

We then estimated, for each decoding model, the correlation between the 

corresponding (deconfounded) model time courses and RT across trials (i.e. the 

Pearson correlation between the probability of the state being active and RT). 
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For an example session, Figure 4a shows the resulting time-resolved 

correlations for each of the decoding models, reflecting a strong relation 

between the decoding models’ trial-specific timings and behaviour. On these 

grounds, we next examined how short RT trials compare to long RT trials, by 

viewing the temporal profile of which decoding model best predicts RT at each 

point in time. For an example session, Figure 4b shows these temporal profiles 

for prototypical short RT and long RT trials. The temporal profiles were 

calculated as follows: at each time point, the decoding model chosen to be active 

is the model with the highest across-trials correlation (for the short RT trial), or 

the highest anticorrelation (for the long RT trial), between the estimated 

probability of being active and RT. As can be seen, the same ordering of decoding 

models underlies short RT and long RT trials; however, the timing is very 

different, with the decoding models getting active around 0.25s earlier in the 

short RT as compared to the long RT trials. As illustrated in Figure 4c, this 

characteristic sequence is also (separately) found in the transition probability 

matrix between the decoding models, which reflects the estimated probability of 

transitioning between every pair of decoding models, and is inferred without 

knowledge of RT as part of the model inference (see Methods). This strong 

sequential order of the decoding models is largely present in all participants and 

sessions (Figure SI-2). 

 

We further evaluated the strength of the relationship between the model time 

dynamics and behaviour by predicting, in a cross-validation setting, the trial RT 

using the model time courses (after regressing out the absolute relative angle 

from both variables; see Methods for details). The prediction was done at the 

group level, i.e. using all participants together (cross-validation folds were 

constructed such that the entire set of trials of each subject were assigned to a 

single fold; Winkler et al., 2015). Figure 4d shows real versus predicted RT, 

where each dot represents a trial. The prediction accuracy is highly significant 

(p-value <0.001, permutation testing), confirming that the temporal decoding 

variability effectively relates to behaviour. 

 

Decoding models are spatially localised 

 

We next examine the spatial characteristics of the decoding states. Interpretation 

of decoding weights is not straightforward (Weichwald et al., 2015), so we 

computed the encoding model that corresponds to each decoding model. For 

each sensor, decoding model and session, the encoding model is defined as the 

regression weights that predict the data for this sensor as a function of the 

relative angle, using only the time points when the decoding model is active (that 

is, making use of the model time courses; see Methods). Figure 5 shows a 

summary of the spatial characteristics of the encoding models, which can be 

compared for reference with the maps shown in Myers et al. (2015). The 

topographic map represents the sum of explained variances across encoding 

models. Although there are differences across models and subjects, the maps 

indicate that the relative angle is encoded in motor and frontal sensors.  

 

Methods 
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Task and participants 

 

This study used previously published data used for a different purpose 

(described in Myers et al., 2015). Ethical approval for methods and procedures 

was obtained from the Central University Research Ethics Committee of the 

University of Oxford. In brief, we recorded MEG data while participants 

performed a template-matching visual task (EEG data were also simultaneously 

acquired but were not used in the current study). Ten right-handed volunteers 

(age range: 21-27yrs, 6 females) took part in the study, completing two sessions 

each, containing short blocks. In each block, participants were presented with 

one orientation template to keep in mind. They then viewed a stream of oriented 

gratings, and responded when the presented angle matched the template angle.  

 

The task consisted of eight brief (approximately six-minute) blocks, in which 480 

stimuli were presented (resulting in a total of 3840 stimulus presentations per 

session). Each block began with the presentation of a target orientation (drawn 

at random, without replacement, from the 16 stimulus orientations), displayed 

centrally as a green line (4° length). The stimulus stream consisted of randomly 

oriented Gabor patches, presented centrally for 100 ms, at an average rate of 650 

ms. Stimuli had 16 possible angles (5.625-174.375°, in steps of 11.25°). 

Participants were instructed to respond whenever a Gabor patch with a 

matching orientation appeared. Since stimuli were drawn uniformly from the 16 

possible orientations, 1/16 of all stimuli were targets. The angles were encoded 

into two covariates using the sine and cosine functions. Each block was cut into 

three shorter segments, giving participants brief rest periods. During the rest 

periods, the target orientation was presented again as a reminder. Participants 

were instructed to respond as quickly and accurately as possible. 

 

MEG data acquisition and preprocessing 

 

Neuromagnetic data were acquired using a whole-head VectorView system (204 

planar gradiometers, 102 magnetometers, Elekta Neuromag). The signals were 

sampled at a rate of 1000 Hz and on-line band-pass filtered between 0.03 and 

300 Hz. Data were preprocessed using the OSL software library1. The raw MEG 

data were visually inspected for artefacts, de-noised and motion-corrected using 

Maxfilter Signal Space Separation (Taulu et al., 2004), and downsampled to 250 

Hz. Artefacts arising from eye blinks and heartbeats were removed via 

independent component analysis. Epochs were generated around each stimulus 

onset (from 0s to 0.6s) and visually inspected to eliminate any remaining trials 

with excessive noise. 

 

Standard decoding analysis 

 

The standard approach for decoding, illustrated in Figure 1a, estimates one 

decoding model at each time point. We will assume for simplicity that the 

stimulus is a continuous variable, such that a decoding model is a regression 

model (in this study, the stimulus is represented by two continuous variables or 

                                                       
1 https://ohba-analysis.github.io/osl-docs 
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features: sine and cosine of the corresponding angle). For a categorical variable 

(e.g. the type of stimuli), the equations below can be easily adapted to use, for 

instance, logistic regression. Further extensions using more complex estimation 

methods (support vector machines, neural networks, etc.) are also possible if 

they are formulated within the Bayesian paradigm.  

 

Let t = 1…T index time, let Xt be a (trials by channels) matrix containing the data 

at t, and let yt be a (trials by stimulus features) vector containing the stimulus.  

The solution for the decoding model at t is computed as  

 

(1) Yt = Xt vt + εt , 

 

where εt is Gaussian-distributed noise and vt is a (channels by stimuli) matrix of 

decoding weights. Given this, vt is typically obtained by maximum likelihood as 

 

 (2) vt = (Xt’ Xt)-1 Xt’ Yt , 

  

where ’ represents matrix transposition. In this case, we decode the pair of 

variables formed by the sine and cosine of the angle of interest, such that Yt has 

two columns. In this paper, also, the data was projected into 48 principal 

components (explaining on average 96% of the variance in the data) for 

computational reasons, such that vt has dimension (48 by 2).  

 

Temporally Unconstrained Decoding Analysis 

 

We introduce a novel probabilistic model containing each of the decoding 

models and the probability of each decoding model to be active at each time 

point at any given trial; also, the model includes a transition probability matrix, 

indicating the probability of transitioning from one decoding model to another 

within the trials. The proposed approach is illustrated in Figure 1b (right). In 

this case, instead of T different decoding models, we estimate only K decoding 

models (mk) where each corresponds to a (channels by stimulus features) matrix 

of decoding weights wk. (As before, the data was projected into 48 principal 

components and the number of stimulus features is two, such that wk has 

dimension 48 by 2.) Given time point t and trial s, let us define yst as the (1 by 

stimuli) value of the stimulus, and Xst as the (1 by channels or PCA components) 

data vector. The top-level model in this case is formulated as  

 

(3) Yst = Xst (Σk γstk wk) + εst , 

 

where γstk = Prst(mk) is the probability of model k being active at time point t and 

trial s, and εst is Gaussian-distributed noise at time point t and trial s (with a 

shared variance that is not model-dependent). Note that, whereas the decoding 

weights are defined at the group level, the probability of model k being active at 

time point is specific of each trial, and, therefore, the decoding dynamics are 

allowed to be also trial-specific. Furthermore, we model the probability of 

transition between decoding models as 

 

 (4) Prst(mk) = Σl Θl,k Prs,t-1(ml).    
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This way, the probability of a decoding model to be active at some time point 

depends not only on its decoding performance but also on the decoding model 

that was active in the previous instant for this trial. Besides the transition 

probabilities Θl,k, we also model the initial model probabilities πk, referring to 

which is the model active at the start of the trials. 

 

Inference of the parameters 

 

Given the data, we need to estimate the weights wk, the probabilities γstk, the 

transition probabilities Θl,k, and the initial probabilities πk.  Here, we perform the 

estimation in two separate steps: first, the decoding weights, and then the other 

parameters. Although it is possible to perform the estimation of all parameters 

simultaneously, we adopt this strategy so that the results are comparable to the 

standard approach.  

 

In order to estimate wk, we take a start with the standard decoding approach 

described above by estimating one decoding model vt at each time point, such 

that all trials all pooled together at each time point. We then compute the error 

of each model vt for each time point as 

 

 (5) etj =  Σs (Xsj vt – Ysj)2  

 

In words, etj is the across-trials error of model vt evaluated at time point j. For 

each pair of time points (i,j), a measure of divergence between the corresponding 

models vi and vj can be then obtained as 

 

 (6) d(vi,vj) = eij + eji . 

 

Based on d(vi,vj), we use hierarchical clustering to group the T decoding models 

into K clusters; the representatives of these clusters constitute our first 

approximation to the decoding models wk. Note that these models are based on 

the standard approach and are constrained to be synchronous across trials, i.e. at 

a given time point the same decoding model is active for all trials. Still keeping 

this restriction, we then refined the estimation of wk by using the expectation-

maximisation (EM) algorithm, where we alternatively estimate wk and the time 

points when wk is active (i.e. the EM algorithm is initialised with the cluster 

representatives from the previous step). At this stage, we stress, if wk is active at 

time point t that means that it is active for all trials at this time point. In the 

Results, we referred to having K instead of T decoding models, while still 

restricting the decoding models to be synchronous. This corresponds to the 

output of this step, which constitutes the initialisation for the next step.  

 

In the next step, then, we fix the estimation of wk to the previous estimation and 

proceed to dispense with the synchrony restriction. For this, we use a Bayesian 

approach, estimating the a posteriori distribution of γ and Θ using variational 

inference (Wainwright and Jordan, 2008). The estimation of these parameters 

corresponds to the Hidden Markov model (HMM) forward-backward equations, 

described elsewhere (Rabiner, 1989; Vidaurre et al., 2016). For this step, we re-
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used the equations from the HMM-MAR model (where MAR stands for 

multivariate autoregressive model; Vidaurre et al., 2016) and functions from the 

corresponding toolbox2. More specifically, we fed both the data and the stimulus 

to the model, and used a restricted MAR model of order 1 (Vidaurre et al., 2016), 

such that the autoregressive coefficients that predict the data as well as the 

autoregressive coefficients that predict the stimulus using the previous value of 

the stimulus were not modelled (i.e. the only autoregressive coefficients to be 

modelled are the ones that predict the stimulus from the data). We then delayed 

the data one time point with respect to the stimulus, such that the stimulus at 

time point t gets predicted by the data at time point t (instead of t-1); for specific 

implementation details, we refer to the online documentation of the toolbox3. 

 

Predicting reaction time 

 

Unlike the information of the stimulus itself, the information of reaction time 

(RT) was not included in the model. That allowed us to use the relation of such 

model time courses to RT in order to add further confidence on the biological 

relevance of the estimated models. For this, we used model time courses to 

predict RT, discarding those trials where a button press was not effected. More 

specifically, we used principal component analysis to reduce the regressor 

dimensionality from T (no. of time points) per trial to 25 principal components. 

This was done for each decoding model separately. We then used sparse 

regularised regression (Vidaurre et al., 2013) where the regularisation 

parameter was itself chosen using cross-validation 

 

Encoding models 

 

As discussed in (Weichwald et al., 2015), interpreting the magnitude of the 

decoding weights wk is not straightforward. If we wish to examine the spatial 

extents of the regions involved in stimulus processing, we need to use encoding 

models as in (Myers et al., 2015). That is, instead of using weights that predict 

the stimulus using the data from the entire sensor-space, we construct spatial 

maps using the encoding weights blk that, from the stimulus, predict the data 

separately at each sensor l. By using the decoding model time courses γstk, it is 

straightforward to associate a set of encoding weights blk to each decoding 

weights matrix wk. The encoding weights are computed as  

 

 (7) blk = (Y’ diag(γk) Y )-1 (Y’ diag(γk) Xl) , 

 

where Xl represents the concatenated data for sensor l, γk are the concatenated 

decoding model time courses for state k, and diag() diagonalises the vector 

argument into a diagonal matrix. In this case, blk has two elements because Y has 

two columns (sine and cosine of the corresponding angle). We finally use the blk 

weights to obtain the explained variance per sensor as shown in Figure 4.  

 

Cross-validation 

                                                       
2 https://github.com/OHBA-analysis/HMM-MAR 
3 https://github.com/OHBA-analysis/HMM-MAR/wiki/User-Guide#restrict 
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One important question investigated through decoding is when (and where) the 

brain is processing the stimulus. This is typically addressed by using cross-

validation, where, for each cross-validation fold, we estimate a decoding model 

at each time point using the training trials, and test each of the models in the 

held-out trials at each time point. For TUDA, as discussed above, this is 

problematic because the temporal information of the decoding models in the 

held-out trials is unknown. If we are to use cross-validation to compare different 

models (for instance, the standard decoding approach and TUDA), either we 

cannot use the stimulus information, or else we need to correct for the bias 

brought about by using the model time courses in the held-out trials. Here, we do 

the latter and correct the introduced bias by the use of surrogate data.  

 

We generated random samples (surrogates) of the data set by permuting the 

labels (here, the angle values) across trials. We then run cross-validation on each 

surrogate data set, and computed the 5% percentile of accuracy across 

surrogates. These provided, for each cross-validation approach, a baseline that 

we can then subtract from the original cross-validation estimates. We refer to 

the result as Adjusted CV-R2. Since we are now comparing differences to the 

surrogate accuracies, overfitting gets accounted for and we can then compare 

between different approaches including the standard decoding. Note that we 

carried out this procedure for TUDA in two different ways: either using the 

model time courses estimated on the entire data (i.e. considering between-trial 

temporal differences in the held-out data), or by using the model that is most 

active on average at each time point in the held-out trials (losing this temporal 

variability).  

 

Discussion 
 

In this paper, we use the Hidden Markov Modelling framework to propose a new 

approach capable of time-resolved decoding, referred to as Temporally 

Unconstrained Decoding Analysis or TUDA. Using TUDA, it is possible to bypass 

the highly constraining assumption of consistent timing of states (or decoding 

models) across trials as made by the traditional decoding approach. By making 

decoding temporally unconstrained, we are able to gain new insight into the 

nature, sequence, and temporal variability of neural states that contribute to the 

perceptual judgements made on different experimental trials.  

 

An increasing number of studies have used time-specific pattern classification 

methods to show that stimulus-specific patterns are highly time-specific and do 

not cross-generalize across time points. Further, these methods suggest that 

neural processing traverses a large number of states in a smooth, stereotyped 

cascade (King and Dehaene, 2014). This could occur through transitions from 

one attractor state to another within one circuit (Miller, 2016; Durstewitz et al., 

2010), or, similarly, through sudden transitions from a null state to a stimulus-

specific state in a downstream brain area (Latimer et al., 2015). However, this 

trajectory through neural state space assumes that trajectories are highly 

reproducible across trials. By relaxing this assumption, we found that processing 

might possibly have slower dynamics than suggested by the standard decoding 
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approach. Importantly, we found these dynamics to be related to behaviour, 

exemplified here as reaction time. We next discuss some additional aspects 

about methodology and interpretation. 

 

 

Alternative decoding models 

 

Here, we have used the instantaneous (raw) sensor-space MEG signal to predict 

the stimulus, in analogy to the study from Myers et al (2015) based on the same 

data set.  Both Myers and colleagues’ approach and ours use information about 

the relative magnitude between sensors in order to decode, and disregards other 

information. Given that the stimulus at time point t is predicted using only data 

at time point t, this approach is, for example, blind to the oscillations that 

encompass the instantaneous signal used for the prediction.  

 

More powerful (or interpretable) extensions, where the phase of ongoing 

oscillations is used for the prediction, are straightforward to implement under 

the proposed HMM-based framework. For instance, similar to Vidaurre et al. 

(2017c), the signal can be “embedded” such that a window around t (and not 

only t) is used to predict the stimulus at time t, effectively incorporating phase 

information into the estimation. Other possibilities are to use information of 

phase only (Cabral et al., 2017) or power only (Baker et al., 2014). Unlike the 

embedded approach, which uses the raw signal without the need of any 

mathematical transformation, these alternatives are based on the Hilbert 

transform and the use of filtering, for which an ad-hoc selection of the frequency 

bands of interest is required. Besides the decision of which features of the data 

will constitute the base for the prediction, another possible extension is to 

replace the simple, linear regression model by more powerful prediction 

algorithms such as support vector machines or neural networks (Hastie et al., 

2001) as far as these are formulated within the Bayesian framework. This 

scenario, where the decoding models may have a much larger number of 

parameters, can easily be handled with the proposed framework (where there 

are only K models) but is less manageable for the standard approach (where 

there are T models), especially if the number of trials is not very large.  

 

Decoding with fMRI 

 

In this work, we found temporal variability between trials in the range of 

hundreds of milliseconds. Although this is a significant amount of time when 

considering electrophysiological data, fMRI has much lower temporal resolution, 

and the temporal uncertainty brought about by the hemodynamic response 

further hampers the benefits of our approach for probing tasks with fast 

cognitive mechanisms (attention, perception, etc.). There are however tasks with 

meaningful variability at the fMRI scale (seconds rather than milliseconds): 

difficult decision-making, mind-wandering, tasks with components that fluctuate 

slowly such as arousal, and tasks with delayed activity such as those related to 

working memory. In these types of tasks, the proposed method has the potential 

to excel at discovering temporal variability, up to the limit imposed by the 

modality’s inherent temporal resolution and its haemodynamics.  
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Localised decoders  

 

Here, we applied the model to whole-brain sensor space data, in line with 

previous work (Myers et al., 2015). Finer spatial and temporal information can 

be obtained from applying this method to source-localised data, possibly running 

the model on one group of regions at a time. This approach can give us insight on 

the different temporal dynamics of various regions in encoding the stimulus by 

examining and post-hoc comparing the model time courses between regions. 

This strategy would be comparable to the analyses performed by Baldassano et 

al. (2017) with an unsupervised HMM (i.e. trained with no information of the 

task), where sequences of states where estimated from different brain regions 

while subjects watched movie-based stimuli. This study revealed that higher-

order regions follow state segmentations that match the movie structure more 

closely than those followed by sensory regions. By including the stimulus (or 

certain aspects of it) into the model, we can however target more specific aspects 

of cognition and will benefit from higher sensitivity.  

 

 

Null states 

 

The HMM is a general framework that has been used previously to describe 

brain activity in an unsupervised fashion (see e.g. Engel et al., 2016; Baker et al., 

2014; Vidaurre et al., 2016; Vidaurre et al., 2017a; Vidaurre et al., 2017b; 

Vidaurre et al., 2017c; Baldassano et al., 2017). Here, we draw from this general 

framework to handle the supervised setting, where each HMM state corresponds 

to a certain particular relationship between bran activity and the stimuli. But, 

what happens for these time points where there is no relationship between brain 

activity and the stimulus at all (for instance, because the brain has not yet 

encoded the information in any way)? In an unsupervised setting, because the 

brain is never silent, all states are always meaningful (they always represent 

something, because there is brain activity in all time points). In a supervised 

setting, however, it is useful to detect when there is nothing to represent. In the 

current implementation, the proposed model can express this circumstance by 

using a “null” state (where the decoding weights are close to zero), or, instead, by 

using some random mixture of (otherwise meaningful) states such that, at these 

“empty” time points, the decoding error is higher than when these states are 

faithfully representing the stimulus. Post-hoc analyses would be required to 

detect this situation. A potentially more useful strategy would be to fix one 

decoding state to be the null state (i.e. having fixed, zeroed decoding weights), 

such that it will become active when the examined regions are unaware of the 

stimulus. In the data used in this paper, nevertheless, this would likely be of little 

use given the short inter-stimuli intervals. 

 

Conclusion 

 

In this paper, we proposed a novel method for neural decoding, referred to as 

TUDA, where we dispense altogether with the assumption that neural processing 

is timed consistently across trials. Our results, on a simple perceptual decision-
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making task, indeed suggest that the assumption of consistent timing over trials 

made by a traditional decoding approach is not always justified, and can lead to 

misinterpretations of the dynamics of the cognitive mechanisms underpinning 

the processing of the stimulus. Although we have focused on a relatively simple 

stimulus, the technique can straightforwardly be applied to more complex 

cognitive tasks including volitional behaviour. Our approach also makes it 

possible to analyse the between-trial temporal variability, which, as shown 

above, can hold a significant relationship to behaviour, and could correspond to 

changes in attention or to plasticity. 
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Supplemental Information 
 

We generated synthetic data in order to demonstrate the basic functioning of 

TUDA, and to show, in a scenario were the ground-truth is known, how the 

standard decoding approach can incorrectly suggest a large number of 

information processing states and a rapid succession of state changes. We 

describe this setting here in detail.  

 

Synthetic experimental design 

 

We sampled N=1000 trials of one second duration, assuming sampling frequency 

of 300Hz (i.e. 300 time points per trial). The stimulus is modelled to be a colour, 

with three features representing RGB coordinates. For each trial, the colour 

stimulus was randomly sampled from a 3-dimensional uniform distribution 

(with values between 0 and 1). The data is set to have twelve channels. We 

assume there are three “cognitive processes” (or ground-truth states) underlying 

stimulus processing. Each of these is modelled as a (3 RGB coordinates by 12 

channels) matrix of coefficients. At each time point and trial, the data are 

generated by multiplying the current colour (1 time point by 3 RGB coordinates) 

by the corresponding matrix of coefficients (3 RGB coordinates by 12 channels), 

and then adding some Gaussian noise (standard deviation equal to 0.1). We set 

each of the ground-truth states to activate or deactivate a different subset of the 

channels (4 channels per state). More specifically, for each state we sample the 

(3 RGB coordinates by 4 channels) active coefficients from a uniform 

distribution, and the rest are set to zero. All trials are set to start in state 1, and 

transitions are always from state 1 to state 2, from state 2 to state 3, and from 

state 3 to state 1. The duration of the state visits is sampled from a uniform 

distribution ranged in between 0.066s (20 time points) and 0.166s (50 time 

points), such that each state is typically visited three times per trial.  

 

TUDA discovers the ground-truth states. 

 

Assuming the right number of states (three), we ran the TUDA inference in order 

to estimate the decoding model time courses as well as the decoding coefficients 

and the transition probabilities between models. Figure 2a shows, on top, the 

average model time courses (which can be interpreted as the probability to be in 

each state or model at each time point) and the model time courses for one 

example trial; at the bottom, it is presented the estimated model time courses, on 

average and for one trial. It can be observed that the model inference is accurate 

both in terms of the average and for the single trial. 

 

Standard decoding overestimates the number of processing states 

 

Using the standard approach for decoding, it has often been observed that the 

decoding models (e.g. the regression weights) continuously fluctuate as a 

function of time. This sometimes leads to poor decoding generalisation across 

time - i.e. a model trained at one time point has low accuracy when tested at a 

different time point (King and Dehaene, 2014). If we consider such regression 

weights as a proxy of the underlying neural processes that are relevant to the 
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task, it can be thus inferred that such brain processes are highly dynamic (see 

e.g. Meyers et al., 2008; Carlson et al., 2011; Isik et al., 2013; Carlson et al., 2013; 

Stokes et al., 2013; King et al., 2014); that is, the brain goes through a large 

number of different processing states that are not necessarily interchangeable. 

Here we argue that this can potentially be caused in an artefactual manner by the 

temporal variability between trials. We ran standard decoding on our simulated 

data (where there are only three states with an average dwelling time of 0.11s) 

to obtain, by pooling across trials, one model per time point. Each of these 

models have 12x3=36 regression coefficients. We then computed the Pearson 

correlation between sets of regression coefficients for each pair of models and 

ran hierarchical clustering. The results are shown in Figure 2b, where we can 

see a large fragmentation of models (the models are not ordered by time here, 

but were automatically ordered seeking spatial contiguity). Following the 

approach of assessing the generalisation across time in a cross-validation setting 

(King and Dehaene, 2014), we tested the model estimated at each time point on 

the held-out trials at the entire range of time points. Figure 2c shows the 

corresponding generalisation matrix, using CV-R2 as the summarising statistic. It 

can be observed that the trials start sharply as state 1 is always active at the 

beginning of the trial. Then, the pattern becomes blurrier as a consequence of the 

increasing between-trials temporal variability.   
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Figure 1. (a) General representation of decoding analysis. (b) A schematic 

representation of the standard decoding approach (left) vs. the Temporally 

Unconstrained Decoding Analysis (TUDA) (right).  
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Figure 2. Failing to account for between-trial differences can result in a 

misleading view of stimulus processing. (a) True and predicted model time 

courses (on average and for a single trial) from the TUDA inference process on 

synthetic data with between-trial temporal differences. (b) Hierarchical 

clustering of the decoding models (using the correlation between their 

regression coefficients) suggests that the standard decoding approach (which 

estimates one model per time point) finds many distinct models (more than 

three, which is the actual number of models in the synthetic data). (c) Cross-

validation showing the generalisation over time of the standard decoding 

approach (King and Dehaene, 2014) suggests a continuous and relatively fast 

fluctuation of models when looking at the diagonal of the matrix, which may lead 

to the incorrect conclusion that there are many different, non-exchangeable 

models underlying the data.  
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Figure 3. Decoding of the relative angle exhibits large temporal variability 

between trials. (a) Time-by-trial representation of which decoding model is 

active at each time point shown for a subset of the trials from a representative 

session and participant. Models are numbered according to the order in which 

they tend to arise in trials, and trials are ordered by reaction time (RT); only 200 

trials are shown. (b) Percentage of trials (taken over all subjects and trials) 

assigned to each decoding model as a function of time. (c) For a given decoding 

model, and this specific session, temporal variability represented as a histogram 

of starting and finishing times for those trials when the chosen decoding model is 

active at time t (t=0.23s for presented angle and t=0.24s for relative angle). (d) 

TUDA’s accuracy, measured as adjusted cross-validated explained variance 

(adjusted CV-R2, see Methods), when accounting for between-trial variability vs. 

when between-trial differences are ignored, for different number of decoding 

models (K=3, 4, 5 and 6). Each grey dot represents one session, the red dots 

represent the baseline accuracy obtained from surrogate data (see Methods), 

and the horizontal line represents (group-level) cross-validated accuracy for the 

standard decoding approach.  
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Figure 4. The precise timing of the decoding models within trials has an intimate 

relationship with reaction time (RT). (a) For the same representative session 

used in Figure 2, the correlations between RT and each decoding models’ 

activation probabilities as a function of time, are very high. (b) Prototypical 

sequences of decoding models for a short RT trial (top) and long RT trial 

(bottom) for the representative session. (c) The transition probability matrix for 

the representative session, containing the probability of transitioning between 

each pair of models, has a strong sequential structure (see Figure SI-4 for other 

sessions). (d) Cross-validated prediction of RT as using the model time courses 

confirms the strong relationship between the models’ temporal-variability and 

RT (each data point corresponds to one trial, and colour indicates density of 

points). The plot depicts all sessions, although the prediction was performed 

session by session.  
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Figure 5. Topographical map in sensor space reflecting the (averaged) spatial 

activation associated to the estimated decoding models. This is expressed as the 

sum of explained variance (CV-R2) of the corresponding encoding models (see 

Methods). 
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Figure SI-1. Cross-validation underestimates TUDA’s performance if we lose 

between-trials temporal variability in the held-out trials. (a) For the same 

illustrative session used in Figure 2, CV-R2 is shown as a function of time for the 

standard approach (black) and the proposed model when using K=5 decoding 

models (red). Underneath, the model fractional occupancy (see Figure 2) reveals 

that the peaks of accuracy closely correspond to the time points with less 

between-trials temporal variability. (b) There is a strong correlation between 

decoding model uncertainty (as expressed by the variability of the model time 

courses across trials) and accuracy (as expressed by the cross-validated 

explained variance, CV-R2), where each data-point in the scatter plot 

corresponds to a time-point within the trial (colour represents density of points 

and the line represents the slope of regressing model variability on CV-R2). 

 

 

 

 

 
Figure SI-2. Transition probability matrices between decoding models for all 

sessions and subjects reveal that information processing follows consistent 

sequences of states in most of the sessions.  
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