
Adaptive stimulus selection for multi-alternative psychometric
functions with lapses

Ji Hyun Bak1,2 and Jonathan W. Pillow3

1School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea; 2Department of Physics, Princeton University, NJ, USA;
3Department of Psychology and Princeton Neuroscience Institute, Princeton University, NJ, USA

(Dated: February 6, 2018)

Psychometric functions (PFs) quantify how external stimuli affect behavior and play an important role in building models of sensory and cognitive processes.

Adaptive stimulus selection methods seek to select stimuli that are maximally informative about the PF given data observed so far in an experiment and

thereby reduce the number of trials required to estimate the PF. Here we develop new adaptive stimulus selection methods for flexible PF models in tasks

with two or more alternatives. We model the PF with a multinomial logistic regression mixture model that incorporates realistic aspects of psychophysical

behavior, including lapses (trials where the observer ignores the stimulus) and omissions (trials where the observer “opts out” or fails to provide a valid

response). We propose an information-theoretic criterion for stimulus selection and develop computationally efficient methods for inference and stimulus

selection based on semi-adaptive Markov Chain Monte Carlo (MCMC) sampling. We apply these methods to data from macaque monkeys performing a

multi-alternative motion discrimination task, and show in simulated experiments that our method can achieve a substantial speed-up over random designs.

These advances will reduce the data needed to build accurate models of multi-alternative PFs and can be extended to high-dimensional PFs that would

be infeasible to characterize with standard methods.
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Introduction1

Understanding the factors governing psychophysical behavior is2

a central problem in neuroscience and psychology. Although ac-3

curate quantification of the behavior is an important goal in it-4

self, psychophysics provides an important tool for interrogating5

the mechanisms governing sensory and cognitive processing in the6

brain. As new technologies allow direct manipulations of neural7

activity in the brain, there is a growing need for methods that can8

characterize rapid changes in psychophysical behavior.9

In a typical psychophysical experiment, an observer is trained to10

report judgements about a sensory stimulus by selecting a response11

from among two or more alternatives. The observer is assumed to12

have an internal probabilistic rule governing these decisions; this13

probabilistic map from stimulus to response is called the observer’s 14

psychometric function. Because the psychometric function is not 15

directly observable, it must be inferred from multiple observations 16

of stimulus-response pairs. However, such experiments are costly 17

due to the large numbers of trials typically required to obtain good 18

estimates of psychometric functions. Therefore, a problem of ma- 19

jor practical importance is to develop efficient experimental de- 20

signs that can minimize the amount of data required to accurately 21

infer an observer’s psychometric function. 22

Bayesian adaptive stimulus selection. A powerful ap- 23

proach for improving the efficiency of psychophysical experiments 24

is to design the data collection process so that the stimulus is adap- 25

tively selected on each trial by maximizing a suitably defined ob- 26

jective function (MacKay, 1992). Such methods are known by a 27
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variety of names, including “active learning”, “adaptive or sequen-28

tial optimal experimental design”, and “closed-loop experiments.”29

Bayesian approaches to adaptive stimulus selection define op-30

timality of a stimulus in terms of its expected ability to improve31

the posterior distribution over the psychometric function, e.g., by32

reducing its variance or entropy. The three key ingredients of33

a Bayesian adaptive stimulus selection method are (Chaloner &34

Verdinelli, 1995; Pillow & Park, 2016):35

• model - parametrizes the psychometric function of interest;36

• prior - captures initial beliefs about model parameters;37

• utility function - quantifies the usefulness of a hypothetical38

stimulus-response pair for improving the posterior.39

Sequential algorithms for adaptive Bayesian experiments rely on40

repeated application of three basic steps: (1) data collection (stim-41

ulus presentation and response measurement); (2) inference (pos-42

terior updating using data from the most recent trial); and (3) se-43

lection of an optimal stimulus for the next trial by maximizing ex-44

pected utility (see Fig. 1A). The inference step involves updating45

the posterior distribution over the model parameters according to46

Bayes rule with data from the most recent trial. Stimulus selection47

involves calculating the expected utlity (i.e., the expected improve-48

ment in the posterior) for a set of candidate stimuli, averaging over49

the responses that might be elicited for each stimulus, and select-50

ing the stimulus for which the expected utility is highest. Example51

utility functions include the negative trace of the posterior covari-52

ance (corresponding to the sum of the posterior variances for each53

parameter) and the mutual information or information gain (which54

corresponds to minimizing the entropy of the posterior).55

Methods for Bayesian adaptive stimulus selection have been de-56

veloped over several decades in a variety of different disciplines.57

If we focus on the specific application of estimating psychomet-58

ric functions, the field goes back to the QUEST algorithm (Watson59

& Pelli, 1983) for estimating discrimination thresholds, and the60

Ψ method (Kontsevich & Tyler, 1999) for estimating both thresh-61

old and slope of a psychometric function. These methods have62

been extended to models with more parameters (Kujala & Lukka, 63

2006; Lesmes, Lu, Baek, & Albright, 2010; Prins, 2013), in partic- 64

ular models with multi-dimensional stimuli (DiMattina, 2015; Ku- 65

jala & Lukka, 2006; Watson, 2017). In parallel, the development 66

of Bayesian methods for inferring psychometric functions (Kuss, 67

Jäkel, & Wichmann, 2005; Prins, 2012; Wichmann & Hill, 2001) 68

have enlarged the space of statistical models for psychophysical 69

phenomena. 70

A variety of recent advances have arisen in sensory neuroscience 71

or neurophysiology, driven by the development of efficient in- 72

ference techniques for neural encoding models (Lewi, Butera, & 73

Paninski, 2009; Park, Horwitz, & Pillow, 2011) or model compar- 74

ison and discrimination methods (Cavagnaro, Myung, Pitt, & Ku- 75

jala, 2010; DiMattina & Zhang, 2011; Kim, Pitt, Lu, Steyvers, & 76

Myung, 2014). These advances can in many cases be equally well 77

applied to psychophysical experiments. 78

One limitation of previous work is that has often considered only 79

a restricted set of tractable psychometric function models. Stan- 80

dard choices including the logistic regression model (Chaloner & 81

Larntz, 1989; Zocchi & Atkinson, 1999), the Weibull distribution 82

function (Watson & Pelli, 1983), and the cumulative function of 83

Gaussian distribution (Kontsevich & Tyler, 1999). In order for 84

adaptive stimulus selection to be useful in realistic experimental 85

settings, however, it is crucial to incorporate the system-specific 86

features that are not fully captured by the standard models. 87

Our contributions. In this paper, we develop methods for adap- 88

tive stimulus selection in psychophysical experiments that are ap- 89

plicable to realistic models of human and animal psychophysical 90

behavior. Our first contribution is to develop a model of psy- 91

chometric function that incorporates two common “anomalies” of 92

decision-making behavior: omission and lapse. By recognizing 93

omission, we bring to light the well-known (but often ignored) 94

possibility that an observer does not choose any of the provided 95

set of actions, omitting the response for the trial. By recognizing 96

lapse, we take into account the possibility that the observer makes 97

occasional errors on easy trials due to momentary lapses in con- 98
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Figure 1: (A) Schematic of Bayesian adaptive stimulus selection. On each trial: (1) a stimulus is presented and response is observed; (2) the posterior

over the parameters θ is updated using all data collected so far in the experiment Dt; and (3) the stimulus that maximizes the expected utility (in our case,

information gain) is selected for the next trial. (B) A graphical model illustrating a hierarchical psychophysical observer model that incorporates lapses and

“omissions”. lapse. On each trial, a latent attention or lapse variable at is drawn from a Bernoulli distribution with parameter λ, to determine whether the

observer attends to the stimulus xt on that trial or lapses. With probability 1 − λ, and the observer attends to the stimulus (at = 0), and the response

yt is drawn from a multinomial logistic regression model, where the probability of choosing option i is proportional to exp(w>
i xt). With probability λ, the

observer lapses (at = 1) and selects a choice from a (stimulus-independent) response distribution governed by parameter vector u. So-called “omission”

trials, in which the observer does not select one of the valid response options, are modeled with an additional response category yt = k.

centration or memory (Kuss et al., 2005; Wichmann & Hill, 2001).99

Although it is widely understood among experimental researchers100

that both effects can be significant in real animal behavior, these101

are often ignored in analysis, and in particular, are not considered102

by previous methods for adaptive stimulus selection. Here we in-103

corporate these two phenomena explicitly, as explained in more104

details in Section Psychometric Function Model.105

As the model complexity grows by adding extra features, on the106

other hand, the increasing challenge is to infer the model parame-107

ters efficiently (in finite computation time), flexibly (under small-108

data situations, and/or with non-concave models), and accurately.109

Our second contribution is to develop efficient inference methods110

that are fast enough for real-time closed-loop experiments. We dis-111

cuss two methods for posterior inference, one based on a Gaussian112

approximation of the posterior and another based on MCMC sam-113

pling, in Section Posterior inference.114

Our work therefore combines a more realistic model of the psy-115

chometric function and efficient methods for posterior inference 116

and evaluation of an information-theoretic utility function. We de- 117

scribe two different algorithms for adaptive stimulus selection Sec- 118

tion Adaptive Stimulus Selection Methods, one based on a Gaus- 119

sian approximation to the posterior and a second based on MCMC 120

sampling. Finally, in Results, we apply our algorithms to real data 121

in simulated closed-loop experiments. We show that our methods 122

confer a substantial reduction in the number of trials required to es- 123

timate multi-alternative psychophysical functions, and discuss ex- 124

tensions applicable to experiments with multi-dimensional stimuli. 125

Psychometric Function Model 126

Here we develop a flexible model of psychometric function (PF) 127

for describing realistic decision-making behavior, starting with a 128

classical multinomial logistic (MNL) model (Glonek & McCul- 129

lagh, 1995). We show how omission can be naturally incorporated 130

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2018. ; https://doi.org/10.1101/260976doi: bioRxiv preprint 

https://doi.org/10.1101/260976
http://creativecommons.org/licenses/by/4.0/


into the framework with multiple alternatives. We then develop a131

hierarchical extension of the model that incorporates lapses (see132

Fig. 1B).133

Multinomial logistic model. We consider the setting where the134

observer is presented with a stimulus x ∈ Rd and selects a response135

y ∈ {1, . . . k} from one of k discrete choices on each trial. We will136

assume the stimulus is represented internally by some (possibly137

non-linear) feature vector φ(x), which we will write simply as φ138

for notational simplicity.139

In the multinomial logistic model, the probability pi of each pos-140

sible outcome i ∈ {1, · · · , k} is determined by the dot product141

between the feature φ and a vector of weights wi according to:142

pi =
exp(w>i φ)∑k
j=1 exp(w>j φ)

, (1)143

where the denominator ensures that these probabilities sum to 1,144 ∑k
i=1 pi = 1. The function from stimulus to a probability vector145

over choices, x 7−→ (p1, . . . pk), is the psychometric function, and146

the set of weights {wi}ki=1 are its parameters. Note that the model147

is over-parameterized when written this way, since the requirement148

that probabilities sum to 1 removes one degree of freedom from149

the probability vector. Thus, we can without loss of generality fix150

one of the weight vectors to zero, for example wk = 0, so that151

the denominator in (eq. 1) becomes z = 1 +
∑k
j=1 exp(w>j φ) and152

pk = 1/z.153

We consider the feature vector φ to be a known function of the154

stimulus x, even when the dependence is not written explicitly.155

For example, we can consider a simple form of feature embedding,156

φ(x) = [1,x>]>, corresponding to a linear function of the stim-157

ulus plus an offset. In this case, the weights for the i’th choice158

would correpond to wi = [bi,a
>
i ]>, where bi is the offset or bias159

for the i’th choice, and ai are the linear weights governing sensi-160

tivity to x. The resulting choice probability has the familiar form,161

pi ∝ exp(bi + a>i x). Nonlinear stimulus dependencies can be162

incorporated by including nonlinear functions of x in the feature163

vector φ(x) (Knoblauch & Maloney, 2008; Murray, 2011; Neri &164

Heeger, 2002).165

It is useful to always work with a normalized stimulus space, 166

in which the mean of each stimulus component xα over the stim- 167

ulus space is 〈xα〉 = 0, and the standard deviation std(xα) = 1. 168

This normalization ensures that the values of the weight parameters 169

are defined in more interpretable ways. The zero-mean condition 170

ensures that the bias b is the expectation value of log probability 171

over all possible stimuli. The unit-variance condition means that 172

the effect of moving a certain distance along one dimension of the 173

weight space is comparable to the moving the same distance in an- 174

other dimension, again averaged over all possible stimuli. In other 175

words, we are justified to use the same unit along all dimensions of 176

the weight space. 177

Modeling omission as an additional category. Even in 178

“binary” tasks with only two possible choices per trial, there is of- 179

ten an implicit third choice, which is to make no response, make 180

an illegal response, or interrupt the trial at some point before the 181

response period. For example, animals are often required to main- 182

tain an eye position or a nose poke, or wait for a “go” cue be- 183

fore reporting a choice. Trials on which the animal fails to obey 184

these instructions, referred to as “violations” or “omissions”, and 185

are typically discarded from analysis. However, such trials have 186

clear relevance to the quantitative study of psychophysical behav- 187

ior, and may reflect aspects of motivation or attentional state that 188

are worth studying in their own right. Luckily, the multinomial lo- 189

gistic model provides a natural framework for incorporating omis- 190

sion or no-response trials. 191

Here we model omissions explicitly as one of the possible 192

choices the observer can choose. Because the multinomial logis- 193

tic model has a flexible number of choices, this is as simple as 194

adding an extra or (k + 1)’st choice to the model. One can even 195

extend the model to consider different kinds of omissions, e.g., al- 196

lowing choice k+ 1 to reflect fixation period violations and choice 197

k + 2 to reflect failure to report a choice during the response win- 198

dow. Henceforth, we will simply let k reflect the total number of 199

choices, including omission, as illustrated in Fig. 1B. 200
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Modeling lapse with a mixture model. Another important201

feature of real psychophysical observers is the tendency to occa-202

sionally make errors that are independent of the stimulus. Such203

errors, commonly known as “lapses” in the psychophysical liter-204

ature, may reflect lapses in attention or memory of the response205

categories, or “button-press errors” in executing an intended motor206

response. Lapses are most easily identified by errors on “easy” tri-207

als, that is, trials that should be performed perfectly if the observer208

were paying attention.209

Although lapse rates are supposed to be small enough in a210

well-performed psychometric experiment (Carandini & Church-211

land, 2013), in reality they may be substantial depending on the212

type of experiment being performed, especially in non-primates or213

in more complicated tasks. Lapses affect the psychometric func-214

tion by causing it to saturate above 0 and below 1, so that “perfect”215

performance is never achieved even for the easiest trials. Failure to216

incorporate lapses into the PF model may therefore bias estimates217

of sensitivity, as quantified by PF slope or threshold (Prins, 2012;218

Wichmann & Hill, 2001).219

To model lapses, we use a mixture model that treats the ob-220

server’s choice on each trial as coming from one of two probability221

distributions: a stimulus-dependent distribution (governed by the222

multinomial logistic model) and stimulus-independent distribution223

(reflecting a fixed probability of choosing any option when “laps-224

ing”, or ignoring the stimulus). Simpler versions of such mixture225

model have been proposed previously (Kuss et al., 2005).226

Fig. 1B shows a schematic of the resulting model. On each trial,227

a Bernoulli random variable a ∼ Ber(λ) governs whether the ob-228

server lapses: with probability λ and the observer lapses (i.e., ig-229

nores the stimulus), and with probability 1−λ, and the observer at-230

tends to the stimulus. If the observer lapses (a = 1), the response is231

drawn according to fixed probability distribution (c1, . . . , ck) gov-232

erning the probability of selecting options 1 to k, where
∑
ci = 1.233

If the observer does not lapse (a = 0), the observer selects a re-234

sponse according to the multinomial logistic model. Under this235

model, the conditional probability of choosing option i given the236

stimulus can be written: 237

pi = (1− λ)qi + λci, qi =
exp(w>i φ)∑
j exp(w>j φ)

(2) 238

where qi is the lapse-free probability probability under the classical 239

MNL model (eq. 1). 240

It is convenient to re-parameterize this model so that λci, the 241

conditional probability of choosing the i’th option due to a lapse, 242

is written 243

λci =
exp(ui)

1 +
∑
j exp(uj)

, (3) 244

where each auxiliary lapse parameter ui is proportional to the log 245

probability of choosing option i due to lapse. The lapse-conditional 246

probabilities of each choice, ci, and the total lapse probability, λ, 247

are respectively 248

ci =
exp(ui)∑
j exp(uj)

, λ =
∑
i

exp(ui)

1 +
∑
j exp(uj)

. (4) 249

Because each ui lives on the entire real line, fitting can be carried 250

out with unconstrained optimization methods, although adding rea- 251

sonable constraints may improve performance in some cases. The 252

full parameter vector of the resulting model is θ = [w>,u>]>, 253

which includes k additional lapse parameters u = {u1, · · · , uk}. 254

Note that in some cases it might be desirable to assume lapse 255

choices obey a uniform distribution, where the probability of each 256

option is ci = 1/k. For this simplified “uniform-lapse” model we 257

need only a single lapse parameter u. 258

Our model provides a general and practical parametrization of 259

tuning curves with lapses. Although previous work has considered 260

the problem of modeling lapses in psychophysical experiments, 261

most assumed the the simplified uniform-lapse model where all 262

options are equally likely during lapses. Earlier approaches have 263

often assumed either that the lapse probability was known a priori 264

(Kontsevich & Tyler, 1999), or was fit by a grid search over a small 265

set of candidate values (Wichmann & Hill, 2001). We instead take 266

a Bayesian approach to inferring lapse parameters, following previ- 267

ous work from (Kuss et al., 2005; Prins, 2012). Our parameteriza- 268

tion (eq. 3) has the advantage that the there is no need to constrain 269
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the support of the lapse parameters ui. These parameters’ relation-270

ship to lapse probabilities ci takes the same (“softmax”) functional271

form as the multinomial logistic model, placing both sets of param-272

eters on an equal footing.273

Posterior inference274

Bayesian methods for adaptive stimulus selection require the pos-275

terior distribution over model parameters given the data observed276

so far in an experiment. The posterior distribution results from the277

combination of two ingredients: a prior distribution p(θ), which278

captures prior uncertainty about the model parameters θ, and a279

likelihood function p({ys}|{xs},θ), which captures information280

about the parameters from the data {(xs, ys)}, s = 1, . . . , t, con-281

sisting of stimulus-response pairs observed up to the current time282

bin t.283

Unfortunately, the posterior distribution for our model has no284

analytic form. We therefore describe two methods for approximate285

posterior inference: one relying on a Gaussian approximation to286

the posterior, known as the Laplace approximation, and a second287

one based on MCMC sampling.288

Prior. The prior distribution specifies our beliefs about model289

parameters before we have collected any data, and serves to reg-290

ularize estimates obtained from small amounts of data, e.g., by291

shrinking estimated weights toward zero. Typically we want the292

prior to be weak enough that the likelihood dominates the poste-293

rior for reasonable-sized datasets. However, the choice of prior is294

especially important in adaptive stimulus selection settings because295

it determines the effective volume of the search space (Park & Pil-296

low, 2012; Park, Weller, Horwitz, & Pillow, 2014). For example, if297

the weights are known to exhibit smoothness, then a correlated or298

smoothness-inducing prior can improve the performance of adap-299

tive stimulus selection because the effective size (or entropy) of the300

parameter space is much smaller than under an independent prior301

(Park & Pillow, 2012).302

In this study, we use a generic independent, zero-mean Gaussian303

prior over the weight vectors 304

p(wi) = N (0, σ2I), (5) 305

for all i ∈ (1, . . . k), with a fixed standard deviation σ. This choice 306

of prior is appropriate when the regressors {x} are standardized, 307

since any single weight can take values that allow for a range of 308

psychometric function shapes along that axis, from flat (w = 0) to 309

steeply decreasing (w = −2σ) or increasing (w = +2σ). We 310

used σ = 3 in the simulated experiments in Results. For the 311

lapse parameters {ui}, we used a uniform prior over the range 312

[log(0.001), 0], so that each lapse probability λci is bounded be- 313

tween 0.001 and 1/2. We set the lower range constraint below 314

1/N , where N = 100 is the number of observed trials in our sim- 315

ulations, since we cannot reasonably infer lapse probabilities with 316

precision finer than 1/N . The upper range constraint gives maxi- 317

mal lapse probabilities of 1/(k + 1) if all ui take on the maximal 318

value of 0. 319

Psychometric function likelihood. The likelihood is the con- 320

ditional probability of the data as a function of the model param- 321

eters. Although we have thus far considered the response variable 322

y to be a scalar taking values in the set {1, . . . , k}, it is more con- 323

venient to use a so-called “one-hot” representation, in which the 324

response variable y for each trial is a length-k vector with one 1 325

and k zeros, where the position of the 1 in this vector indicates the 326

category chosen. For example, in a task with four possible options 327

per trial, a response vector y = [0 0 1 0] indicates a trial on which 328

the observer selected the third option. 329

With this parametrization, the log-likelihood function for a sin- 330

gle trial can be written 331

log p(y|x,θ) =
∑
i

yi log pi(x,θ) = y> log p(x,θ), (6) 332

where pi(x,θ) denotes the probability p(yi = 1|x,θ) under the 333

model (eq. 1), and p(x,θ) ≡ [p1(x,θ), . . . , pk(x,θ)]> denotes 334

the vector of probabilities for a single trial. 335

In the classical (lapse-free) multinomial logistic model, where 336

θ = {wi}, the log likelihood is a concave function of θ, which 337
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guarantees that numerical optimization of the log-likelihood will338

find a global optimum. With a finite lapse rate, however, the log339

likelihood is no longer provably concave. (See Appendix A).340

Posterior distribution. The log-posterior can be written as the341

sum of log-prior and log-likelihood summed over trials, plus a con-342

stant:343

log p(θ|Dt) = log p(θ) +
t∑

s=1

log p(ys|xs,θ) + c, (7)344

where Dt ≡ {xs, ys}ts=1 denotes the accumulated data up to trial345

t and c = − log
(∫
p(θ)

∏
s p(ys|xs)dθ

)
is a normalization con-346

stant that does not depend on the parameters θ. Because this con-347

stant has no tractable analytic form, we rely on two alternate meth-348

ods for obtaining a normalized posterior distribution.349

Inference via Laplace approximation. The Laplace approx-350

imation is a well-known Gaussian approximation to the posterior351

distribution, which can be derived from a second-order Tayler se-352

ries approximation to the log-posterior around its mode (Bishop,353

2006).354

Computing the Laplace approximation involves a two-step pro-355

cedure. The first step is to perform a numerical optimization of356

log p(θ|Dt) to find the posterior mode, or maximum a posterior357

(MAP) estimate of θ. This vector, given by358

θ̂t = argmax
θ

log p(θ) +
t∑

s=1

log p(ys|xs, θ), (8)359

provides the mean of the Laplace approximation. Because we can360

explicitly provide the gradient and Hessian of the log likelihood361

(see Appendix A) and log-prior, this optimization can be carried362

efficiently via Newton-Raphson or trust region methods.363

The second step is to compute the second derivative (the Hes-364

sian matrix) of the log-posterior at the mode, which provides the365

inverse covariance of the Gaussian. This gives us a local Gaussian366

approximation of the posterior, centered at the posterior mode:367

p(θ|Dt) ≈ N (θ̂t, Ct), (9)368

where covariance Ct = −H−1t is the inverse Hessian of the log369

posterior, Ht(i, j) = ∂2(log p(θ|Dt)/(∂θi∂θj), evaluated at θ̂t.370

Note that when the log-posterior is concave (i.e., when the 371

model does not contain lapse), numerical optimization is guaran- 372

teed to find a global maximum of the posterior. Log-concavity 373

also strengthens the rationale for using the Laplace approximation, 374

since the true and approximate posterior are both log-concave den- 375

sities centered on the true mode (Paninski et al., 2010; Pillow, Ah- 376

madian, & Paninski, 2011). However, when the model incorporates 377

lapses, these guarantees no longer apply, motivating the use of al- 378

ternate methods for approximating the posterior. 379

Inference via MCMC sampling. A second approach to in- 380

ference is to generate samples from the posterior distribution over 381

the parameters via Markov Chain Monte Carlo (MCMC) sampling. 382

Sampling-based methods are typically more computationally in- 383

tensive than the Laplace approximation, but may be warranted 384

when the posterior is not provably log-concave (as is the case when 385

lapse rates are non-zero) and therefore not well approximated by a 386

single Gaussian. 387

The basic idea in MCMC sampling is to set up an easy-to-sample 388

Markov Chain that has the posterior as its stationary distribution. 389

Sampling from this chain produces a dependent sequence of pos- 390

terior samples: {θm} ∼ p(θ|Dt), which can be used to evaluate 391

posterior expectations via Monte Carlo integrals: 392

E[f(θ)] ≈ 1

M

M∑
m=1

f(θm), (10) 393

for any function f(θ). The mean of the posterior is obtained from 394

setting f(θ) = θ, although for adaptive stimulus selection we will 395

be interested in the full shape of the posterior. 396

The Metropolis-Hastings (MH) algorithm is perhaps the sim- 397

plest and most widely-used MCMC sampling method (Metropo- 398

lis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953). It generates 399

samples via a proposal distribution centered on the current sample 400

(see Appendix B). The choice of proposal distribution is critical to 401

the efficiency of the MH algorithm, since this governs the rate of 402

“mixing”, or the the number of Markov Chain samples required to 403

obtain independent samples from the posterior distribution (Rosen- 404

thal, 2011). Faster mixing implies that fewer samples M are re- 405
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Figure 2: Inferring the psychometric function. Example of a psychometric problem, with a lapse-free binomial logistic model f(v) = ev/(1+ ev). Given

a 1D stimulus, a response were drawn from a “true” model P (y = 1) = f(b + ax) with two parameters, slope a = 2 and bias b = 0. (A-B) Viewing on

the parameter space, the posterior distributions become sharper (and closer to the true parameter values) as the dataset size N increases. Shown at a

small (A) N = 20 and a large (B) N = 200. For the MAP estimate, the mode of the distribution is marked with a square, and the two standard deviations

(“widths”) of its Gaussian approximation are shown with bars. For the MCMC sampling method, all M = 500 samples of the chain are shown in dots, the

sample mean with a triangle, and the widths with the bars. The widths are the standard deviations along the principal directions of the sampled posterior

(eigenvectors of the covariance matrix; not necessary aligned with the a − b axes). (C-D) The accuracy of the estimated PF improves with the number

of observations N , using either of the two posterior inference methods (MAP-based and sampling-based). Shown at a small (C) N = 20 and a large (D)

N = 200. The two methods are highly consistent in this simple case, especially when N is large enough.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2018. ; https://doi.org/10.1101/260976doi: bioRxiv preprint 

https://doi.org/10.1101/260976
http://creativecommons.org/licenses/by/4.0/


quired to obtain an accurate approximation to the posterior.406

Here we propose a semi-adaptive Metropolis-Hastings algo-407

rithm, developed specifically for the current context of sequen-408

tial learning. Our approach is based on an established observation409

that the optimal width of the proposal distribution should be pro-410

portional to the typical length scale of the distribution being sam-411

pled (Gelman, Roberts, & Gilks, 1996; Roberts, Gelman, & Gilks,412

1997). Our algorithm is motivated by the adaptive Metropolis algo-413

rithm (Haario, Saksman, & Tamminen, 2001), where the proposal414

distribution is updated at each proposal within a single chain; here415

we do not adapt the proposal within chains, but rather after each416

trial. Specifically, we set the covariance of a Gaussian proposal dis-417

tribution to be proportional to the covariance of the samples from418

the previous trial, using the scaling factor of Haario et al. (2001).419

See Appendix B for details. The adaptive algorithm takes advan-420

tage of the fact that the posterior cannot change too much between421

trials, since it changes only by a single-trial likelihood term on each422

trial.423

Adaptive Stimulus Selection Methods424

As data are collected during the experiment, the posterior distribu-425

tion becomes narrower due to the fact that each trial carries some426

additional information about the model parameters. (See Fig. 2.)427

This narrowing of the posterior is directly related to information428

gain. A stimulus that produces no expected narrowing of the pos-429

terior is, by definition, uninformative about the parameters. On the430

other hand, a stimulus that (on average) produces a large change431

in the current posterior is an informative stimulus. Selecting infor-432

mative stimuli will reduce the number of stimuli required to obtain433

a narrow posterior, which is the essence of adaptive stimulus se-434

lection methods. In this section, we introduce a precise measure435

of information gain between a stimulus and the model parameters,436

and propose an algorithm for selecting stimuli to maximize it.437

Infomax criterion for stimulus selection. At each trial, we438

present a stimulus x and observe the outcome y. After t trials, the439

expected gain in information from a stimulus x is equal to the mu- 440

tual information between y and the model parameters θ, given the 441

data Dt observed so far in the experiment. We denote this condi- 442

tional mutual information: 443

444

It(θ; y|x) = 445∫∫
dθ dy p(θ,y|x,Dt) log

p(θ,y|x,Dt)
p(θ|Dt)p(y|x,Dt)

, (11) 446

447

where p(θ,y|x,Dt) is the joint distribution of θ and y given a 448

stimulus x and dataset Dt, the term p(θ|Dt) is the current pos- 449

terior distribution over the parameters from previous trials, and 450

p(y|x,Dt) =
∫
dθ p(y|x,θ)p(θ|Dt) is known as the posterior- 451

predictive distribution of y given x. 452

It is useful to note that the mutual information can equivalently 453

be written in two other ways involving Shannon entropy. The first 454

is given by: 455

It(θ; y|x) = Ht(θ)−Ht(θ|y; x) (12) 456

where the first term is the entropy of the posterior at time t, 457

Ht(θ) = −
∫
dθ p(θ|Dt) log p(θ|Dt), (13) 458

and the second is the conditional entropy of θ given y, 459

460

Ht(θ|y; x) = −Eθ,y

[
log p(θ|y,x,Dt)

]
461

= −
∫∫

dθ dy p(θ,y|x,Dt) log p(θ|y,x,Dt), (14) 462

463

which is the entropy of the updated posterior after having observed 464

x and y, averaged over draws of y from the posterior predictive 465

distribution. Written this way, the mutual information can be seen 466

as the expected reduction in posterior entropy from a new stimulus- 467

response pair. Moreover, the first term, Ht(θ), is independent of 468

the stimulus and response on the current trial, so infomax stimulus 469

selection is equivalent to picking the stimulus that minimizes the 470

expected posterior entropy Ht(θ|y; x). 471

A second equivalent expression for the mutual information, 472

which will prove useful for our sampling-based method, is: 473

It(θ; y|x) = Ht(y; x)−Ht(y|θ; x), (15) 474
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which is the difference between the marginal entropy of the re-475

sponse distribution conditioned on x,476

Ht(y; x) = −
∫
dy p(y|x,Dt) log p(y|x,Dt) (16)477

and the conditional entropy of the response y given θ, conditioned478

on the stimulus:479

Ht(y|θ; x) = −
∫∫

dy dθ p(θ,y|x,Dt) log p(y|x,θ). (17)480

This formulation shows the mutual information to be equal to the481

difference between the entropy of the marginal distribution of y482

conditioned on x (with θ integrated out) and the average entropy483

of y given x and θ, averaged over the posterior distribution of θ.484

In a sequential setting where t is the latest trial and t + 1 is the485

upcoming one, the optimal stimulus is the information-maximizing486

(“infomax”) solution:487

xt+1 = arg max
x

It(θ; y|x). (18)488

Fig. 3 shows an example of a simulated experiment where the stim-489

ulus was selected adaptively following the infomax criterion.490

Selecting the optimal stimulus thus requires maximizing the mu-491

tual information over the set of all possible stimuli {x}. Since each492

evaluation of the mutual information involves a high-dimensional493

integral over parameter space and response space, this is a highly494

computationally demanding task. In the next sections, we present495

two algorithms for efficient infomax stimulus selection based on496

each of the two approximate inference methods described previ-497

ously.498

Infomax with Laplace approximation. Calculation of the499

mutual information is greatly simplified by a Gaussian approxima-500

tion of the posterior. The entropy of a Gaussian distribution with501

covariance C is equal to 1
2 log |C| up to a constant factor. If we ex-502

pand the mutual information as in (eq. 12), and recall that we need503

only minimize the expected posterior entropy after observing the504

response, the optimal stimulus for time-step t+ 1 is given by:505

x∗t+1 = argmin
x

∫
dy p(y|x,Dt) log |C̃(x,y)|, (19)506

where C̃(x,y) is the covariance of the updated (Gaussian) poste- 507

rior after observing stimulus-response pair (x,y). To evaluate the 508

updated covariance C̃(x,y) under the Laplace approximation, we 509

would need to numerically optimize the posterior for θ for each 510

possible resonse y, for any candidate stimulus x, which would be 511

computationally infeasible. We therefore use a fast approximate 512

method for obtaining a closed-form update for C̃(x,y) from the 513

current posterior covariance Ct, following an approach developed 514

in Lewi et al. (2009). (See Appendix C for details.) 515

Once we have log |C̃(x,y)| for each given stimulus-observation 516

pair, we numerically sum this over a set of discrete counts y that 517

are likely under the posterior-predictive distribution. This is done 518

in two steps, by separating the integral in (eq. 19) as: 519∫
dy p(y|x,Dt) log |C̃(x,y)| 520

=

∫
dθt p(θt|Dt)

∫
dy p(y|x,θt) log |C̃(x,y)|. (20) 521

522

Note that the outer integral is over the current posterior p(θt|Dt) ≈ 523

N (θ̂t, Ct), which is to be distinguished from the future posterior 524

p(θ|y,x,Dt) ≈ N (θ̃(x,y), C̃(x,y)) whose entropy we are trying 525

to minimize. Whereas the inner integral is simply a weighted sum 526

over the set of outcomes y, the outer integral over the parameter θ 527

is in general challenging, especially when the parameter space is 528

high-dimensional. In the case of the standard multinomial logistic 529

model that does not include lapse, we can exploit the linear struc- 530

ture of model to reduce this to a lower-dimensional integral over 531

the space of the linear predictor, which we evaluate numerically 532

using Gauss-Hermite quadrature (Heiss & Winschel, 2008). (This 533

integral is 1D for classic logistic regression, and (k-1)-dimensional 534

for multinomial logistic regression with k classes; see Appendix C 535

for details.) 536

When the model incorporates lapses, the full parameter vector 537

θ = [w>,u>] includes the lapse parameters in addition to the 538

weights w. In this case, our method with Laplace approximation 539

may suffer from reduced accuracy due to the fact that the poste- 540

rior (which is not provably log-concave in this setting) may be less 541

closely approximated by a Gaussian. For tractability, we choose to 542
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Figure 3: Example of infomax adaptive stimulus selection, simulated with a three-alternatives lapse-free model on 1D stimulus. The figure shows

how given a small set of data (the stimulus-response pairs shown in top row), the PFs are estimated based on the accumulated data (middle row), and

the next stimulus is chosen to maximize the expected information gain (bottom row). Each column shows the instance after the N observations in a single

adaptive stimulus selection sequence, for N = 10, 11, 15 and 20 respectively. In the middle row, the estimated PFs (solid lines) quickly approach the true

PFs (dashed lines) through the adaptive and optimal selection of stimuli. This example was generated using the Laplace approximation based algorithm,

with an independent Gaussian prior over the weights with mean zero and standard deviation σ = 10.

maximize the partial information between the observation and the543

psychophysical weights, I(w; y|x), instead of the full information544

I(θ; y|x). This is also a reasonable approximation in many cases545

where the stimulus-dependent behavior is the primary focus of the546

psychometric experiment; the weights w are of primary interest,547

while the lapse u are usually nuisance parameters. The partial co-548

variance Cww = −(∂2(logP)/∂w2)−1 can be used in place of549

the full covariance C = −(∂2(logP)/∂θ2)−1. Because the posi-550

tive semi-definiteness of this partial covariance is still not guaran-551

teed, it needs to be approximated to the nearest symmetric posi-552

tive semi-definite matrix when necessary (Higham, 1988). We can553

show, however, that this partial covariance is asymptotically posi-554

tive semi-definite in the small lapse limit (Appendix A),555

Infomax with MCMC. Sampling-based inference provides an556

attractive alternative to Laplace’s method when the model includes557

non-zero lapse rates, where the posterior may be less well approx-558

imated by a Gaussian. To compute mutual information from sam-559

ples, it is more convenient to use the expansion given in (eq. 15), so560

that it is expressed as the expected uncertainty reduction in entropy561

of the response y, instead of a reduction in the posterior entropy.562

This will make it straightforward to approximate integrals needed 563

for mutual information by Monte Carlo integrals involving sums 564

over samples. 565

Given a set of set of posterior samples {θm} from p(θ|Dt), the 566

posterior distribution at time t, we can evaluate the mutual infor- 567

mation using sums over “potential” terms that we denote by 568

Ljm(x) ≡ p(yj = 1|x,θm) . (21) 569

This allows us to evaluate the conditional response entropy as 570

Ht(y|θ; x) ≈ − 1

M

∑
j,m

Ljm(x) logLjm(x), (22) 571

and the marginal response entropy as 572

Ht(y; x) ≈ −
∑
j

(
1
M

∑
m

Ljm(x)
)

log
(

1
M

∑
m

Ljm(x)
)
, (23) 573

where we have evaluated the posterior-predictive distribution as 574

p(yj = 1|x,Dt) ≈
1

M

∑
m

Ljm(x). (24) 575

Putting together these terms, the mutual information can be evalu- 576

ated as 577

It(θ; y|x) = − 1

M

∑
j,m

Ljm(x) log
Ljm(x)∑

m′ Ljm′(x)/M
, (25) 578
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which is straightforward to evaluate for a set of candidate stimuli579

{x}. The computational cost of this approach is therefore linear580

in the number of samples, and the primary concern is the cost of581

obtaining a representative sample from the posterior.582

Results583

We consider two approaches for testing the performance of our pro-584

posed stimulus-selection algorithms, one using simulated data, and585

a second using an offline analysis of data from real psychophysical586

experiments.587

Simulated experiments. We first tested the performance of588

our algorithms using simulated data from a fixed psychophysical589

observer model. In these simulations, a stimulus x was selected on590

each trial and the observer’s response y was sampled from a “true”591

psychometric function, ptrue(y|x) = p(y|x,θtrue).592

We considered psychophysical models defined on a continuous593

2-dimensional stimulus space with 4 discrete response alternatives594

for every trial, corresponding to the problem of estimating the di-595

rection of 2D stimulus moving along one of the four cardinal di-596

rections (up, down, left, right). We computed expected informa-597

tion gain over a set of discrete stimulus values corresponding to598

21 × 21 square grid (Fig. 4A). The stimulus plane is colored in599

Fig. 4A, to indicate the most likely response (one of the four alter-600

natives) in each stimulus region. Lapse probabilities λci were set601

to either zero (the “lapse-free” case), or a constant value of 0.05,602

resulting in a total lapse probability of λ = 0.2 across the four603

choices (Fig. 4B). We compared performance of our adaptive algo-604

rithms with a method that selected a stimulus uniformly at random605

from the grid on each trial. We observed that the adaptive methods606

tended to sample more stimuli near the boundaries between colored607

regions on the stimulus space (Fig. 4C), which led to more efficient608

estimates of the PF compared to the uniform stimulus selection ap-609

proach (Fig. 4D).610

For each true model, we compared the performances of four dif-611

ferent adaptive methods (Fig. 4E-F), defined by performing infer-612

ence with MAP or MCMC, and assuming lapse rate to be fixed 613

at zero or including a non-zero lapse parameters. Each of these 614

inference methods was also applied to data selected according to 615

a uniform stimulus selection algorithm. We quantified perfor- 616

mance using the mean-squared error (MSE) between the true re- 617

sponse probabilities pij = p(y = j|xi,θtrue) and the estimated 618

probabilities p̂ij over the 21 × 21 grid of stimulus locations {xi} 619

and the 4 possible responses {j}. For MAP-based inference, es- 620

timated probabilities were given by p̂ij = p(y = j|xi, θ̂MAP). 621

For the MCMC-based inference, probabilities were given by the 622

predictive distribution, evaluated using an average over samples: 623

p̂ij = 1
M

∑
m p(y = j|xi,θm), where {θm} represent samples 624

from the posterior. 625

When the true model was lapse-free (Fig. 4E), lapse-free and 626

lapse-aware inference methods performed similarly, indicating that 627

there was minimal cost to incorporating parameters governing 628

lapse when lapses were absent. Under all inference methods, in- 629

fomax stimulus selection outperformed uniform stimulus selec- 630

tion by a substantial margin. For example, infomax algorithms 631

achieved in 50 − 60 trials the error levels that their uniform- 632

stimulus-selection counterparts required 100 trials to achieve. 633

By contrast, when the true model had a non-zero lapse rate 634

(Fig. 4F), adaptive stimulus selection algorithms based on the 635

lapse-free model failed to select optimal stimuli, performing even 636

worse than uniform stimulus selection algorithms. This empha- 637

sizes the impact of model mismatch in adaptive methods, and the 638

importance of a realistic psychometric model. When lapse-aware 639

models were used for inference, on the other hand, both Laplace- 640

based and MCMC-based adaptive stimulus selection algorithms 641

achieved a significant speedup compared to uniform stimulus se- 642

lection, while MCMC-based adaptive algorithm performed bet- 643

ter. This shows that the MCMC-based infomax stimulus selection 644

method can provide an efficient and robust platform for adaptive 645

experiments with realistic models. 646

In view of these results, it seems good practice to always use the 647

lapse-aware model, unless the behavior under study is known to be 648
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Figure 4: The simulated experiment. (A) At each trial, a stimulus was selected from a 2D stimulus plane with a 21 × 21 grid. The two lines, running

along x1 and x2 respectively, indicate the cross-sections used in C and D below. Colors indicate the most likely response in the respective stimulus regime,

according to the true PF shown in B, with a consistent color code. (B) Given each stimulus, a simulated response was drawn from a true model with 4

alternatives. Shown here is the model with lapse, characterized by a non-deterministic choice (i.e., the choice probability does not approach 0 or 1) even

at an easy stimulus, far from the choice boundaries. (C-D) Examples of Laplace-approximation-based inference results after 50 trials, where stimuli was

selected either using our adaptive infomax method (C) or uniformly (D), as shown on left. In both cases, the true model was lapse-free, and the algorithm

assumed that lapse was fixed at zero. The two sets of curves show the cross-sections of the true PF (dotted lines) and the estimated PF (solid lines),

along the two lines marked in A, after sampling these stimuli. (E-F) Error traces from simulated experiments, averaged over 100 runs each. The true model

for simulation was either (E) lapse-free, or (F) with a finite lapse rate of λ = 0.2, with a uniform lapse scenario ci = 1/4 for each outcome i = 1, 2, 3, 4.

The algorithm either used the classical MNL model that assumes zero lapse (left column), or our extended model that considers lapse (right column).

Performances of adaptive and uniform stimulus selection algorithms are plotted in solid and dashed lines; Laplace-based and MCMC-based algorithms

are plotted in purple and cyan. All sampling-based algorithms used the semi-adaptive MCMC with chain length M = 1000.
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completely lapse-free. The computational cost for incorporating649

lapses amounts to having k additional parameters to sample, one650

per each available choice, which is independent from the dimen-651

sionality of the stimulus space. When the true behavior had lapses,652

the MCMC-based adaptive stimulus selection algorithm with the653

lapse-aware model automatically included “easy” trials, which pro-654

vide maximal information about lapse probabilities. These easy655

trials are typically in the periphery of the stimulus space (strong-656

stimulus regimes, referred to as “asymptotic performance inten-657

sity” in Prins (2012)).658

Optimal re-ordering of real dataset. A second approach for659

testing the performance of our methods is to perform an off-line660

analysis of data from real psychophysical experiments. Here we661

take an existing dataset and use our methods to re-order the trials662

so that the most-informative stimuli are selected first. To obtain a663

re-ordering, we iteratively apply our algorithm to the stimuli shown664

during the experiment. On each trial, we use our adaptive algo-665

rithm to select the optimal stimulus from the set of stimuli {xi} not666

yet incorporated into the model. This selection takes place without667

access to the actual responses {yi}. We then update the posterior668

using the stimulus xi and the response yi it actually elicited dur-669

ing the experiment, then proceed to the next trial. We can then670

ask whether adding the data according to the proposed re-ordering671

would have led to faster narrowing of the posterior distribution than672

other orderings.673

To perform this analysis, we used a dataset from macaque674

monkeys performing a four-alternative motion discrimination task675

(Churchland, Kiani, & Shadlen, 2008). Monkeys were trained to676

observe a motion stimulus with dots moving in one of the four car-677

dinal directions, and report this direction of motion with an eye678

movement. The difficulty of the task was controlled by varying the679

fraction of coherently moving dots on each trial, with the remain-680

ing dots appearing randomly (Fig. 5A). Each moving-dot stimulus681

in this experiment could be represented as a two-dimensional vec-682

tor, where the direction of the vector is the direction of the mean683

movement of the dots, and the amplitude of the vector is given by684

the fraction of coherently moving dots (a number between 0 and 685

1). Each stimulus presented in the the experiment was aligned with 686

either one of the two cardinal axes of the stimulus plane (Fig. 5B). 687

The PF for this dataset consists of a set of four 2D curves, where 688

each curve specifies the probability of choosing a particular direc- 689

tion as a function of location in the 2D stimulus plane (Fig. 5C). 690

This monkey dataset contained more than 10, 000 total obser- 691

vations at 29 distinct stimulus conditions, accumulating more than 692

300 observations per stimulus. This multiplicity of observations 693

per stimulus ensured that the posterior distribution given the full 694

dataset was narrow enough that it could be considered to provide a 695

“ground truth” psychometric function against which the inferences 696

based on the re-ordering experiment could be compared. 697

The first 100 stimuli selected by the infomax algorithms had 698

noticeably different statistics than the full dataset or its uniform 699

sub-sampling (the first N = 100 trials under uniform sampling). 700

On the other hand, the sets of stimuli selected by both MAP- 701

based and MCMC-based infomax algorithms were similar. Fig. 5D 702

shows the histogram of stimulus component along one of the axes, 703

p(x2 |x1 = 0), from the first N = 100 trials, averaged over 100 704

independent runs under each stimulus selection algorithm using the 705

lapse-free model. 706

Because the true PF was unknown, we compared the perfor- 707

mance of each algorithm to an estimate of the PF from the entire 708

dataset. When using the MAP algorithm, the full-dataset PF was 709

given by pij = p(y = j|xi, θ̂full), evaluated at the MAP estimate 710

of the log posterior, θ̂full = argmaxθ log p(θ|Dfull), given the full 711

dataset Dfull. For the MCMC algorithm, the full-dataset PF was 712

computed by pij ≈ 1
M

∑
m p(y = j|xi,θm), where the MCMC 713

chain {θm} ∼ log p(θ|Dfull) sampled the log posterior given the 714

full dataset. The re-ordering test on the monkey dataset showed 715

that our adaptive stimulus sampling algorithms were able to infer 716

the PF to a given accuracy in a smaller number of observations, 717

compared to a uniform sampling algorithm (Fig. 5E-F). In other 718

words, data collection could have been faster with an optimal re- 719

ordering of the experimental procedure. 720
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Figure 5: Optimal re-ordering of a real monkey dataset. (A) The psychometric task consisted of a 2D stimulus presented as moving dots, characterized

by a coherence and a mean direction of movement, and a 4-alternative response. The four choices are color coded consistently in A-C in this figure. (B)

The axes-only stimulus space of the original dataset, with 15 fixed stimuli along each axis. Colors indicate the most likely response in the respective

stimulus regime according to the best estimate of the PF. (C) The best estimate of the PF of monkeys in this task, inferred from all observations in the

dataset. (D) Stimuli selection in the first N = 100 trials during the re-ordering experiment, under the inference method that ignores lapse. Shown are

histograms of x2 along one of the axes, x1 = 0, averaged over 100 independent runs in each case. (E-F) Error traces under different algorithms, averaged

over 100 runs. Both Laplace-based (purple) and MCMC-based (cyan; with M = 1000) algorithms achieve significant speedups over uniform sampling.

Because the monkeys were almost lapse-free in this task, inference methods that ignore lapse (E) and consider lapse (F) performed similarly.
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ment. Responses were simulated according to fixed lapse-free PFs, matched to our best estimate of the monkey PF (Fig. 5C). Stimuli were selected within

the respective stimulus spaces, (A) the cardinal-axes design, as in the original experiment; (B) full stimulus plane, with the PF aligned to the cardinal axes

of the original stimulus space; (C) full stimulus plane, with rotated PF. The black dots in A-C indicate which stimuli were sampled by the Laplace-based

infomax algorithm during the first N = 100 trials of simulation, where the dot size is proportional to the number of trials in which each stimulus was selected

(averaged over 20 independent runs, and excluding the 10 fixed initial stimuli). (D) The corresponding error traces, under infomax (solid lines) or uniform

(dashed lines) stimulus selection, averaged over 100 runs respectively. Colors indicate the three stimulus space designs, as shown in A-C.
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Exploiting the full stimulus space. In the experimental721

dataset considered in the previous section, the motion stimuli were722

restricted to points along the cardinal axes of the 2D stimulus plane723

(Fig. 5B) (Churchland et al., 2008). In some experimental settings,724

however, the psychometric functions of interest may lack identi-725

fiable axes of alignment or may exhibit asymmetries in shape or726

orientation. Here we show that in such cases, adaptive stimulus727

selection methods can benefit from the ability to select points from728

the full space of possible stimuli.729

We performed experiments with a simulated observer gov-730

erned by the lapse-free psychometric function estimated from the731

macaque monkey dataset (Fig. 5C). This psychometric function732

was either aligned to the original stimulus axes (Fig. 6A-B) or ro-733

tated counter-clockwise by 45 degrees (Fig. 6C). We tested the per-734

formance of adaptive stimulus selection using the Laplace infomax735

algorithm, with stimuli restricted to points along the cardinal axes736

(Fig. 6A), or allowed to a grid of points in the full 2D stimulus737

plane (Fig. 6B-C).738

The simulated experiment indeed closely resembled the results739

of our dataset re-ordering test in terms of the statistics of adap-740

tively selected stimuli (compare Fig. 6A to the purple histogram in741

Fig. 5D). With the full 2D stimulus space aligned to the cardinal742

axes, on the other hand, our adaptive infomax algorithm detected743

and sampled more stimuli near the boundaries between colored re-744

gions in the stimulus plane, which were usually not on the cardi-745

nal axes (Fig. 6B). Finally, we also observed that this automatic746

exploitation of the stimulus space was not limited by the lack of747

alignment between the PF and the stimulus axes; our adaptive in-748

fomax algorithm was just as effective in detecting and sampling the749

boundaries between stimulus regions in the case of the unaligned750

PF (Fig. 6C).751

The error traces in Fig. 6D show that we can infer the PF at a752

given accuracy in an even fewer number of observations using our753

adaptive algorithm on the full 2D stimulus plane (orange curves),754

compared to the cardinal-axes design (black curves). It also con-755

firms that we can infer the PF accurately and effectively with an756

unaligned stimulus space (red curves), as well as with an aligned 757

stimulus space. For comparison purposes, all errors were calcu- 758

lated over the same 2D stimulus grid, even when the stimulus se- 759

lection was from the cardinal axes. (This had negligible effects on 760

the resulting error values: compare the black curves in Fig. 6D and 761

the purple curves in Fig. 5E.) 762

Discussion 763

We developed effective Bayesian adaptive stimulus selection al- 764

gorithms for inferring psychometric functions, with an objective of 765

maximizing the expected informativeness of each stimulus. The al- 766

gorithms select an optimal stimulus adaptively in each trial, based 767

on the posterior distribution of model parameters inferred from the 768

accumulating set of past observations. 769

We emphasized that in psychometric experiments, especially 770

with animals, it is crucial to use models that can account for the 771

non-ideal yet common behaviors, such as omission (no response; 772

an additional possibility for the outcome) or lapse (resulting in 773

a random, stimulus-independent response). Specifically, we con- 774

structed a hierarchical extension of a multinomial logistic (MNL) 775

model that incorporates both omission and lapse. To ensure ap- 776

plicability of the extended model in real-time closed-loop adaptive 777

stimulus selection algorithms, we also developed efficient meth- 778

ods for inferring the posterior distribution of the model parameters, 779

with approximations specifically suited for sequential experiments. 780

Advantages of adaptive stimulus selection. We observed 781

two important advantages of using Bayesian adaptive stimulus se- 782

lection methods in psychometric experiments. First, we showed 783

that our adaptive stimulus selection algorithms achieved signifi- 784

cant speed-ups in learning time (number of measurements), both 785

on simulated data and in re-ordering test of a real experimental 786

dataset, with and without lapse in the underlying behavior. Impor- 787

tantly, the success of the algorithm depends heavily on the use of 788

the correct model family; for example, adaptive stimulus selection 789

fails when a classical (lapse-ignorant) model was used to measure 790
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behavior with a finite lapse rate. Based on the simulation results,791

it is always a good idea to use the our extended model which can792

accommodate both lapse-free and finite-lapse systems.793

Second, we demonstrated that our adaptive stimulus selection794

study has implications on the optimization of the experimental de-795

signs more generally. Contrary to the conventional practice of ac-796

cumulating repeated observations at a small set of fixed stimuli, we797

suggest that the (potentially high-dimensional) stimulus space can798

be exploited more efficiently using our Bayesian adaptive stimulus799

selection algorithm. Specifically, the adaptive stimulus selection800

algorithm can automatically detect the structure of the stimulus801

space (with respect to the psychometric function) as part of the802

process. We also showed that there are benefits of using the full803

stimulus space even when the PF is aligned to the cardinal axes of804

the stimulus space.805

Comparison of the two algorithms. Our adaptive stimulus806

selection algorithms were developed based on two methods for ef-807

fective posterior inference: one based on local Gaussian approxi-808

mation (Laplace approximation) of the posterior, and another based809

on MCMC sampling. Although the well-studied analytical method810

based on the Laplace approximation is fast and effective in ideal811

settings (where log concavity is guaranteed), it may break down812

with a departure from the ideal model, for example with a finite813

lapse rate. The sampling-based method is a robust alternative for814

those realistic situations.815

In the case of sampling-based methods, the cost of such flexi-816

bility comes in the form of increased computation time; depending817

on the experimental paradigm, a naive implementation of the sam-818

pling method may take too long to run within a single-trial interval.819

For real-time applications, therefore, it will be an important future820

direction to further optimize the sampling algorithm. For example,821

in this work, we developed a semi-adaptive tuning algorithm to ef-822

ficiently transfer step-size information from the previous trials to823

the current trial. On the other hand, the computational bottleneck824

for the Laplace-approximation-based method in this work was the825

high-dimensional integration in the infomax calculation; a more826

accurate estimate would require the quadrature to be on a finer grid 827

of support points. 828

Adaptive designs in psychometric experiments. Finally, 829

we note that a potential limitation of the adaptive stimulus selec- 830

tion framework is the (undesired) possibility that the psychometric 831

function of the observer might adapt to the distribution of stimuli 832

presented during the experiments. If this is the case, the system un- 833

der measurement would no longer be stationary, nor independent 834

of the experimental design, profoundly altering the problem one 835

should try to solve. 836

The usual assumption in psychometric experiments is that, al- 837

though behavior adaptation is the major process in the training 838

phase (Bak, Choi, Akrami, Witten, & Pillow, 2016), already over- 839

trained observers would not change their behavior too quickly, par- 840

ticularly not within the timescale of a psychometric experiment. 841

Under such assumption of stationarity, as pointed out by MacKay 842

(1992), the order of data collection cannot bias the Bayesian infer- 843

ence. 844

In order to justify the use of adaptive designs, the impact of 845

post-training adaptation will need to be tested experimentally. For 846

example, it was suggested that the inter-trial dependence was 847

non-negligible even in overtrained animals (Fründ, Wichmann, & 848

Macke, 2014); there have been attempts to account for the history 849

dependence by adding regressors on relevant features in a small 850

number of preceding trials, such as the reward outcomes (Bak et 851

al., 2016; Busse et al., 2011; Corrado, Sugrue, Seung, & Newsome, 852

2005; Lau & Glimcher, 2005), the stimuli (Akrami, Kopec, Dia- 853

mond, & Brody, 2017) or the full stimulus-response history (Fründ 854

et al., 2014). Whether the adaptive stimulus presentation can have 855

more systematic impacts, on the behavior of trained observers, re- 856

mains an open question. 857
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Appendix A 1021

Log likelihood for the classical MNL. Here we provide more 1022

details about the log likelihood L = y> log p under the multino- 1023

mial logistic model (6), first in the lapse-free case. 1024

A convenient property of the multinomial logistic model (a prop- 1025

erty common to all generalized linear models) is that the parameter 1026

vector pi governing y depends only on a 1-dimensional projection 1027

of the input, Vi = φ>wi, which is known as the linear predictor. 1028

Recall that φ = φ(x) is the input feature vector. In the multinomial 1029

case, it is useful to consider the column vector of linear predictors 1030

for a single trial, V = [V1, · · · , Vk]
>

, and the concatenated weight 1031

vector w = [w>1 , · · · ,w>k ]>, consisting of all weights stacked 1032

into a single vector. We can summarize their linear relationship 1033

as V = Xw, where X is a block diagonal matrix containing k 1034

blocks of φ> along the diagonal. In other words, 1035

X =


φ> 0> · · · 0>

0> φ> · · · 0>

...
...

. . .
...

0> 0> · · · φ>

 , w =


w1

w2

...

wk

 . (26) 1036

Derivatives. It is convenient to work in terms of the linear pre- 1037

dictor V = {Vi} first. If Ny ≡
∑
i yi = 1 is the total number of 1038

responses per trial, the first and second derivatives ofLwith respect 1039

to V are ∂L/∂Vj = yj−Nypj and ∂2L/∂Vi∂Vj = Nypi(δij−pj), 1040

respectively. Rewriting in vector forms, we have 1041

∂L

∂V
= (y −Nyp)>, (27) 1042

∂2L

∂V2
= −Ny

(
diag(p)− pp>

)
≡ −NyΓ(p), (28) 1043

1044

where diag(p) = [piδij ] is a square matrix with the elements of p 1045

on the diagonal, and zeros otherwise. 1046

Putting back in terms of the weight vector w is easy, thanks to 1047

the linear relationship V = Xw: 1048

∂L

∂w
=
∂L

∂V
X = (y − p)>X ≡∆>, (29) 1049

∂2L

∂w2
= X>

∂2L

∂V2
X = −X>ΓX ≡ −Λ. (30) 1050

1051

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2018. ; https://doi.org/10.1101/260976doi: bioRxiv preprint 

https://doi.org/10.1101/260976
http://creativecommons.org/licenses/by/4.0/


Concavity. Importantly, L is concave with respect to V (and1052

therefore with respect to w). To prove the concavity of L, we1053

show that the Hessian H = −diag(p) + pp> ≡ −Γ is nega-1054

tive semi-definite, which is equivalent to showing that z>Γz ≥ 01055

for an arbitrary vector z.1056

z>Γz = z>diag(p)z− (z>p)21057

=
∑
i z

2
i pi −

(∑
j zjpj

)2
1058

=
∑
i z

2
i pi − 2

∑
i zipi

∑
j zjpj +

(∑
j zjpj

)2
1059

=
∑
i pi

[
z2i − 2zi

∑
j zjpj +

(∑
j zjpj

)2]
1060

=
∑
i pi

[(
zi −

∑
j zjpj

)2]
≥ 0. (31)1061

1062

1063

Log likelihood with lapse. With a finite lapse rate λ, to recap,1064

the multinomial logistic model is modified as pi = (1−λ)qi +λci1065

where1066

qi =
exp(Vi)∑
j exp(Vj)

, λci =
exp(ui)

1 +
∑
j exp(uj)

. (32)1067

Let us introduce the following abbreviations,1068

ri ≡
λci
pi
, ti ≡ yi(1− ri), si ≡ yiri(1− ri), (33)1069

where the dimensionless ratio r ∈ [0, 1] can be considered as the1070

order parameter for the effect of lapse.1071

Derivatives with respect to the weights. Differentiating with the1072

linear predictor V, we get1073

∂qi
∂Vl

= (δil − ql)qi,1074

∂2qi
∂Vj∂Vl

= [(δij − qj)(δil − ql)− (δjlql − qjql)] qi.1075

1076

which leads to1077

∂pi
∂Vl

= (1− λ)
∂qi
∂Vl

,
∂2pi
∂Vj∂Vl

= (1− λ)
∂2qi
∂Vj∂Vl

.1078

We are interested in the derivatives of the log likelihood L =1079

y> log p with respect to V. The partial gradient:1080

∂L

∂Vl
=
∑
i

yi
1

pi

∂pi
∂Vl

= (1− λ)
∑
i

yi
qi
pi

(δil − ql)1081

= tl − ql
∑
i

ti.1082

1083

Similarly, the partial Hessian is written as 1084

∂2L

∂Vj∂Vl
=
∑
i

yi

(
1

pi

∂2pi
∂Vj∂Vl

− 1

p2i

∂pi
∂Vj

∂pi
∂Vl

)
1085

= δjl (sl − ql
∑
i ti)− (qjsl + qlsj) + qjql (

∑
i si +

∑
i ti) . 1086

1087

In vector forms, and with τ ≡
∑
i ti and σ ≡

∑
i si, 1088

∂L

∂V
= (t− τq)>; (34) 1089

1090

∂2L

∂V2
= diag(s− τq)− (qs> + sq>) + (τ + σ)qq> 1091

= −τ
[
diag(q)− qq>

]
1092

+
[
diag(s)− (qs> + sq>) + σ qq>

]
. (35) 1093

1094

Note that we recover ti → yi and si → 0 in the lapse-free limit 1095

λ → 0. Hence the first square bracket in (35) reduces back to 1096

the lapse-free Hessian, while the second square bracket vanishes 1097

as λ→ 0. 1098

In the presence of lapse, one might still be interested in the 1099

partial Hessian with respect to the weight parameters, H ≡ 1100

∂2L/∂V2, which should be evaluated as in (35). To test the nega- 1101

tive semi-definiteness of this partial Hessian, again for an arbitrary 1102

vector z, we end up with 1103

z>Hz = −
∑
j

tj

〈
(z − 〈z〉q)

2
〉
q

+
∑
j

sj

(
zj − 〈z〉q

)2
(36) 1104

1105

where 〈x〉q =
∑
j xjqj . The partial Hessian is asymptotically neg- 1106

ative semi-definite (which is equivalent to the log likelihood being 1107

concave) in the lapse-free limit, where tj → yj and sj → 0. 1108

Derivatives with respect to lapse parameters. From (2) and (3), 1109

we have pi = (1− λ)qi + λci where 1110

ci =
exp(ui)∑
j exp(uj)

; λ =

∑
j exp(uj)

1 +
∑
j exp(uj)

. (37) 1111

Differentiating with respect to the auxiliary lapse parameter ui, 1112

∂ci
∂uj

= (δij − ci)cj ;
∂λ

∂uj
= (1− λ)λcj . (38) 1113

The gradient is then 1114

∂pi
∂uj

= (δij − pi)λcj ; (39) 1115

1116
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using the abbreviations in (33), the gradient of the log likelihood is1117

∂L

∂uj
=
∑
i

yi
1

pi

∂pi
∂uj

= rj (yj −Ny · pj) . (40)1118

1119

Second derivative with respect to lapse:1120

∂2pi
∂uj∂ul

= δjl
∂pi
∂ul
− (δij + δil − 2pi)λclλcj ; (41)1121

1122

it is useful to notice that1123

∂pi
∂uj

∂pi
∂ul

= δjl
∂pi
∂ul

λcl − pi(δij + δil − 2pi)λclλcj . (42)1124

1125

The corresponding part of the Hessian:1126

∂2L

∂uj∂ul
=
∑
i

yi

(
1

pi

∂2pi
∂uj∂ul

− 1

p2i

∂pi
∂uj

∂pi
∂ul

)
1127

= δjl
∑
i

yi
1

pi

(
1− λcl

pi

)
∂pi
∂ul

1128

= δjl

(
sl − rlplNy + r2l p

2
l

∑
i

yi
pi

)
. (43)1129

1130

Finally, the mixed derivative:1131

∂2pi
∂uj∂Vl

= −(1− λ)λcj · (δil − ql)ql. (44)1132

1133

again it is useful to notice that1134

∂pi
∂uj

∂pi
∂Vl

= −(δij − pi)
∂2pi
∂uj∂Vl

. (45)1135

1136

Hence1137

∂2L

∂uj∂Vl
=
∑
i

yi

(
1

pi

∂2pi
∂uj∂Vl

− 1

p2i

∂pi
∂uj

∂pi
∂Vl

)
1138

= −sj
(
δjl +

q2l
qj

)
. (46)1139

1140

From (40), (43) and (46), we see that all derivatives involving the1141

lapse parameter scale with at least one order of r, therefore vanish-1142

ing in the lapse-free limit λ→ 0.1143

Appendix B1144

The Metropolis-Hastings algorithm. The Metropolis-1145

Hastings algorithm (Metropolis et al., 1953) generates a chain of1146

samples, using a proposal density and a method to accept or reject1147

the proposed moves.1148

A proposal is made at each iteration, where the algorithm ran- 1149

domly chooses a candidate for the next sample value x′ based on 1150

the current sample value xt. The choice follows the proposal den- 1151

sity function, x′ ∼ Q(x′|xt). When the proposal density Q is 1152

symmetric, for example a Gaussian, the sequence of samples is a 1153

random walk. In general the width of Q should match with the 1154

statistics of the distribution being sampled, and individual dimen- 1155

sions in the sampling space may behave differently in the multi- 1156

variate case; finding the appropriate Q can be difficult. 1157

The proposed move is either accepted or rejected with some 1158

probability; if rejected, the current sample value is reused in the 1159

next iteration, x′ = xt. The probability of acceptance is deter- 1160

mined by comparing the values of P (xt) and P (x′), where P (x) is 1161

the distribution being sampled. Because the algorithm only consid- 1162

ers the acceptance ratio ρ = P (x′)/P (xt) = f(x′)/f(xt) where 1163

f(x) can be any function proportional to the desired distribution 1164

P (x), there is no need to worry about the proper normalization 1165

of the probability distribution. If ρ ≥ 1, the move is always ac- 1166

cepted; if ρ < 1, it is accepted with a probability ρ. Consequently 1167

the samples tend to stay in the high-density regions, visiting the 1168

low-density regions only occasionally. 1169

Optimizing the sampler. One of the major difficulties in using 1170

the MCMC method is to make an appropriate choice of the pro- 1171

posal distribution, which may significantly affect the performance 1172

of the sampler. If the proposal distribution is too narrow, it will 1173

take a long time for the chain to diffuse away from the starting 1174

point, producing a chain with highly correlated samples, requiring 1175

a long time to achieve independent samples. On the other hand if 1176

the proposal distribution is too wide, most of the proposed moves 1177

would be rejected, once again resulting in the chain stuck at the ini- 1178

tial point. In either case the chain would “mix” poorly (Rosenthal, 1179

2011). In this paper we restrict our consideration to the Metropolis- 1180

Hastings algorithm (Metropolis et al., 1953), although the issue of 1181

proposal distribution optimization is universal in most variants of 1182

MCMC algorithms, only with implementation-level differences. 1183

The basic idea is that the optimal width of the proposal distribu- 1184
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Figure 7: Statistics of the semi-adaptive MCMC in a simulated experiment, with M = 1000 samples per chain. We used the same binomial model as

in Fig. 2, and the uniform stimulus selection algorithm. (A-B) In a lapse-free model: (A) The standard deviation of the samples, along each dimension of

the parameter space, decreases as the learning progresses, as expected because the posterior distribution should narrow down as more observations are

collected. Also shown is the scatter plot of all 1000 samples at the last trial N = 50, where the true parameter values are (a, b) = (5, 0). (B) The mixing

time of the chain (number of steps before the autocorrelation falls to 1/e) quickly converges to some small value, meaning that the sampler is quickly

optimized. Autocorrelation function at the last trial N = 50 is shown. (C-D) Same information as (A) and (B), but with a lapse rate of λ = 0.1, with uniform

lapse (c1 = c2 = 1/2).

tion would be determined in proportion to the typical length scale1185

of the distribution being sampled. This idea was made precise in1186

the case of a stationary random-walk Metropolis algorithm with1187

Gaussian proposal distributions, by comparing the covariance ma-1188

trix Σp of the proposal distribution to the covariance matrix Σ of1189

the sampled chain. Once a linear scaling relation Σp = sdΣ is1190

fixed, it was observed that it is optimal to have sd = (2.38)2/d1191

where d is the dimensionality of the sampling space (Gelman et1192

al., 1996; Roberts et al., 1997). An adaptive Metropolis algo-1193

rithm (Haario et al., 2001) followed this observation, where the1194

Gaussian proposal distribution adapts continuously as the sampling1195

progresses. Their adaptive algorithm used the same scaling rule1196

Σp = sdΣ, but updates Σp at each proposal where Σ is covariance1197

of the samples accumulated so far. Additionally, a small diagonal1198

component was added for stability, as Σp = sd(Σ + εI). We used1199

ε = 0.0001 in this work.1200

Here we propose and use the semi-adaptive Metropolis-Hastings1201

algorithm, which is a coarse-grained version of the original adap-1202

tive algorithm by Haario et al. (2001). The major difference in1203

our algorithm is that the adjustment of the proposal distribution is 1204

made only at the end of each (sequential) chain, rather than at each 1205

proposal within the chain. This coarse-graining is a reasonable ap- 1206

proximation because we will be sampling the posterior distribution 1207

many times as it refines over the course of data collection, once 1208

after each trial. Assuming that the change in posterior distribu- 1209

tion after each new observation is small enough, we can justify our 1210

use of the statistics of the previous chain to adjust the properties 1211

of the current chain. Unlike in the fully adaptive algorithm where 1212

the proposal distribution needs to stabilize quickly within a single 1213

chain, we can allow multiple chains until stabilization, usually a 1214

few initial observations – leaving some room for the coarse-grained 1215

approximation. This is because, for our purpose, it is not impera- 1216

tive that we have a good sampling of the distribution at the very 1217

early stage of the learning sequence where the accuracy is already 1218

limited by the smallness of the dataset. 1219

When applied to the sequential learning algorithm, our semi- 1220

adaptive Metropolis sampler shows a consistent well-mixing prop- 1221

erty after a few initial adjustments, with the standard deviation 1222
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of each sampling dimension decreasing stably as data accumulate1223

(Fig. 7). Whereas Kujala and Lukka (2006) also had the idea of1224

adjusting the proposal density between trials, their scaling factor1225

was fixed and independent of the sampling dimension. Building on1226

more precise statistical observations, our method generalize well to1227

high-dimensional parameter spaces, typical for multiple-alternative1228

models. Our semi-adaptive sampler provides an efficient and ro-1229

bust alternative to the particle filter implementations (Kujala &1230

Lukka, 2006), which has the known problem of weight degener-1231

ation (DiMattina, 2015) as the posterior distribution narrows down1232

with the accumulation of data.1233

Appendix C1234

Fast sequential update of the posterior, with Laplace ap-1235

proximation. Use of Laplace approximation was shown to be1236

particularly useful in a sequential experiment (Lewi et al., 2009),1237

where it can be assumed that the posterior distribution after the1238

next trial in sequence, Pt+1, would not be very different from the1239

current posterior Pt. Let us consider the lapse-free case θ = w for1240

the moment, where the use of Laplace approximation is valid. Re-1241

arranging from (7) and (9), the sequential update for the posterior1242

distribution is1243

logPt+1(w) = logPt(w) + Lt+1(w); (47)1244

or with Laplace approximation,1245

logN (w|θt+1, Ct+1) ≈ logN (w|θt, Ct) + Lt+1(w) (48)1246

where Li(w) = log p(yi|xi,w) is a shorthand for the log likeli-1247

hood of the i-th observation.1248

With this, we can achieve a fast sequential update of the posterior1249

without performing the full numerical optimization each time. Be-1250

cause the new posterior mode θt+1 is where the gradient vanishes,1251

it can be approximated from the previous mode θt by taking the1252

first derivative of (48). The posterior covariance Ct+1 is similarly1253

approximated by taking the second derivate. 1254

θt+1 = θt + Ct∆t+1, ∆t+1 =
∂Lt+1

∂w

∣∣∣∣
w=θt

(49) 1255

Ct+1 =
(
C−1t + Λt+1

)−1
, Λt+1 = − ∂2Lt+1

∂w2

∣∣∣∣
w=θt+1

(50) 1256

1257

Using the matrix inversion lemma (Henderson & Searle, 1981), we 1258

can rewrite the posterior covariance update as 1259

Ct+1 = Ct
[
I − (I + Λt+1Ct)

−1Λt+1Ct
]
. (51) 1260

Unlike in the earlier application of this trick (Lewi et al., 2009), the 1261

covariance matrix update (50) is not a rank-one update, because of 1262

the multinomial nature of our model (our linear predictor y is a 1263

vector, not a scalar as in a binary model). 1264

Note that this approximate sequential update is only used for 1265

calculating the expected utility of each candidate stimulus by ap- 1266

proximating the posterior distribution at the next trial, as in Section 1267

Adaptive Stimulus Selection Methods. For obtaining the MAP es- 1268

timates of the model parameters, numerical optimization should be 1269

performed using the full accumulated dataset each time. 1270

Integration over the parameter space: reducing the inte- 1271

gration space. The evaluation of expected utility function usu- 1272

ally involves a potentially high-dimensional integral over the pa- 1273

rameter space. With the Gaussian approximation of the posterior, 1274

we can reduce and standardize the integration space. The process 1275

consists of three steps: diagonalization, marginalization, and stan- 1276

dardization. First we choose a new “coordinate system” of the (say 1277

q-dimensional) weight space, such that the first k elements of the 1278

extended weight vector w are coupled one-to-one to the elements 1279

of k-vector y. Then we marginalize to integrate out the remaining 1280

(q − k) dimensions, effectively changing the integration variable 1281

from w to y. Finally, we use Cholesky decomposition to stan- 1282

dardize the normal distribution which is the posterior on y. The 1283

resulting integral is still multi-dimensional, due to the multinomial 1284

nature of our model. But once the distribution is standardized, there 1285

are a number of efficient numerical integration methods that can be 1286

applied. For example, in this work, we use the Sparse Grid method 1287

(Heiss & Winschel, 2008) based on Gauss-Hermite quadrature. 1288
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Diagonalization. It is clear from (19-20) and (29-30) that all1289

parameter-dependence in our integrand is in terms of the linear1290

predictor y = Xw. That is, we are dealing with the integral of1291

the form1292

F =

∫
dw′ N (w′|ŵ′, C) · f(Xw′), (52)1293

where C is the covariance matrix, and X = ⊕kj=1g
′>
j is a fixed1294

matrix constructed from direct sum of k vectors. It helps to work1295

in a diagonalized coordinate system, so that we can separate out the1296

relevant dimensions of w. We use the singular value decomposi-1297

tion of the design matrix (X = UGV > with U = I and V = Q>).1298

Because of the direct-sum construction, XX> is already diagonal,1299

and the left singular matrix is always I in this case. Then1300

G = XQ> =
[
Gk Gq

]
, (53)1301

where Gk is a k × k diagonal matrix and Gq is a k × (q − k)1302

matrix of zeros. We can now denote wk = (w1, · · · , wk) and1303

wq = (wk+1, · · · , wq) in the diagonalized variable w = Qw′,1304

such that1305

w = [wk,wq]
>, Gw = Gkwk = (g1w1, g2w2, · · · gkwk).1306

Marginalization. Now we have1307

F =

∫
dw N (w|ŵ, B−1) · f(Gw), B−1 = QCQ> (54)1308

whereB is the inverse of the new covariance matrix after diagonal-1309

ization. If we block-decompose this matrix,1310

B =

 Bkk Bkq

Bqk Bqq

 , Bkq = (Bqk)>, (55)1311

the Gaussian distribution is also decomposed as1312

N (w|ŵ, B−1) = N (wk|ŵk, B
−1
∗ ) · N (wq|(ŵq − b), B−1qq )1313

where b = B−1qq Bqkwk and B∗ = Bkk − BkqB−1qq Bqk. As the1314

non-parallel part wq is integrated out, we have marginalized the1315

integral. It is useful to recall that if a variable w ∼ N (ŵ, C) is1316

Gaussian distributed, its linear transform y = Xw is also Gaus-1317

sian distributed as y ∼ N (ŷ,Σ), with ŷ = Xŵ and Σ = XCX>.1318

Changing the integration variable to y = Gkwk is then straight- 1319

forward: 1320

F =

∫
dwk N (wk|ŵk, B

−1
∗ ) · f(Gkwk) 1321

=

∫
dy N (y|ŷ,Σ) · f(y), Σ = GkB

−1
∗ G>k . (56) 1322

1323

Standardization. Finally, in order to deal with the numerical in- 1324

tegration, it is convenient to have the normal distribution standard- 1325

ized. We can use the Cholesky decomposition for the covariance 1326

matrix, 1327

LL> = Σt+1, (57) 1328

such that the new variable θ = L−1(y − ŷt+1) is standard normal 1329

distributed. From the above formulation, L can be written directly 1330

in terms of the Cholesky decomposition of B∗: 1331

L = GkR
−1 where R>R = B∗. (58) 1332

Importantly, with this transformation, each dimension of θ is inde- 1333

pendently and identically distributed. The objective function to be 1334

evaluated is now 1335

F (x) =

∫
dy · N (y|ŷt+1,Σt+1) · f(y,x) 1336

=

∫
dθ · N (θ|0, I) · f(φ(θ),x) (59) 1337

1338

where φ(θ) = ŷt+1+Lθ. Once the integration is standardized this 1339

way, there are a number of efficient numerical methods that can be 1340

applied. 1341
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