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Abstract

It is commonly assumed that memories about experienced stimuli are represented in the
brain by groups of highly interconnected neurons called Hebbian cell assemblies. This
requires allocating and storing information in the neural circuitry, which happens
through synaptic weight adaptation. It remains, however, largely unknown how memory
allocation and storage can be achieved and coordinated to allow for a faithful
representation of multiple memories without disruptive interference between them. In
this theoretical study, we show that the interplay between conventional Hebbian
synaptic plasticity and homeostatic synaptic scaling organizes synaptic weight
adaptations such that, on the one hand, a new stimulus forms a new memory while, on
the other hand, different stimuli are assigned to distinct Hebbian cell assemblies. We
show that the resulting dynamics can reproduce experimental in-vivo data focusing on
how other neuronal and synaptic factors, such as neuronal excitability and network
connectivity, influence memory formation. Thus, the here presented model suggests that
a few fundamental synaptic mechanisms may suffice to implement memory allocation
and storage in neural circuitry.

Author summary

The survival in a changing environment requires the reliable learning, storage, and
organization of relevant stimuli in the neuronal circuit. This theoretical work addresses
the important issue of how a neuronal circuit coordinates the learning-related synaptic
adaptations to properly assign new information to groups of neurons and to form
long-lasting memory representations of multiple stimuli. We show that this requires
only three synaptic properties – homosynaptic potentiation paired with heterosynaptic
depression both driven by the postsynaptic activity level. These properties naturally
arise from the generic interplay between conventional Hebbian synaptic plasticity and
homeostatic synaptic scaling. Therefore, this study shows that the complex processes of
memory allocation and storage can be attributed to ubiquitous synaptic mechanisms in
the neural circuitry.
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Introduction 1

Learning and memorizing information about the surrounding environment is a vital 2

function of neural circuits of living beings. For this, a neural circuit has to accurately 3

form and organize internal representations of the different pieces of information received. 4

The Hebbian hypothesis [1–5] states that, when a neural circuit receives a new piece 5

of information, the corresponding stimulus activates a group of neurons and, via 6

activity-dependent synaptic plasticity [6–9], adapts the weights of related synapses. 7

This process leads to the formation of a strongly interconnected group of neurons or 8

Hebbian cell assembly (CA), which serves as an internal memory representation of the 9

stimulus [3–5]. The recall of the memory translates into the activation of the respective 10

CA. In order to recognize similar pieces of information, similar stimuli also have to be 11

able to activate the corresponding CA. This is enabled, on the one hand, by strong 12

recurrent interconnections between CA-neurons resulting in pattern completion [4, 10] 13

and, on the other hand, by an accurate adjustment of the synapses connecting stimuli 14

with CAs (memory allocation). Up to now, experimental and theoretical studies mainly 15

focussed on revealing either the formation of CAs [5, 11–19] or the allocation of stimuli 16

to neurons [20–28]. By contrast, it is still unknown how a neural circuit coordinates in a 17

self-organized manner the reliable allocation of stimuli to neurons with the proper 18

formation of a memory representation. 19

In this theoretical study, we show in a network model that conventional Hebbian 20

synaptic plasticity [3, 29, 30] together with the slower, homeostatic processes of synaptic 21

scaling [31–34] leads to the self-organized coordination of weight changes at feed-forward 22

and recurrent synapses enabling the accurate formation and allocation of CAs. The 23

model reproduces in-vivo experimental data and provides testable predictions. 24

Furthermore, the analysis of a population model, capturing the main features of the 25

network dynamics, enables us to determine three generic properties of synaptic 26

adaptations required to form and allocate memory representations in a reliable manner. 27

These properties are (i) homosynaptic potentiation, (ii) heterosynaptic depression, and 28

(iii) the down-regulation of synaptic weight changes by the postsynaptic activity level. 29

Materials and methods 30

Numerical simulations 31

The three neuronal populations in the numerical model consist of 936 excitatory 32

neurons (36 in input area, 900 in memory area) and a single inhibitory unit describing a 33

population of inhibitory neurons which are connected to the excitatory neurons in an 34

all-to-all manner. All neurons are described by a rate-coded leaky integrator model. 35

The memory area is arranged as a quadratic neural grid of 30x30 units. Each neuron 36

within the grid receives excitatory connections from four randomly chosen input 37

neurons. In addition, it is recurrently connected to its circular neighborhood of radius 38

four (measured in neuronal units; for visualization see SI text) and to the global 39

inhibitory unit. 40

Neuron model 41

The three neuronal populations considered, i.e. the input area, the memory area, as well 42

as a global inhibitory unit are described by differential equations of a rate-coded leaky 43

integrate neuron model. The membrane potential ureci , i ∈ {1, ..., NM} of each neuron i 44
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in the memory area is described as follows: 45

dui
dt

= −ui
τ

+R

NM∑
j

wrec
i,j Fj + wi,inhFinh +

N I∑
k

wff
i,kIk

 , (1)

with the membrane time constant τ , membrane resistance R, number of neurons in the 46

memory area NM, number of neurons in the input area N I, and input rate Ik. The 47

membrane potential is converted into a firing rate Fi by a sigmoidal transfer function 48

with maximal firing rate α, steepness β and inflexion point ε: 49

Fi(ui) =
α

1 + exp(β(ε− ui))
. (2)

The global inhibitory unit is also modeled as a rate-coded leaky integrator receiving 50

inputs from all neurons of the memory area. Its membrane potential uinh follows the 51

differential equation 3 with inhibitory membrane time scale τinh and resistance Rinh. 52

The potential is converted into a firing rate Finh by a sigmoidal transfer function 53

(equation 4). 54

duinh
dt

= −uinh

τinh
+Rinh ·

∑NM

i winh,iFi, (3)

Finh(uinh) = α
1+exp(β(ε−uinh))

. (4)

As the neurons in the input area form the stimuli, their output activation is set 55

manually. Thus no further description is needed. 56

Synaptic plasticity 57

The synaptic weight changes in the excitatory feed-forward (equation 5) and recurrent 58

connections (equation 6) are determined by the combined learning rule of conventional 59

Hebbian synaptic plasticity (first term) and synaptic scaling (second term) with time 60

constants µ, κff, κrec, and target firing rate FT. The differential equation for the 61

synaptic weight of a feed-forward connection wff
i,k from input neuron k ∈ {0, · · · , N I} to 62

memory neuron i ∈ {0, · · · , NM} is: 63

dwff
i,k

dt
= µ

(
FiIk + (κff)−1(FT − Fi)(w

ff
i,k)2

)
· cffi,k. (5)

The dynamics of the synaptic weight of a recurrent connection wrec
i,j from memory 64

neuron j ∈ {0, · · · , NM} to memory neuron i ∈ {0, · · · , NM} is determined by: 65

dwrec
i,j

dt
= µ

(
FiFj + (κrec)−1(FT − Fi)(w

rec
i,j )2

)
· creci,j . (6)

cffi,k and cffi,k are the entries in the feed-forward or recurrent connectivity matrices, 66

respectively. Being either of value 1 (existing connection) or 0 (non-existing connection), 67

they maintain the system’s connectivity structure, i.e. prevent the generation of 68

connections. 69

All other connections are considered to be non-plastic. 70

Coding framework 71

The simulation codes were written in Python 3.5. The model system was updated by 72

using the Euler method at time steps of 5 ms. 73
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Table 1. Model Parameters: Variable, Descriptions and used Values

Variable Description Value

τ membrane time constant (memory area) 0.01
R membrane resistance (memory area) 1/11
NM number of neurons in memory area 900
N I number of neurons in input area 36
Ik input rate {0,130}
α maximum firing rate 100
β sigmoid steepness 0.05
ε sigmoid inflexion point 130
µ plasticity time constant 1/15
FT target firing rate 0.1
κrec scaling time constant (recurrent) 60
κff scaling time constant (feed-forward) 720
τinh membrane time constant (inhibitory unit) 0.02
Rinh membrane resistance (inhibitory unit) 1
winh,i synaptic weight to inhibitory unit 0.6
wi,inh synaptic weight from inhibitory unit 1200

Simulation of self-org. formation of two CAs 74

The system undergoes two learning phases being presented two completely dissimilar 75

stimulus patterns A (first phase) and B (second phase). For stimulus pattern A half of 76

the input neurons are set to be active at 130 Hz whereas the other half remains inactive 77

at 0 Hz. Vice versa for stimulus pattern B. During the respective learning phase the 78

respective pattern is presented 10 times for 5 sec with a 1 sec pause in between. Both 79

learning phases are embraced by test phases in which plasticity is shut off and both 80

patterns are presented for 0.5 sec each to apply measures on the existing memory 81

structures. 82

Comparison to experimental data 83

The manipulation of the neuronal excitability has been done by adapting the value for ε 84

in the transfer function of the neuron model, i.e. shifting its inflexion point to lower 85

(increased excitability) or higher (decreased excitability) values. Similar to the methods 86

used in experiments [36], we manipulated a subpopulation of neurons within a randomly 87

chosen circular area in the memory area (about 10% of the network). The relative 88

recruitment factor is the relation of recruitment probabilities for manipulated and 89

control neurons averaged over 100 repetitions. 90

Population model 91

We consider two non-overlapping populations of N excitatory neurons and one 92

inhibitory unit. 93

The state of every population i ∈ {1, 2} is determined by its mean membrane 94

potential ūi, its mean recurrent synaptic weight w̄rec
i between neurons of the population, 95

and the mean weight w̄ff
i of feed-forward synapses projecting signals from the currently 96

active input onto the population. We assume that the two populations interact solely 97

through the inhibitory unit whose state is given by its membrane potential uinh. Thus, 98

the dynamics of the model is described by a set of seven differential equations (see 99

following section). To obtain its equilibria, we analytically derive the nullclines ū∗1(ū∗2) 100
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and ū∗2(ū∗1) and numerically determine their intersections. The stability of an 101

equilibrium is obtained from the sign of the eigenvalues of the system’s Jacobi Matrix. 102

For analyzing in which regimes population 1 and population 2 are assigned to an 103

input stimulus as a function of the initial synaptic weights (Fig 2 E and Fig 3), we 104

initialize the system with the given combination of feed-forward and recurrent average 105

synaptic weights and ū1 = ū2 = ūinh = 0, simulate it for 100 sec, and assess which of 106

the two populations is active. For further details and parameter values see SI Text. 107

Model Definition 108

The two excitatory populations in the population model are described by their mean
membrane potentials ūi, i ∈ {1, 2}, k ∈ {A,B}:

dūi
dt

= − ūi
τ

+R

(
n̄recw̄rec

i F̄i + wi,inhFinh +
∑
k

n̄ffw̄ff
ik Īk

)
. (7)

Here, the time scale τ , the resistance R and the synaptic weight wi,inh have the same 109

value as in the network simulations. The average number n̄reci of incoming recurrent 110

connections from neurons within the population as well as the number of feed-forward 111

synapses transmitting signals from active inputs to every neuron (n̄ff) are taken from 112

simulations (n̄rec = 35, Figure S5 C; nff = 2.3, Figure S5 B). 113

The membrane potential of the inhibitory population is given by

duinh
dt

= −uinh
τinh

+Rinh(winh,1NF̄1 + winh,2NF̄2) (8)

with τinh, Rinh and winh,1 = winh,2 corresponding to the respective values in the network 114

simulations. The number N of neurons per population is adjusted to the CAs in the 115

network simulation and chosen as N = 120 (Figure S5 A). 116

The transfer function of the neurons within the population is the same as for
individual neurons:

F̄i(ūi) =
α

1 + exp(β(ε− ūi))
, i ∈ {1, 2, inh}. (9)

The synaptic weight changes of recurrent and feed-forward synapses follow the
interplay of conventional Hebbian synaptic plasticity and synaptic scaling (i ∈ {1, 2}):

dw̄rec
i

dt
= µ

(
F̄ 2
i + (κrec)−1(FT − F̄i)(w̄rec

i )2
)
, (10)

dw̄ff
ik

dt
= µ

(
F̄iĪk + (κff)−1(FT − F̄i)(w̄ff

ik)2
)
. (11)

Results 117

Formation and allocation of one memory representation 118

We consider a recurrently connected excitatory population of neurons (memory area 119

with an all-to-all connected inhibitory population to regulate the global activity level; 120

Fig 1 A) with each neuron receiving inputs from several randomly assigned neurons of a 121

second excitatory population (input area). All synapses between the excitatory neurons 122

(red; feed-forward and recurrent) are adapted by conventional Hebbian synaptic 123

plasticity together with homeostatic synaptic scaling (see Methods; [16,33,35]). A 124

stimulus is represented by the activation of a stimulus-specific subset of neurons in the 125

input area forming a stimulus pattern (Fig 1 B). 126
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Throughout this study, we consider initially a learning phase during which stimulus 127

pattern A (magenta; Fig 1 B, C) is repeatedly presented to a blank neural circuit (no 128

encoded CA) to investigate the basic CA formation and allocation dynamics. After the 129

successful formation of a CA (blue; Fig 1 B), in a second learning phase, stimulus 130

pattern B (green) is repeatedly presented to analyze the influence of the encoded CA on 131

the formation and allocation of a further CA (orange). In addition, we consider three 132

test phases (Fig 1 C), during which synaptic dynamics are frozen, to enable the 133

investigation of the resulting response dynamics of the circuit according to the different 134

stimulus patterns. 135
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Fig 1. The interaction of conventional Hebbian synaptic plasticity and
synaptic scaling enables the stimulus-dependent formation and allocation
of memory representations in a neuronal network model. A: The network
model consists of an excitatory population of neurons (memory area) receiving inputs
from a second excitatory (input area) and one inhibitory population (global inhibition).
All synapses in between excitatory neurons (red) are plastic resulting to (B:) the
stimulus-specific (A: magenta; B: green) allocation and formation of cell assemblies
(CA1: blue; CA2: orange) shown here schematically. C: Stimulation protocol used
throughout this study. During the test phases (T0, T1, T2), synaptic dynamics are
stopped to analyze the changes induced by the learning phases. D: The two learning
phases yield a reduction of the average shortest path length (ASPL) between
stimulus-activated neurons in the memory area. E: In addition, the average strength of
the intra-population synapses is increased such that pop. 1 and pop. 2 become
independent CAs. F, G: Furthermore, the average synaptic strength of the feed-forward
connections from the stimulus-neurons to the formed CAs are adapted specifically such
that pop. 1 represents stimulus A (F) and pop. 2 represents stimulus B (G). H: The
response overlap (RVO) between both CAs depends non-linearly on the disparity
between the stimulus patterns. Data presented are mean values with standard deviation
over 100 repetitions (H) or rather 1000 repetitions (D-G).

The first presentation of a new stimulus to the network triggers the activation of a 136

widely distributed pattern of neurons (see SI Text) being not directly connected with 137

each other (high average shortest path length (ASPL); Fig 1 D, test 0). By contrast, if 138

the stimulus is repeatedly presented in a given time interval (here stimulus A), the 139

dynamics of the network reshapes the pattern of activated neurons such that the final 140
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pattern consists of a group of neighboring, interconnected neurons (decrease in ASPL; 141

magenta, test 1). As shown in our previous studies [16, 35], the combination of synaptic 142

plasticity and scaling together with a repeated activation of an interconnected group of 143

neurons yields an average strengthening of the interconnecting synapses without 144

significantly altering other synapses (blue; Fig 1 E, test 1). The decreased ASPL and 145

the locally strengthened synaptic weights point to the stimulus-dependent formation of 146

a CA during the first learning phase. 147

However, do the self-organizing dynamics also link specifically the stimulus-neurons 148

with the CA-neurons? The repeated presentation of stimulus pattern A yields an on 149

average strengthening of synapses projecting from the stimulus-neurons to the whole 150

memory area (Fig 1 F, test 1). Essentially, the synapses from the stimulus-neurons to 151

the CA-neurons (blue) have a significantly stronger increase in synaptic weights than 152

the controls (gray). This implies a proper assignment of the stimulus to the newly 153

formed CA during the learning phase resulting in a higher chance of activating the 154

CA-neurons when the stimulus is presented later again. 155

These results reveal that the interaction of synaptic plasticity and scaling 156

self-organizes for a wide parameter regime (see SI Text) synaptic changes at recurrent 157

and feed-forward connections to form and allocate a memory representation in a blank 158

neuronal network. 159

Formation and allocation of a second memory representation 160

Clearly the presence of a memory representation can alter the self-organizing dynamics 161

shown before, which could impede the proper formation of representations of further 162

stimuli. For instance, the existence of a CA in the neuronal network could bias the 163

adaptations of the feed-forward synapses such that a new stimulus is also assigned to 164

this CA. This would imply that the neural circuit is unable to discriminate between the 165

originally CA-associated stimulus and the new stimulus. Thus, to investigate the 166

influence of prior learning, we repeatedly present a second stimulus B (second learning 167

phase) after the proper formation of the CA associated to stimulus A. 168

Similar to the first learning phase, the repeated presentation of stimulus pattern B 169

(here, patterns A and B have a stimulus disparity of 1 indicating no overlap between 170

stimulus patterns; see SI Text) yields the activation of a group of strongly 171

interconnected neurons (decreased ASPL; green, Fig 1 D, test 2) and a strengthening of 172

the corresponding recurrent synaptic weights (orange; Fig 1 E, test 2). Thus, the 173

stimulus-dependent formation of a new CA is not impeded by the existence of another 174

CA. Furthermore, both CAs are distinguishable as they do not share any neuron in the 175

memory area (Fig 1 H, disparity equals 1). This depends on the disparity between 176

stimuli; for quite dissimilar stimuli (disparity & 0.5) both CAs are separated, for more 177

similar stimuli (0.3 . disparity . 0.5) the system undergoes a state transition, and for 178

quite similar stimuli (disparity . 0.3) both stimuli activate basically the same group of 179

neurons. Note that the latter demonstrates that the network does correctly assign noisy 180

versions of a learned stimulus pattern (pattern completion [10]) instead of forming a new 181

CA, while the first case illustrates that the network performs pattern separation [10]. 182

This indicates a correct assignment of the stimuli to the corresponding CAs, such that 183

also in the presence of another CA the weight changes of synapses between stimulus 184

pattern and newly formed CA are adapted accordingly (orange; Fig 1 G, test 2). Thus, 185

the self-organizing dynamics yields the formation and allocation of a new CA during the 186

second learning phase. Note that the synaptic weights of the initially encoded CA are 187

not altered significantly during this phase (compare blue bars at test 1 with at test 2 in 188

Fig 1 E-G). But, although stimulus A is not present, the second learning phase leads to 189

a weakening of synapses projecting from stimulus A neurons to the newly formed CA 190

considerably below control (orange; Fig 1 F, test 2). Similarly, during the first learning 191
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phase the synaptic weights between stimulus B neurons and the first cell assembly are 192

also weakened (blue; Fig 1 G, test 1). Apparently, this weakening of synapses from the 193

other, non-assigned stimulus to a CA reduces the chance of spurious activations. Thus, 194

the self-organized dynamics resulting from the interaction of synaptic plasticity and 195

scaling enables the proper formation and allocation of several memory representations 196

without significant interferences between them. 197

Generic properties of synaptic adaptations enabling the 198

formation and allocation of memory representations 199

In order to obtain a more detailed understanding of the self-organizing processes of 200

synaptic plasticity and scaling underlying the reliable formation and allocation of 201

memory representations, we have to reduce the complexity of the model to enable 202

analytical investigations. For this, we assume that the different involved neuronal 203

populations in the input (stimulus A and B neurons) and memory area (populations 1 204

and 2 becoming CAs in the memory area) are by themselves homogeneous allowing the 205

consideration of average population dynamics (Fig 2 A). This maps the main features of 206

the complex network dynamics to a 7-dimensional model (see Materials and Methods 207

and SI Text). 208

First, we investigate the formation of a memory representation in a blank neural 209

circuit. The solutions of the nullclines of the dynamics in the space of the average 210

recurrent synaptic weights of the two neuronal groups (w̄rec
1 and w̄rec

2 ; Fig 2 B, left) 211

show that the dynamics during the first learning phase is dominated by three 212

equilibrium states: one is repulsive (red, 7) and two are attractive (green, 2 and 3; the 213

equilibria 4, 8, 9, 10 do not influence the here discussed dynamics). The two attractive 214

states represent that one of the two neuronal populations becomes a strongly 215

interconnected CA (e.g., pop. 1 in state 2), while the other remains in a weakly 216

interconnected state. The repulsive state lies on the identity line (w̄rec
1 = w̄rec

2 ) having 217

the same distance to both attractive states. The resulting mirror symmetry in the phase 218

space implies that the dynamics on the one side of the identity line (reaching the 219

attractive state lying on this side) equals the dynamics on the other side. Therefore, 220

given that before learning both populations are similarly weak interconnected, small 221

variations in the initial condition of the network are sufficient to determine which group 222

of neurons will become a CA during learning (see black trace for an example). Note 223

that this symmetry-dependent formation of a CA is quite robust against variations in 224

parameters, as the strength of the stimulus (ĪA & 120), which agrees with results from 225

the more detailed network model discussed before (purple dots; Fig 2 C). 226

In parallel to the development of the recurrent synaptic weights, the synaptic 227

strengths of the feed-forward connections change to assure proper memory allocation. 228

Thus, we analyze the activity-dependency of the interaction of synaptic plasticity and 229

scaling and obtain the change of the feed-forward synaptic weights expected during the 230

learning phase given different activity conditions of the input and memory populations 231

(Fig 2 D). In general, the combination of both activity levels determines whether the 232

weight of a feed-forward synapse is potentiated (red), depressed (blue), or not adapted 233

(white). If both activities are on a quite high level, synapses are potentiated (case II; 234

homosynaptic potentiation). If the presynaptic activity (input) is on a low level and the 235

postsynaptic activity (population) is on a high level, feed-forward synapses are depressed 236

(case I; heterosynaptic depression). However, if the postsynaptic activity is low, synaptic 237

changes are negligible regardless of the level of presynaptic activity (cases III and IV). 238

The different parts of recurrent and feed-forward synaptic dynamics described before 239

together lead to the formation and allocation of a CA as described in the following. 240

During the first learning phase (stimulus A), a small variation in initial conditions 241
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ĪA ĪB
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Fig 2. Population model of network dynamics enables analytical derivation
of the underlying synaptic dynamics. A: Schema of the population model of the
averaged network dynamics (bars indicate the average over all neurons in population
s ∈ {A,B, 1, 2}). Ī: stimulus amplitude; F̄ : population activity; w̄ff

sp: strength of
feed-forward synapses between populations s and p; w̄rec

p : strength of recurrent synapses
within population p. B: The intersections of the population nullclines projected into
weight (left) and activity (right) space reveal equilibria (attractive: green; repulsive:
red) indicating the formation of a CA (green markers 2 and 3), if the system deviates
from the identity line. Numbers correspond to numbers of equilibria in C. α is the
maximal neuronal activity. C: The bifurcation diagram of the network indicates that
CAs are formed for a wide variety of input amplitudes (ĪA & 120). The dashed line
illustrates the value used in B (see insets). Solutions of the full network (purple dots)
and population model match (deviation for large values of ĪA, gray area; details see
SI Text). D: The dynamics of feed-forward synaptic strengths depends on the input
amplitude and the population activity subdivided into four different cases (I-IV). E:
These cases (I-IV) together with the strengthening of recurrent synapses (CA1) yield
the self-organized formation and allocation of CAs. Namely, during the first learning
phase, synaptic changes drive the system (white dot) into regimes where either
population 1 (blue) or population 2 (orange) will represent the corresponding stimulus
(left: stimulus A; right: stimulus B).

breaks the symmetry (white dashed line; Fig 2 E) such that the system is, for instance, 242

in the basin of attraction that population 1 will represent stimulus A (blue area). This 243
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leads to the strengthening of recurrent synapses within population 1 forming a CA 244

(increase of w̄rec
1 ; Fig 2 B, E). In parallel, the synaptic strengthening induces an increase 245

of the activity level of the population (state 2 in Fig 2 B, right) yielding, together with 246

the active stimulus A, an average increase of the corresponding feed-forward synapses 247

(w̄ff
1A; case II). These synaptic changes push the system further away from the symmetry 248

condition (white arrows; Fig 2 E, left) implying a more stable memory representation. 249

Note that changing the strength of synapses connecting stimulus A with population 2 250

(w̄ff
2A) could result to a shift of the symmetry condition (indicated by black arrows) 251

counteracting the stabilization process. However, this effect is circumvented by the 252

system as the second population has a low activity level and therefore corresponding 253

feed-forward synapses are not adapted (case IV). 254

The formation of a CA acts as a variation or perturbation of the initial condition 255

breaking the symmetry for the second learning phase (stimulus B; Fig 2 E, right). The 256

formation of the first CA pushes the system into the blue area (CA1-arrow). This 257

indicates that, during learning stimulus B, population 1 would also represent 258

stimulus B impeding the discrimination ability of the network between stimulus A 259

and B. However, during the first learning phase, as stimulus B is inactive, synapses 260

projecting from stimulus B neurons to population 1 neurons are depressed (case I) and 261

the system switches into the orange area. This area indicates that, during learning 262

stimulus B, population 2 would represent the stimulus. Please note that this switch can 263

be impeded by adapting the connections from stimulus B to population 2 (w̄ff
2B) shifting 264

the symmetry condition. But, similar to before, this effect is circumvented by the 265

system as population 2 is basically inactive (case III). Thus, after the first learning 266

phase, the synaptic dynamics regulated by the combination of Hebbian plasticity and 267

synaptic scaling drives the system into an intermediate state, which implies that the 268

system will definitely reach the desired state during learning the second stimulus (Fig 3). 269

This intermediate state can only be reached if synaptic adaptations comprise three 270

properties implied by the four cases I-IV: (i) homosynaptic potentiation (case I), 271

(ii) heterosynaptic depression (case II), and (iii) the down-regulation of synaptic weight 272

changes by the postsynaptic activity level (cases III and IV). 273
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Fig 3. Summary of the synaptic changes underlying the formation and
allocation of memory representations. The interaction of synaptic plasticity and
scaling brings a blank network (A; test 0) during the first learning phase (B) to an
intermediate state (C; test 1). From this intermediate state, the second learning phase
(D) yields the system into the end state (E; test 2), in which each stimulus is allocated
to one CA (A to pop. 1 and B to pop. 2). A, C, E: Thickness of lines indicates average
synaptic strength. B, D: Similar to panels in Fig 2 E. Black indicates regimes in which
both populations would represent the corresponding stimulus.
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Experimental Data 274

In addition to the described three properties, the here-proposed model implies the 275

existence of a symmetry condition underlying the formation and allocation of memory 276

representations. Small variations in the initial condition of the system suffice to break 277

this symmetry. These variations could be, aside from noise, enforced experimentally by 278

adapting neuronal parameters in a local group of neurons. Amongst others, several 279

experiments [36,37] indicate that the probability of a group of neurons to become part 280

of a newly formed memory representation can be influenced by changing their 281

excitability pharmacologically (e.g., by varying the CREB concentration). We 282

reproduced such manipulations in the model by adapting the neuronal excitability of a 283

group of neurons accordingly and analyzing the data similar to experiments (see 284

Methods). Thus, we investigated the probability of a single neuron to become part of a 285

CA averaged over the whole manipulated group of neurons (relative recruitment factor) 286

and compared the results to experimental findings (Fig 4 A). 287
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Fig 4. The model of synaptic plasticity and scaling matches experimental
in-vivo data and provides experimentally verifiable predictions. A:
Artificially modifying the excitability of a subset of neurons alters the probability of
these neurons to become part of a memory representation (normalized to control).
Experimental data are taken from [36]. Data presented are mean values with standard
error of the mean. B: The alteration of the excitability of one group of neurons (here
pop. 1) compared to others yields a shift of the network’s equilibria (here shown
schematically; details see SI Text) compared to its initial state (dots) inducing a bias
towards one population. A, B: The model analysis yields the prediction (instance iv)
that this bias can be counterbalanced by additionally decreasing the average synaptic
weight of the manipulated population before learning (here by a factor of 0.1), which
shifts the initial state of the network back to the symmetry condition (red).

On the one hand, if the excitability of a group of neurons is artificially increased 288

briefly before learning, the probability of these neurons to become part of the memory 289

representation is significantly enhanced. On the other hand, if the excitability is 290

decreased, the neurons are less likely to become part of the representation. Considering 291

the theoretical results shown before (Fig 2 B), this phenomenon can be explained as 292

follows: the manipulation of the excitability in one population of neurons changes the 293

distance between the repulsive equilibrium state (red; Fig 4 B) to the two attractive 294

states (green). Thus, an increased (decreased) excitability yields a larger (smaller) 295

distance between the repulsive state and the attractive state related to the manipulated 296

population. This larger (smaller) distance implies a changed basin of attraction of the 297

manipulated population enhancing the chance that the initial condition of the network 298

(black dots) lies within this basin. This implies an increase (decrease) of the probability 299

to become a CA as depicted by the variation of the experimentally measured single 300

neuron probability. In addition, the theoretical analysis yields the prediction that the 301

PLOS 11/16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2018. ; https://doi.org/10.1101/260950doi: bioRxiv preprint 

https://doi.org/10.1101/260950
http://creativecommons.org/licenses/by/4.0/


measured effects will be altered by manipulating other parameters. For instance, if the 302

synaptic weight of the population with increased excitability is on average decreased 303

before stimulus presentation (e.g., by PORCN; [38]), the network’s initial condition is 304

shifted such that the CREB-induced influence on the relative recruitment factor is 305

counterbalanced (Fig 4 A, instance iv). Thus, the match between model and in-vivo 306

experimental data supports the here-proposed ansatz that the combination of Hebbian 307

synaptic plasticity and synaptic scaling yields the self-organized allocation and 308

formation of memory representations. 309

Discussion 310

Our here-presented theoretical study indicates that the formation as well as the 311

allocation of memory representations in neuronal networks depend on the self-organized 312

coordination of synaptic changes at feed-forward and recurrent synapses. We predict 313

that the combined dynamics of conventional Hebbian synaptic plasticity and synaptic 314

scaling could be sufficient for yielding this self-organized coordination as it implies three 315

generic properties: (i) homosynaptic potentiation, (ii) heterosynaptic depression, and 316

(iii) the down-regulation of synaptic weight changes by the postsynaptic activity level. 317

Previous theoretical studies show that the properties (i) and (ii) are required in 318

recurrent neuronal networks to dynamically form memory representations [16–18]. 319

However, these studies do not consider the feed-forward synaptic dynamics. On the 320

other hand, studies analyzing feed-forward dynamics, such as the self-organization of 321

cortical maps [21,23,25], also indicate the importance of homosynaptic potentiation and 322

heterosynaptic depression. However, these studies do not consider the recurrent synaptic 323

dynamics. Only by considering both feed-forward and recurrent synaptic dynamics, we 324

revealed the requirement of property (iii) that a low level of postsynaptic activity 325

curtails the synaptic changes which is also supported by experimental evidence [39,40]. 326

Note that, here, property (iii) is realized by both mechanisms: Hebbian synaptic 327

plasticity as well as synaptic scaling. By contrast, property (i) is implemented by 328

Hebbian synaptic plasticity only and property (ii) is realized by synaptic scaling only. 329

This indicates that synaptic scaling could have an essential role in the allocation and 330

formation of multiple memory representations beyond the widely assumed stabilization 331

of neural network dynamics [29,32,33,41,42]. 332

Similar to previous studies [16,35,43], we consider here an abstract model to 333

describe the neuronal and synaptic dynamics of the network. Despite the abstract level 334

of description, the model matches experimental in-vivo data of memory allocation. 335

Other theoretical models match similar experimental data [28,44]; however, these 336

models are of greater biological detail including more dynamic processes (e.g., 337

short-term plasticity). However, only by considering an abstract model, we have been 338

able to derive analytical expressions such that we could find the requirement of the 339

three generic properties yielding the proper formation and allocation of memories. 340

Remarkably, the synaptic plasticity processes considered in the detailed 341

models [28, 44, 45] also imply the three generic properties (i-iii) supporting our findings. 342

The here shown results indicate that the combined dynamics of Hebbian synaptic 343

plasticity and synaptic scaling are sufficient to determine the basic dynamics underlying 344

the allocation and formation of memory representations. Interestingly, for several 345

different stimuli the combined dynamics always yields the formation of separated 346

memory representations. In particular the process of heterosynaptic depression impedes 347

the formation of overlaps between several memory representations. However, amongst 348

others, experimental results indicate that memory representations can overlap [5, 46, 47] 349

and, in addition, theoretical studies show that overlaps increase the storage capacity of a 350

neuronal network [14] and can support memory recall [48]. To partially counterbalance 351
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the effect of heterosynaptic depression to enable the formation of overlaps, further 352

time-dependent processes are required. For instance, the CREB-induced enhancement 353

of neuronal excitability biases the neuronal and synaptic dynamics such that the 354

respective subgroup of neurons is more likely to be involved in the formation of a 355

memory representation (Fig 4; [36,44]). Furthermore, the dynamics of CREB seem to 356

be time-dependent [28,36,37]. Therefore, the enhancement of CREB can counterbalance 357

heterosynaptic depression for a given period of time and, by this, could enable the 358

formation of overlaps. We expect that the impact of such time-dependent processes on 359

the dynamics of memories can be integrated into the here-proposed model to analyze 360

the detailed formation of overlaps between memory representations. 361

Conclusion 362

In summary, the here-shown theoretical results indicate that the complex dynamics of 363

allocation and formation of multiple memory representations could result from the 364

interplay between Hebbian synaptic plasticity and synaptic scaling. This interplay 365

reliably coordinates in a self-organized manner synaptic changes at feed-forward as well 366

as recurrent synapses as it entails three generic properties. Furthermore, the 367

here-derived theoretical model enables the integration of further neuronal and synaptic 368

processes to assess a general understanding of the dynamics underlying the 369

self-organized allocation and formation of multiple memory representations. For more 370

information, see SI text. 371
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