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Psychometric functions (PFs) quantify how external stimuli affect behavior and play an important role in building models of sensory and cognitive processes.

Adaptive stimulus selection methods seek to select stimuli that are maximally informative about the PF given data observed so far in an experiment and

thereby reduce the number of trials required to estimate the PF. Here we develop new adaptive stimulus selection methods for flexible PF models in tasks

with two or more alternatives. We model the PF with a multinomial logistic regression mixture model that incorporates realistic aspects of psychophysical

behavior, including lapses and multiple alternatives for the response. We propose an information-theoretic criterion for stimulus selection and develop

computationally efficient methods for inference and stimulus selection based on semi-adaptive Markov Chain Monte Carlo (MCMC) sampling. We apply

these methods to data from macaque monkeys performing a multi-alternative motion discrimination task, and show in simulated experiments that our

method can achieve a substantial speed-up over random designs. These advances will reduce the data needed to build accurate models of multi-alternative

PFs and can be extended to high-dimensional PFs that would be infeasible to characterize with standard methods.
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Introduction1

Understanding the factors governing psychophysical behavior is2

a central problem in neuroscience and psychology. Although ac-3

curate quantification of the behavior is an important goal in it-4

self, psychophysics provides an important tool for interrogating5

the mechanisms governing sensory and cognitive processing in the6

brain. As new technologies allow direct manipulations of neural7

activity in the brain, there is a growing need for methods that can8

characterize rapid changes in psychophysical behavior.9

In a typical psychophysical experiment, an observer is trained to10

report judgements about a sensory stimulus by selecting a response11

from among two or more alternatives. The observer is assumed to12

have an internal probabilistic rule governing these decisions; this13

probabilistic map from stimulus to response is called the observer’s14

psychometric function. Because the psychometric function is not 15

directly observable, it must be inferred from multiple observations 16

of stimulus-response pairs. However, such experiments are costly 17

due to the large numbers of trials typically required to obtain good 18

estimates of psychometric functions. Therefore, a problem of ma- 19

jor practical importance is to develop efficient experimental de- 20

signs that can minimize the amount of data required to accurately 21

infer an observer’s psychometric function. 22

Bayesian adaptive stimulus selection. A powerful ap- 23

proach for improving the efficiency of psychophysical experiments 24

is to design the data collection process so that the stimulus is adap- 25

tively selected on each trial by maximizing a suitably defined ob- 26

jective function (MacKay, 1992). Such methods are known by a 27

variety of names, including “active learning”, “adaptive or sequen- 28

tial optimal experimental design”, and “closed-loop experiments.” 29
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Bayesian approaches to adaptive stimulus selection define op-30

timality of a stimulus in terms of its expected ability to improve31

the posterior distribution over the psychometric function, e.g., by32

reducing its variance or entropy. The three key ingredients of33

a Bayesian adaptive stimulus selection method are (Chaloner &34

Verdinelli, 1995; Pillow & Park, 2016):35

• model - parametrizes the psychometric function of interest;36

• prior - captures initial beliefs about model parameters;37

• utility function - quantifies the usefulness of a hypothetical38

stimulus-response pair for improving the posterior.39

Sequential algorithms for adaptive Bayesian experiments rely on40

repeated application of three basic steps: (i) data collection (stim-41

ulus presentation and response measurement); (ii) inference (pos-42

terior updating using data from the most recent trial); and (iii) se-43

lection of an optimal stimulus for the next trial by maximizing ex-44

pected utility (see Fig. 1A). The inference step involves updating45

the posterior distribution over the model parameters according to46

Bayes rule with data from the most recent trial. Stimulus selection47

involves calculating the expected utlity (i.e., the expected improve-48

ment in the posterior) for a set of candidate stimuli, averaging over49

the responses that might be elicited for each stimulus, and select-50

ing the stimulus for which the expected utility is highest. Example51

utility functions include the negative trace of the posterior covari-52

ance (corresponding to the sum of the posterior variances for each53

parameter) and the mutual information or information gain (which54

corresponds to minimizing the entropy of the posterior).55

Methods for Bayesian adaptive stimulus selection have been de-56

veloped over several decades in a variety of different disciplines.57

If we focus on the specific application of estimating psychomet-58

ric functions, the field goes back to the QUEST (A. B. Watson &59

Pelli, 1983) and ZEST (King-Smith, Grigsby, Vingrys, Benes, &60

Supowit, 1994) algorithms, which were focused on the estimation61

of discrimination thresholds, and to the simple case of 1-dimension62

stimulus and binary responses (Treutwein, 1995). The Ψ method63

(Kontsevich & Tyler, 1999) used Bayesian inference for estimat-64

ing both threshold and slope of a psychometric function, which 65

were extended to two-dimensional stimuli by Kujala and Lukka 66

(2006). Further development of the method allowed for adap- 67

tive estimation of more complex psychometric functions, where 68

the parameters were no longer limited to a threshold and a slope 69

(Barthelmé & Mamassian, 2008; Kujala & Lukka, 2006; Lesmes, 70

Lu, Baek, & Albright, 2010; Prins, 2013); and possibly related to 71

each other (Vul, Bergsma, & MacLeod, 2010). Models with multi- 72

dimensional stimuli were also considered (DiMattina, 2015; Kujala 73

& Lukka, 2006; A. B. Watson, 2017). 74

Different models have been used to describe the psychometric 75

function. Standard choices include the logistic regression model 76

(Chaloner & Larntz, 1989; DiMattina, 2015; Zocchi & Atkinson, 77

1999), the Weibull distribution function (A. B. Watson & Pelli, 78

1983), and the cumulative function of Gaussian distribution (Kont- 79

sevich & Tyler, 1999). More recent works also considered Gaus- 80

sian Process models (Gardner, Song, Weinberger, Barbour, & Cun- 81

ningham, 2015). Most of the previous works, however, were lim- 82

ited to the case of binary responses. 83

In parallel, the development of Bayesian methods for inferring 84

psychometric functions (Kuss, Jäkel, & Wichmann, 2005; Prins, 85

2012; Wichmann & Hill, 2001a, 2001b) have enlarged the space of 86

statistical models that could be employed to describepsychophys- 87

ical phenomena based on (often limited) data. A variety of re- 88

cent advances also arose in sensory neuroscience or neurophysiol- 89

ogy, driven by the development of efficient inference techniques for 90

neural encoding models (Lewi, Butera, & Paninski, 2009; M. Park, 91

Horwitz, & Pillow, 2011) or model comparison and discrimina- 92

tion methods (Cavagnaro, Myung, Pitt, & Kujala, 2010; DiMattina 93

& Zhang, 2011; Kim, Pitt, Lu, Steyvers, & Myung, 2014). These 94

advances can in many cases be equally well applied to psychophys- 95

ical experiments. 96

Our contributions. In this paper, we develop methods for adap- 97

tive stimulus selection in psychophysical experiments that are ap- 98

plicable to realistic models of human and animal psychophysical 99

behavior. First, we describe a psychophysical model that incor- 100
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Figure 1: (A) Schematic of Bayesian adaptive stimulus selection. On each trial: (i) a stimulus is presented and response is observed; (ii) the posterior

over the parameters θ is updated using all data collected so far in the experiment Dt; and (iii) the stimulus that maximizes the expected utility (in our case,

information gain) is selected for the next trial. (B) A graphical model illustrating a hierarchical psychophysical observer model that incorporates lapses

as well as the possibility of omissions. On each trial, a latent attention or lapse variable at is drawn from a Bernoulli distribution with parameter λ, to

determine whether the observer attends to the stimulus xt on that trial or lapses. With probability 1− λ, and the observer attends to the stimulus (at = 0),

and the response yt is drawn from a multinomial logistic regression model, where the probability of choosing option i is proportional to exp(w>
i xt). With

probability λ, the observer lapses (at = 1) and selects a choice from a (stimulus-independent) response distribution governed by parameter vector u.

So-called “omission” trials, in which the observer does not select one of the valid response options, are modeled with an additional response category

yt = k.

porates multiple response alternatives and “lapses”, in which the101

observer makes a response that does not depend on the stimulus.102

This model can also incorporate “omission” trials, where the ob-103

server does not make a valid response (e.g., breaking fixation be-104

fore the go cue), by considering them as an additional response105

category. Second, we describe efficient methods for updating the106

posterior over the model parameters after every trial. Third, we in-107

troduce two algorithms for adaptive stimulus selection, one based108

on a Gaussian approximation to the posterior and a second based109

on Markov Chain Monte Carlo (MCMC) sampling. We apply these110

algorithms to simulated data and to real data analyzed with simu-111

lated closed-loop experiments, and show that they can substantially112

reduce in the number of trials required to estimate multi-alternative113

psychophysical functions.114

Psychophysical observer model 115

Here we describe a flexible model of psychometric functions (PFs) 116

based on the multinomial logistic (MNL) response model (Glonek 117

& McCullagh, 1995). We show how omission trials can be nat- 118

urally incorporated into a model as one of the multiple responses 119

alternatives. We then develop a hierarchical extension of the model 120

that incorporates lapses (see Fig. 1B). 121

Multinomial logistic response model. We consider the set- 122

ting where the observer is presented with a stimulus x ∈ Rd and 123

selects a response y ∈ {1, . . . k} from one of k discrete choices on 124

each trial. We will assume the stimulus is represented internally 125

by some (possibly non-linear) feature vector φ(x), which we will 126

write simply as φ for notational simplicity. 127

In the multinomial logistic model, the probability pi of each pos- 128

sible outcome i ∈ {1, · · · , k} is determined by the dot product 129
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between the feature φ and a vector of weights wi according to:130

pi =
exp(w>i φ)∑k
j=1 exp(w>j φ)

, (1)131

where the denominator ensures that these probabilities sum to 1,132 ∑k
i=1 pi = 1. The function from stimulus to a probability vector133

over choices, x 7−→ (p1, . . . pk), is the psychometric function, and134

the set of weights {wi}ki=1 are its parameters. Note that the model135

is over-parameterized when written this way, since the requirement136

that probabilities sum to 1 removes one degree of freedom from137

the probability vector. Thus, we can without loss of generality fix138

one of the weight vectors to zero, for example wk = 0, so that139

the denominator in (eq. 1) becomes z = 1 +
∑k
j=1 exp(w>j φ) and140

pk = 1/z.141

We consider the feature vector φ to be a known function of the142

stimulus x, even when the dependence is not written explicitly.143

For example, we can consider a simple form of feature embedding,144

φ(x) = [1,x>]>, corresponding to a linear function of the stim-145

ulus plus an offset. In this case, the weights for the i’th choice146

would correpond to wi = [bi,a
>
i ]>, where bi is the offset or bias147

for the i’th choice, and ai are the linear weights governing sensi-148

tivity to x. The resulting choice probability has the familiar form,149

pi ∝ exp(bi + a>i x). Nonlinear stimulus dependencies can be150

incorporated by including nonlinear functions of x in the feature151

vector φ(x) (Knoblauch & Maloney, 2008; Murray, 2011; Neri &152

Heeger, 2002). Dependencies on the trial history, such as the pre-153

vious stimulus or reward, may also be included as additional fea-154

tures in φ (see for example Bak, Choi, Akrami, Witten, and Pillow155

(2016)).156

It is useful to always work with a normalized stimulus space,157

in which the mean of each stimulus component xα over the stim-158

ulus space is 〈xα〉 = 0, and the standard deviation std(xα) = 1.159

This normalization ensures that the values of the weight parameters160

are defined in more interpretable ways. The zero-mean condition161

ensures that the bias b is the expectation value of log probability162

over all possible stimuli. The unit-variance condition means that163

the effect of moving a certain distance along one dimension of the164

weight space is comparable to the moving the same distance in an- 165

other dimension, again averaged over all possible stimuli. In other 166

words, we are justified to use the same unit along all dimensions of 167

the weight space. 168

Including omission trials. Even in binary tasks with only two 169

possible choices per trial, there is often an implicit third choice, 170

which is to make no response, make an illegal response, or to inter- 171

rupt the trial at some point before the allowed response period. For 172

example, animals are often required to maintain an eye position 173

or a nose poke, or wait for a “go” cue before reporting a choice. 174

Trials on which the animal fails to obey these instructions are com- 175

monly referred to as “omissions” or “violations”, and are typically 176

discarded from analysis. However, failure to take these trials into 177

account may bias the estimates of the PF if they are more common 178

for some stimuli than others (see Fig. 2B). 179

The multinomial response model provides a natural framework 180

for incorporating omission trials because it accommodates an arbi- 181

trary number of response categories. Thus we can model omissions 182

explicitly as one of the possible choices the observer can choose 183

from, or as the (k + 1)’st response category in addition to the k 184

valid responses. One could even consider different kinds of omis- 185

sions separately, e.g., allowing choice k+1 to reflect fixation period 186

violations and choice k+ 2 to reflect failure to report a choice dur- 187

ing the response window. Henceforth, we will let k reflect the total 188

number of choices, including omission, as illustrated in Fig. 1B. 189

This formulation can also be useful for the rated Yes/No task in 190

human psychophysics, where a “Not Sure” response is explicitly 191

presented (C. S. Watson, Kellogg, Kawanishi, & Lucas, 1973). Al- 192

though such model was considered for adaptive stimulus selection 193

(Lesmes et al., 2015), the third alternative was not handled as a 194

fully independent choice, as the goal was only to estimate the two 195

detection thresholds separately: one for a strict Yes, another for 196

a collapsed response of either Yes or Not Sure. Our model treats 197

each of the multiple alternatives equivalently. 198
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Figure 2: Effects of omission and lapse. Here we illustrate the undesirable effects of failing to take into account of omission and lapse. (A) If the PF

follows an ideal binomial logistic model, it can be estimated very well from data. The black dashed line shows the true PF for one of the two responses (say

y = R), and the gray dashed line shows the true PF for the other response (say y = L), such that the two dashed curves always add up to 1. The black

dots indicate the mean probability to observe this response y = R at each stimulus point x. We drew 20 observations per stimulus point, at each of the 21

stimulus points along the 1-dimensional axis. The resulting estimate for P (y = 1) is shown in the solid black line. The inference method is not important

for the current purpose, but we used the MAP estimate, discussed in a later section. (B) Now suppose that some trials fell into the implicit third choice

which is the omission (red dashed line shows omission probability). The observed probability of y = R at each stimulus point (open black circles) follows

the true PF (black dashed line). But if the omitted trials are systematically excluded from analysis, as in common practice, the estimated PF (solid black

line) reflects a biased set of observations (filled black circles), and fail to recover the true PF. (C) When there is a finite lapse rate (we used a total lapse of

λ = 0.2, uniformly distributed to the two outcomes), the true PF (dashed black line) asymptotes to a finite offset from 0 or 1. If the resulting observations

(black dots) are fitted to a plain binomial model without lapse, the slope of the estimated PF (solid black line) is systematically biased.

Modeling lapse with a mixture model. Another important199

feature of real psychophysical observers is the tendency to occa-200

sionally make errors that are independent of the stimulus. Such201

choices, commonly known as “lapses” or “button press errors”,202

may reflect lapses in concentration or memory of the response203

mapping (Kuss et al., 2005; Wichmann & Hill, 2001a). Lapses204

are most easily identified by errors on “easy” trials, that is, trials205

that should be performed perfectly if the observer were paying at-206

tention.207

Although lapse rates can be negligible in highly trained ob-208

servers (Carandini & Churchland, 2013), they can be substantially209

greater than zero in settings involving non-primates or complicated210

psychophysical tasks. Lapses affect the psychometric function by211

causing it to saturate above 0 and below 1, so that “perfect” per-212

formance is never achieved even for the easiest trials. Failure to213

incorporate lapses into the PF model may therefore bias estimates214

of sensitivity, as quantified by PF slope or threshold (illustrated215

in Fig. 2C; also see Wichmann and Hill (2001a, 2001b) or Prins 216

(2012)). 217

To model lapses, we use a mixture model that treats the ob- 218

server’s choice on each trial as coming from one of two probability 219

distributions: a stimulus-dependent distribution (governed by the 220

multinomial logistic model) and stimulus-independent distribution 221

(reflecting a fixed probability of choosing any option when laps- 222

ing). Simpler versions of such mixture model have been proposed 223

previously (Kuss et al., 2005). 224

Fig. 1B shows a schematic of the resulting model. On each trial, 225

a Bernoulli random variable a ∼ Ber(λ) governs whether the ob- 226

server lapses: with probability λ and the observer lapses (i.e., ig- 227

nores the stimulus), and with probability 1−λ, and the observer at- 228

tends to the stimulus. If the observer lapses (a = 1), the response is 229

drawn according to fixed probability distribution (c1, . . . , ck) gov- 230

erning the probability of selecting options 1 to k, where
∑
ci = 1. 231

If the observer does not lapse (a = 0), the observer selects a re- 232
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sponse according to the multinomial logistic model. Under this233

model, the conditional probability of choosing option i given the234

stimulus can be written:235

pi = (1− λ)qi + λci, qi =
exp(w>i φ)∑
j exp(w>j φ)

(2)236

where qi is the lapse-free probability probability under the classical237

MNL model (eq. 1).238

It is convenient to re-parameterize this model so that λci, the239

conditional probability of choosing the i-th option due to a lapse,240

is written241

λci =
exp(ui)

1 +
∑
j exp(uj)

, (3)242

where each auxiliary lapse parameter ui is proportional to the log243

probability of choosing option i due to lapse. The lapse-conditional244

probabilities of each choice, ci, and the total lapse probability, λ,245

are respectively246

ci =
exp(ui)∑
j exp(uj)

, λ =
∑
i

exp(ui)

1 +
∑
j exp(uj)

. (4)247

Because each ui lives on the entire real line, fitting can be carried248

out with unconstrained optimization methods, although adding rea-249

sonable constraints may improve performance in some cases. The250

full parameter vector of the resulting model is θ = [w>,u>]>,251

which includes k additional lapse parameters u = {u1, · · · , uk}.252

Note that in some cases it might be desirable to assume lapse253

choices obey a uniform distribution, where the probability of each254

option is ci = 1/k. For this simplified “uniform-lapse” model we255

need only a single lapse parameter u. Note that we have unified256

the parameterizations of the “lapse rate” (deviation of the upper257

asymptote of the PF from 1; in this case λ − λci) and the “guess258

rate” (deviation of the lower asymptote from 0; in this case λci),259

which are often modeled separately in previous works with two-260

alternatives responses (Schütt, Harmeling, Macke, & Wichmann,261

2016; Wichmann & Hill, 2001a, 2001b). Here they are written in262

terms of a single family of parameters {ui}, and extended naturally263

to multi-alternative responses.264

Our model provides a general and practical parametrization of265

psychometric functions with lapses. Although previous work has266

considered the problem of modeling lapses in psychophysical data, 267

much of it assumed a uniform-lapse model, where all options are 268

equally likely during lapses. Earlier approaches have often as- 269

sumed either that the lapse probability was known a priori (Kontse- 270

vich & Tyler, 1999), or was fit by a grid search over a small set of 271

candidate values (Wichmann & Hill, 2001a). Here we instead in- 272

fer individual lapse probabilities for each response option, similar 273

to recent approaches described in Kuss et al. (2005); Prins (2012, 274

2013); Schütt et al. (2016). Importantly, our method infers the full 275

parameter θ that includes both the weight and the lapse parameters, 276

rather than treating the lapse separately. In particular, our parame- 277

terization (eq. 3) has the advantage that there is no need to constrain 278

the support of the lapse parameters ui. These parameters’ relation- 279

ship to lapse probabilities ci takes the same (“softmax”) functional 280

form as the multinomial logistic model, placing both sets of param- 281

eters on an equal footing. 282

Before closing this section, we would like to reflect briefly on 283

the key differences between omissions and lapses. First, although 284

omissions and lapses both reflect errors in decision making, omis- 285

sions are defined as invalid responses and are thus easily identi- 286

fiable from the data; lapses, on the other hand, are indistinguish- 287

able from normal responses, and are identifiable only from the fact 288

that the psychometric function does not saturate at 0 or 1. Second, 289

modeling omissions as a response category under the multinomial 290

logistic model means that the probability of omission is stimulus- 291

dependent (e.g., more likely to arise on trials with high difficulty, or 292

generally when the evidence for other options is low). Even if the 293

omissions are not stimulus-dependent, and governed entirely by a 294

“bias” parameter, the probability of omission will still be higher 295

when the evidence for other choices is low, or lower when the ev- 296

idence for other choices is high. Omissions that arise in a purely 297

stimulus-independent fashion, on the other hand, will be modeled 298

as arising from the lapse parameter associated with the omission 299

response category. Omissions can thus arise in two ways under the 300

model: as categories selected under the multinomial model or as 301

lapses arising independent of the stimulus and other covariates. 302
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Posterior inference303

Bayesian methods for adaptive stimulus selection require the pos-304

terior distribution over model parameters given the data observed305

so far in an experiment. The posterior distribution results from the306

combination of two ingredients: a prior distribution p(θ), which307

captures prior uncertainty about the model parameters θ, and a308

likelihood function p({ys}|{xs},θ), which captures information309

about the parameters from the data {(xs, ys)}, s = 1, . . . , t, con-310

sisting of stimulus-response pairs observed up to the current time311

bin t.312

Unfortunately, the posterior distribution for our model has no313

analytic form. We therefore describe two methods for approximate314

posterior inference: one relying on a Gaussian approximation to315

the posterior, known as the Laplace approximation, and a second316

one based on MCMC sampling.317

Prior. The prior distribution specifies our beliefs about model318

parameters before we have collected any data, and serves to reg-319

ularize estimates obtained from small amounts of data, e.g., by320

shrinking estimated weights toward zero. Typically we want the321

prior to be weak enough that the likelihood dominates the posterior322

for reasonable-sized datasets. However, the choice of prior is es-323

pecially important in adaptive stimulus selection settings because324

it determines the effective volume of the search space (M. Park325

& Pillow, 2012; M. Park, Weller, Horwitz, & Pillow, 2014). For326

example, if the weights are known to exhibit smoothness, then a327

correlated or smoothness-inducing prior can improve the perfor-328

mance of adaptive stimulus selection because the effective size (or329

entropy) of the parameter space is much smaller than under an in-330

dependent prior (M. Park & Pillow, 2012).331

In this study, we use a generic independent, zero-mean Gaussian332

prior over the weight vectors333

p(wi) = N (0, σ2I), (5)334

for all i ∈ (1, . . . k), with a fixed standard deviation σ. This choice335

of prior is appropriate when the regressors {x} are standardized,336

since any single weight can take values that allow for a range of 337

psychometric function shapes along that axis, from flat (w = 0) to 338

steeply decreasing (w = −2σ) or increasing (w = +2σ). We 339

used σ = 3 in the simulated experiments in Results. For the 340

lapse parameters {ui}, we used a uniform prior over the range 341

[log(0.001), 0] with the natural log, so that each lapse probabil- 342

ity λci is bounded between 0.001 and 1/2. We set the lower range 343

constraint below 1/N , where N = 100 is the number of observed 344

trials in our simulations, since we cannot reasonably infer lapse 345

probabilities with precision finer than 1/N . The upper range con- 346

straint gives maximal lapse probabilities of 1/(k+ 1) if all ui take 347

on the maximal value of 0. Note that our prior is uniform with 348

respect to the rescaled lapse parameters {ui}, rather than to the ac- 349

tual lapse rates; projected to the space of the lapse probabilities, 350

given the bounds, the prior increases towards smaller lapse. For a 351

comprehensive study of the effect of different priors on lapse, see 352

for example Schütt et al. (2016). 353

Psychometric function likelihood. The likelihood is the con- 354

ditional probability of the data as a function of the model param- 355

eters. Although we have thus far considered the response variable 356

y to be a scalar taking values in the set {1, . . . , k}, it is more con- 357

venient to use a “one-hot” or “1-of-k” representation, in which the 358

response variable y for each trial is a length-k vector with one 1 359

and (k − 1) zeros; the position of the 1 in this vector indicates the 360

category selected. For example, in a task with four possible options 361

per trial, a response vector y = [0 0 1 0] indicates a trial on which 362

the observer selected the third option. 363

With this parametrization, the log-likelihood function for a sin- 364

gle trial can be written 365

log p(y|x,θ) =
∑
i

yi log pi(x,θ) = y> log p(x,θ), (6) 366

where pi(x,θ) denotes the probability p(yi = 1|x,θ) under the 367

model (eq. 1), and p(x,θ) ≡ [p1(x,θ), . . . , pk(x,θ)]> denotes 368

the vector of probabilities for a single trial. 369

In the classical (lapse-free) multinomial logistic model, where 370

θ = {wi}, the log likelihood is a concave function of θ, which 371
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guarantees that numerical optimization of the log-likelihood will372

find a global optimum. With a finite lapse rate, however, the log373

likelihood is no longer concave. (See Appendix A).374

Posterior distribution. The log-posterior can be written as the375

sum of log-prior and log-likelihood summed over trials, plus a con-376

stant:377

log p(θ|Dt) = log p(θ) +
t∑

s=1

log p(ys|xs,θ) + c, (7)378

where Dt ≡ {xs, ys}ts=1 denotes the accumulated data up to trial379

t and c = − log
(∫
p(θ)

∏
s p(ys|xs)dθ

)
is a normalization con-380

stant that does not depend on the parameters θ. Because this con-381

stant has no tractable analytic form, we rely on two alternate meth-382

ods for obtaining a normalized posterior distribution.383

Inference via Laplace approximation. The Laplace approx-384

imation is a well-known Gaussian approximation to the posterior385

distribution, which can be derived from a second-order Tayler se-386

ries approximation to the log-posterior around its mode (Bishop,387

2006).388

Computing the Laplace approximation involves a two-step pro-389

cedure. The first step is to perform a numerical optimization of390

log p(θ|Dt) to find the posterior mode, or maximum a posteriori391

(MAP) estimate of θ. This vector, given by392

θ̂t = argmax
θ

log p(θ) +
t∑

s=1

log p(ys|xs, θ), (8)393

provides the mean of the Laplace approximation. Because we can394

explicitly provide the gradient and Hessian of the log likelihood395

(see Appendix A) and log-prior, this optimization can be carried396

efficiently via Newton-Raphson or trust region methods.397

The second step is to compute the second derivative (the Hes-398

sian matrix) of the log-posterior at the mode, which provides the399

inverse covariance of the Gaussian. This gives us a local Gaussian400

approximation of the posterior, centered at the posterior mode:401

p(θ|Dt) ≈ N (θ̂t, Ct), (9)402

where covariance Ct = −H−1t is the inverse Hessian of the log403

posterior, Ht(i, j) = ∂2(log p(θ|Dt)/(∂θi∂θj), evaluated at θ̂t.404

Note that when the log-posterior is concave (i.e., when the 405

model does not contain lapse), numerical optimization is guaran- 406

teed to find a global maximum of the posterior. Log-concavity 407

also strengthens the rationale for using the Laplace approximation, 408

since the true and approximate posterior are both log-concave den- 409

sities centered on the true mode (Paninski et al., 2010; Pillow, Ah- 410

madian, & Paninski, 2011). When the model incorporates lapses, 411

these guarantees no longer apply globally. 412

Inference via MCMC sampling. A second approach to in- 413

ference is to generate samples from the posterior distribution over 414

the parameters via Markov Chain Monte Carlo (MCMC) sampling. 415

Sampling-based methods are typically more computationally in- 416

tensive than the Laplace approximation, but may be warranted 417

when the posterior is not provably log-concave (as is the case when 418

lapse rates are non-zero) and therefore not well approximated by a 419

single Gaussian. 420

The basic idea in MCMC sampling is to set up an easy-to-sample 421

Markov Chain that has the posterior as its stationary distribution. 422

Sampling from this chain produces a dependent sequence of pos- 423

terior samples: {θm} ∼ p(θ|Dt), which can be used to evaluate 424

posterior expectations via Monte Carlo integrals: 425

E[f(θ)] ≈ 1

M

M∑
m=1

f(θm), (10) 426

for any function f(θ). The mean of the posterior is obtained from 427

setting f(θ) = θ, although for adaptive stimulus selection we will 428

be interested in the full shape of the posterior. 429

The Metropolis-Hastings (MH) algorithm is perhaps the sim- 430

plest and most widely-used MCMC sampling method (Metropo- 431

lis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953). It generates 432

samples via a proposal distribution centered on the current sample 433

(see Appendix B). The choice of proposal distribution is critical to 434

the efficiency of the MH algorithm, since this governs the rate of 435

“mixing”, or the the number of Markov Chain samples required to 436

obtain independent samples from the posterior distribution (Rosen- 437

thal, 2011). Faster mixing implies that fewer samples M are re- 438

quired to obtain an accurate approximation to the posterior. 439
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Figure 3: Inferring the psychometric function. Example of a psychometric problem, with a lapse-free binomial logistic model f(v) = ev/(1+ ev). Given

a 1D stimulus, a response were drawn from a “true” model P (y = 1) = f(b + ax) with two parameters, slope a = 2 and bias b = 0. (A-B) Viewing on

the parameter space, the posterior distributions become sharper (and closer to the true parameter values) as the dataset size N increases. Shown at a

small (A) N = 20 and a large (B) N = 200. For the MAP estimate, the mode of the distribution is marked with a square, and the two standard deviations

(“widths”) of its Gaussian approximation are shown with bars. For the MCMC sampling method, all M = 500 samples of the chain are shown in dots, the

sample mean with a triangle, and the widths with the bars. The widths are the standard deviations along the principal directions of the sampled posterior

(eigenvectors of the covariance matrix; not necessary aligned with the a − b axes). (C-D) The accuracy of the estimated PF improves with the number

of observations N , using either of the two posterior inference methods (MAP-based and sampling-based). Shown at a small (C) N = 20 and a large (D)

N = 200. The two methods are highly consistent in this simple case, especially when N is large enough.

Here we propose a semi-adaptive MH algorithm, developed440

specifically for the current context of sequential learning. Our441

approach is based on an established observation that the optimal442

width of the proposal distribution should be proportional to the443

typical length scale of the distribution being sampled (Gelman,444

Roberts, & Gilks, 1996; Roberts, Gelman, & Gilks, 1997). Our al-445

gorithm is motivated by the adaptive Metropolis algorithm (Haario,446

Saksman, & Tamminen, 2001), where the proposal distribution is447

updated at each proposal within a single chain; here we do not448

adapt the proposal within chains, but rather after each trial. Specif-449

ically, we set the covariance of a Gaussian proposal distribution to 450

be proportional to the covariance of the samples from the previous 451

trial, using the scaling factor of Haario et al. (2001). See Appendix 452

B for details. The adaptive algorithm takes advantage of the fact 453

that the posterior cannot change too much between trials, since it 454

changes only by a single-trial likelihood term on each trial. 455
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Adaptive stimulus selection methods456

As data are collected during the experiment, the posterior distribu-457

tion becomes narrower due to the fact that each trial carries some458

additional information about the model parameters (see Fig. 3).459

This narrowing of the posterior is directly related to information460

gain. A stimulus that produces no expected narrowing of the pos-461

terior is, by definition, uninformative about the parameters. On the462

other hand, a stimulus that (on average) produces a large change463

in the current posterior is an informative stimulus. Selecting infor-464

mative stimuli will reduce the number of stimuli required to obtain465

a narrow posterior, which is the essence of adaptive stimulus se-466

lection methods. In this section, we introduce a precise measure467

of information gain between a stimulus and the model parameters,468

and propose an algorithm for selecting stimuli to maximize it.469

Infomax criterion for stimulus selection. At each trial, we470

present a stimulus x and observe the outcome y. After t trials, the471

expected gain in information from a stimulus x is equal to the mu-472

tual information between y and the model parameters θ, given the473

data Dt observed so far in the experiment. We denote this condi-474

tional mutual information:475
476

It(θ; y|x) =477 ∫∫
dθ dy p(θ,y|x,Dt) log

p(θ,y|x,Dt)
p(θ|Dt)p(y|x,Dt)

, (11)478

479

where p(θ,y|x,Dt) is the joint distribution of θ and y given a480

stimulus x and dataset Dt, the term p(θ|Dt) is the current pos-481

terior distribution over the parameters from previous trials, and482

p(y|x,Dt) =
∫
dθ p(y|x,θ)p(θ|Dt) is known as the posterior-483

predictive distribution of y given x.484

It is useful to note that the mutual information can equivalently485

be written in two other ways involving Shannon entropy. The first486

is given by:487

It(θ; y|x) = Ht(θ)−Ht(θ|y; x) (12)488

where the first term is the entropy of the posterior at time t,489

Ht(θ) = −
∫
dθ p(θ|Dt) log p(θ|Dt), (13)490

and the second is the conditional entropy of θ given y, 491

492

Ht(θ|y; x) = −Eθ,y

[
log p(θ|y,x,Dt)

]
493

= −
∫∫

dθ dy p(θ,y|x,Dt) log p(θ|y,x,Dt), (14) 494

495

which is the entropy of the updated posterior after having observed 496

x and y, averaged over draws of y from the posterior predictive 497

distribution. Written this way, the mutual information can be seen 498

as the expected reduction in posterior entropy from a new stimulus- 499

response pair. Moreover, the first term, Ht(θ), is independent of 500

the stimulus and response on the current trial, so infomax stimulus 501

selection is equivalent to picking the stimulus that minimizes the 502

expected posterior entropy Ht(θ|y; x). 503

A second equivalent expression for the mutual information, 504

which will prove useful for our sampling-based method, is: 505

It(θ; y|x) = Ht(y; x)−Ht(y|θ; x), (15) 506

which is the difference between the marginal entropy of the re- 507

sponse distribution conditioned on x, 508

Ht(y; x) = −
∫
dy p(y|x,Dt) log p(y|x,Dt) (16) 509

and the conditional entropy of the response y given θ, conditioned 510

on the stimulus: 511

Ht(y|θ; x) = −
∫∫

dy dθ p(θ,y|x,Dt) log p(y|x,θ). (17) 512

This formulation shows the mutual information to be equal to the 513

difference between the entropy of the marginal distribution of y 514

conditioned on x (with θ integrated out) and the average entropy 515

of y given x and θ, averaged over the posterior distribution of θ. 516

The dual expansion of the mutual information was also used by 517

Kujala and Lukka (2006). 518

In a sequential setting where t is the latest trial and t + 1 is the 519

upcoming one, the optimal stimulus is the information-maximizing 520

(“infomax”) solution: 521

xt+1 = arg max
x

It(θ; y|x). (18) 522

Fig. 4 shows an example of a simulated experiment where the stim- 523

ulus was selected adaptively following the infomax criterion. Note 524
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Figure 4: Example of infomax adaptive stimulus selection, simulated with a three-alternatives lapse-free model on 1D stimulus. The figure shows

how given a small set of data (the stimulus-response pairs shown in top row), the PFs are estimated based on the accumulated data (middle row), and

the next stimulus is chosen to maximize the expected information gain (bottom row). Each column shows the instance after the N observations in a single

adaptive stimulus selection sequence, for N = 10, 11, 15 and 20 respectively. In the middle row, the estimated PFs (solid lines) quickly approach the true

PFs (dashed lines) through the adaptive and optimal selection of stimuli. This example was generated using the Laplace approximation based algorithm,

with an independent Gaussian prior over the weights with mean zero and standard deviation σ = 10.

that our algorithm takes a “greedy” approach of optimizing one525

trial at a time. For work on optimizing beyond the next trial, see526

for example Kim, Pitt, Lu, and Myung (2017).527

Selecting the optimal stimulus thus requires maximizing the mu-528

tual information over the set of all possible stimuli {x}. Since each529

evaluation of the mutual information involves a high-dimensional530

integral over parameter space and response space, this is a highly531

computationally demanding task. In the next sections, we present532

two algorithms for efficient infomax stimulus selection based on533

each of the two approximate inference methods described previ-534

ously.535

Infomax with Laplace approximation. Calculation of the536

mutual information is greatly simplified by a Gaussian approxima-537

tion of the posterior. The entropy of a Gaussian distribution with538

covariance C is equal to 1
2 log |C| up to a constant factor. If we ex-539

pand the mutual information as in (eq. 12), and recall that we need540

only minimize the expected posterior entropy after observing the541

response, the optimal stimulus for time-step t+ 1 is given by:542

x∗t+1 = argmin
x

∫
dy p(y|x,Dt) log |C̃(x,y)|, (19)543

where C̃(x,y) is the covariance of the updated (Gaussian) poste- 544

rior after observing stimulus-response pair (x,y). To evaluate the 545

updated covariance C̃(x,y) under the Laplace approximation, we 546

would need to numerically optimize the posterior for θ for each 547

possible resonse y, for any candidate stimulus x, which would be 548

computationally infeasible. We therefore use a fast approximate 549

method for obtaining a closed-form update for C̃(x,y) from the 550

current posterior covariance Ct, following an approach developed 551

in Lewi et al. (2009). See Appendix C for details. Note that this 552

approximate sequential update is only used for calculating the ex- 553

pected utility of each candidate stimulus by approximating the pos- 554

terior distribution at the next trial. For obtaining the MAP estimate 555

of the current model parameter, θt, numerical optimization needs 556

to be performed using the full accumulated data Dt each time. 557

Once we have log |C̃(x,y)| for each given stimulus-observation 558

pair, we numerically sum this over a set of discrete counts y that 559

are likely under the posterior-predictive distribution. This is done 560
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in two steps, by separating the integral in (eq. 19) as:561 ∫
dy p(y|x,Dt) log |C̃(x,y)|562

=

∫
dθt p(θt|Dt)

∫
dy p(y|x,θt) log |C̃(x,y)|. (20)563

564

Note that the outer integral is over the current posterior p(θt|Dt) ≈565

N (θ̂t, Ct), which is to be distinguished from the future posterior566

p(θ|y,x,Dt) ≈ N (θ̃(x,y), C̃(x,y)) whose entropy we are trying567

to minimize. Whereas the inner integral is simply a weighted sum568

over the set of outcomes y, the outer integral over the parameter θ569

is in general challenging, especially when the parameter space is570

high-dimensional. In the case of the standard multinomial logistic571

model that does not include lapse, we can exploit the linear struc-572

ture of model to reduce this to a lower-dimensional integral over573

the space of the linear predictor, which we evaluate numerically574

using Gauss-Hermite quadrature (Heiss & Winschel, 2008). (This575

integral is 1D for classic logistic regression, and (k-1)-dimensional576

for multinomial logistic regression with k classes; see Appendix577

C for details.) When the model incorporates lapses, the full pa-578

rameter vector θ = [w>,u>]> includes the lapse parameters in579

addition to the weights w. In this case, our method with Laplace580

approximation may suffer from reduced accuracy due to the fact581

that the posterior may be less closely approximated by a Gaussian.582

In order to exploit the convenient structure of reduced integral583

over the weight space, we choose to maximize the partial infor-584

mation between the observation and the psychophysical weights,585

I(w; y|x), instead of the full information I(θ; y|x). This is586

a reasonable approximation in many cases where the stimulus-587

dependent behavior is the primary focus of the psychometric ex-588

periment (also see Prins (2013) for a similar approach). How-589

ever, we note that this is the only piece in this work where we590

treat the weights separately from the lapse parameters; posterior591

inference is still performed for the full parameter θ. Thus for592

Laplace-based infomax exclusively, the partial covariance Cww =593

−(∂2(logP)/∂w2)−1 is used in place of the full covariance594

C = −(∂2(logP)/∂θ2)−1, where P(θ) is the posterior distri-595

bution over the full parameter space. Because the positive semi-596

definiteness of the partial covariance is still not guaranteed, it needs 597

to be approximated to the nearest symmetric positive semi-definite 598

matrix when necessary (Higham, 1988). We can show, however, 599

that the partial covariance is asymptotically positive semi-definite 600

in the small-lapse limit (Appendix A). 601

Infomax with MCMC. Sampling-based inference provides an 602

attractive alternative to Laplace’s method when the model includes 603

non-zero lapse rates, where the posterior may be less well approx- 604

imated by a Gaussian. To compute mutual information from sam- 605

ples, it is more convenient to use the expansion given in (eq. 15), so 606

that it is expressed as the expected uncertainty reduction in entropy 607

of the response y, instead of a reduction in the posterior entropy. 608

This will make it straightforward to approximate integrals needed 609

for mutual information by Monte Carlo integrals involving sums 610

over samples. Also note that we are back in the full parameter 611

space; we no longer treat the lapse parameters separately, as we 612

did for the Laplace-based infomax. 613

Given a set of posterior samples {θm} from p(θ|Dt), the poste- 614

rior distribution at time t, we can evaluate the mutual information 615

using sums over “potential” terms that we denote by 616

Ljm(x) ≡ p(yj = 1|x,θm) . (21) 617

This allows us to evaluate the conditional response entropy as 618

Ht(y|θ; x) ≈ − 1

M

∑
j,m

Ljm(x) logLjm(x), (22) 619

and the marginal response entropy as 620

Ht(y; x) ≈ −
∑
j

(
1
M

∑
m

Ljm(x)
)

log
(

1
M

∑
m

Ljm(x)
)
, (23) 621

where we have evaluated the posterior-predictive distribution as 622

p(yj = 1|x,Dt) ≈
1

M

∑
m

Ljm(x). (24) 623

Putting together these terms, the mutual information can be evalu- 624

ated as 625

It(θ; y|x) = − 1

M

∑
j,m

Ljm(x) log
Ljm(x)∑

m′ Ljm′(x)/M
, (25) 626
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which is straightforward to evaluate for a set of candidate stimuli627

{x}. The computational cost of this approach is therefore linear628

in the number of samples, and the primary concern is the cost of629

obtaining a representative sample from the posterior.630

Results631

We consider two approaches for testing the performance of our pro-632

posed stimulus-selection algorithms, one using simulated data, and633

a second using an offline analysis of data from real psychophysical634

experiments.635

Simulated experiments. We first tested the performance of636

our algorithms using simulated data from a fixed psychophysical637

observer model. In these simulations, a stimulus x was selected on638

each trial and the observer’s response y was sampled from a “true”639

psychometric function, ptrue(y|x) = p(y|x,θtrue).640

We considered psychophysical models defined on a continuous641

2-dimensional stimulus space with 4 discrete response alternatives642

for every trial, corresponding to the problem of estimating the di-643

rection of 2D stimulus moving along one of the four cardinal di-644

rections (up, down, left, right). We computed expected informa-645

tion gain over a set of discrete stimulus values corresponding to646

21 × 21 square grid (Fig. 5A). The stimulus plane is colored in647

Fig. 5A, to indicate the most likely response (one of the four alter-648

natives) in each stimulus region. Lapse probabilities λci were set649

to either zero (the “lapse-free” case), or a constant value of 0.05,650

resulting in a total lapse probability of λ = 0.2 across the four651

choices (Fig. 5B). We compared performance of our adaptive algo-652

rithms with a method that selected a stimulus uniformly at random653

from the grid on each trial. We observed that the adaptive methods654

tended to sample more stimuli near the boundaries between colored655

regions on the stimulus space (Fig. 5C), which led to more efficient656

estimates of the PF compared to the uniform stimulus selection ap-657

proach (Fig. 5D). We also confirmed that the posterior entropy of658

the inferred parameters decrease more rapidly with our adaptive659

stimulus sampling algorithms, in all cases (Fig. 5E-F). This was660

expected because our algorithms explicitly attempt to minimize the 661

posterior entropy, by maximizing the mutual information. 662

For each true model, we compared the performances of four dif- 663

ferent adaptive methods (Fig. 6A-B), defined by performing infer- 664

ence with MAP or MCMC, and assuming lapse rate to be fixed 665

at zero or including a non-zero lapse parameters. Each of these 666

inference methods was also applied to data selected according to 667

a uniform stimulus selection algorithm. We quantified perfor- 668

mance using the mean-squared error (MSE) between the true re- 669

sponse probabilities pij = p(y = j|xi,θtrue) and the estimated 670

probabilities p̂ij over the 21 × 21 grid of stimulus locations {xi} 671

and the 4 possible responses {j}. For MAP-based inference, es- 672

timated probabilities were given by p̂ij = p(y = j|xi, θ̂MAP). 673

For the MCMC-based inference, probabilities were given by the 674

predictive distribution, evaluated using an average over samples: 675

p̂ij = 1
M

∑
m p(y = j|xi,θm), where {θm} represent samples 676

from the posterior. 677

When the true model was lapse-free (Fig. 6A), lapse-free and 678

lapse-aware inference methods performed similarly, indicating that 679

there was minimal cost to incorporating parameters governing 680

lapse when lapses were absent. Under all inference methods, in- 681

fomax stimulus selection outperformed uniform stimulus selec- 682

tion by a substantial margin. For example, infomax algorithms 683

achieved in 50 − 60 trials the error levels that their uniform- 684

stimulus-selection counterparts required 100 trials to achieve. 685

By contrast, when the true model had a non-zero lapse rate 686

(Fig. 6B), adaptive stimulus selection algorithms based on the 687

lapse-free model failed to select optimal stimuli, performing even 688

worse than uniform stimulus selection algorithms. This empha- 689

sizes the impact of model mismatch in adaptive methods, and the 690

importance of a realistic psychometric model. When lapse-aware 691

models were used for inference, on the other hand, both Laplace- 692

based and MCMC-based adaptive stimulus selection algorithms 693

achieved a significant speedup compared to uniform stimulus se- 694

lection, while MCMC-based adaptive algorithm performed bet- 695

ter. This shows that the MCMC-based infomax stimulus selec- 696
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Figure 5: The simulated experiment. (A) At each trial, a stimulus was selected from a 2D stimulus plane with a 21 × 21 grid. The two lines, running

along x1 and x2 respectively, indicate the cross-sections used in C and D below. Colors indicate the most likely response in the respective stimulus regime,

according to the true PF shown in B, with a consistent color code. (B) Given each stimulus, a simulated response was drawn from a true model with 4

alternatives. Shown here is the model with lapse, characterized by a non-deterministic choice (i.e., the choice probability does not approach 0 or 1) even

at an easy stimulus, far from the choice boundaries. (C-D) Examples of Laplace-approximation-based inference results after 50 trials, where stimuli was

selected either using our adaptive infomax method (C) or uniformly (D), as shown on left. In both cases, the true model was lapse-free, and the algorithm

assumed that lapse was fixed at zero. The two sets of curves show the cross-sections of the true PF (dotted lines) and the estimated PF (solid lines),

along the two lines marked in A, after sampling these stimuli. (E-F) Traces of posterior entropy from simulated experiments, averaged over 100 runs each.

The true model for simulation was either (E) lapse-free, or (F) with a finite lapse rate of λ = 0.2, with a uniform lapse scenario ci = 1/4 for each outcome

i = 1, 2, 3, 4. In algorithms considering lapse (panels on the right), the shift in posterior entropy is due to the use of partial covariance (with respect to

weight) in the case of Laplace approximation. The algorithm either used the classical MNL model that assumes zero lapse (left column), or our extended

model that considers lapse (right column). Average performances of adaptive and uniform stimulus selection algorithms are plotted in solid and dashed

lines, respectively; Laplace-based and MCMC-based algorithms are plotted in purple and cyan. The lighter lines show standard error intervals over 100

runs, which are very narrow. All sampling-based algorithms used the semi-adaptive MCMC with chain length M = 1000.
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Figure 6: The simulated experiment, continued. We show results from

the same set of simulated experiments as in Fig. 5. (A-B) Traces of the

mean-square error (MSE), where the true model was either (A) lapse-free,

or (B) with a total lapse rate of λ = 0.2, uniformly distributed to each out-

come. Standard error intervals are plotted in lighter lines as in Fig. 5E-F. (C)

Effect of lapse, tested by adding varying total lapse rates λ. Shown are the

MSE after N = 100 trials of each stimulus selection algorithm, equivalent

to the endpoints in B. Error bars indicate the standard error over 100 runs,

equivalent to the lighter-line intervals in the above panels.

tion method can provide an efficient and robust platform for adap-697

tive experiments with realistic models. When the true behavior698

had lapses, the MCMC-based adaptive stimulus selection algo-699

rithm with the lapse-aware model automatically included “easy”700

trials, which provide maximal information about lapse probabili-701

ties. These easy trials are typically in the periphery of the stimulus702

space (strong-stimulus regimes, referred to as “asymptotic perfor- 703

mance intensity” in Prins (2012)). 704

However, that the effect of model mismatch due to non-zero 705

lapse only becomes problematic at high enough lapse rate; in the 706

simulation shown in Fig. 5F and Fig. 6B, we used a high lapse rate 707

of λ = 0.2 which is more typical in the case of less sophisti- 708

cated animals such as rodents (see for example Scott, Constantino- 709

ple, Erlich, Tank, and Brody (2015)). With lapse rates more typ- 710

ical in well-designed human psychophysics tasks (λ . 0.05; see 711

for example Wichmann and Hill (2001a, 2001b)), infomax algo- 712

rithms still tend to perform better than uniform sampling algo- 713

rithms (Fig. 6C). 714

Finally, we measured the computation time per trial required by 715

our adaptive stimulus selection algorithms on a personal desktop 716

with an Intel i7 processor. With the Laplace-based algorithm, the 717

major computational bottleneck is the parameter space integration 718

in the infomax calculation, which scales directly with the model 719

complexity. We could easily achieve tens-of-milliseconds trials 720

in the case of the simple 2AFC task, and sub-second trials with 721

2-dimensional stimuli and 4-alternative responses, as used in the 722

current set of simulations (Fig. 7A-B). With the MCMC-based al- 723

gorithm, the time-per-trial in the sampling-based method is lim- 724

ited by the number of samples in each MCMC chain, M , rather 725

than by the model complexity. Using the standard implementation 726

for the Metropolis-Hastings sampler in Matlab, a time-per-trial of 727

∼ 0.1 seconds was achieved with chains shorter than M . 200 728

(Fig. 7C-D, top panels). This length ofM ≈ 200 was good enough 729

to represent the posterior distributions for our simulated examples 730

(Fig. 7C-D, bottom panels), although we note that longer chains 731

are required to sample a more complex posterior distribution, and 732

this particular length M should not be taken as the benchmark in 733

general. 734

Optimal re-ordering of real dataset. A second approach for 735

testing the performance of our methods is to perform an off-line 736

analysis of data from real psychophysical experiments. Here we 737

take an existing dataset and use our methods to re-order the trials so 738
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Figure 7: Computation time and accuracy. (A-B) The computation times for the Laplace-based algorithms grow linearly with the number of candidate

stimulus points, as shown on the top panels, because one needs to perform a numerical integration to compute the expected utility of each stimulus.

In general, there is a tradeoff between cost (computation time) and accuracy (inversely related to the estimation error). The bottom panels show the

mean-square error of the estimated PF, calculated after completing a sequence of N trials, where the 10 initial trials were selected at regular intervals,

and the following trials were selected under our adaptive algorithm. Error estimates were averaged over 100 independent sequences. Error bars indicate

the standard errors. The true model used were the same as either (A) in Fig. 5, with 2-dimensional stimulus and 4-alternative response, described by 9

parameters; or (B) in Fig. 3, with 1-dimensional stimulus and binary response, with only 2 parameters (slope and threshold). Different rate at which the

computation time increases under the two model reflects the different complexity of numerical quadrature involved. We used lapse-free algorithms in all

cases in this example. (C-D) We similarly tested the MCMC-based algorithms using the two models as in panels A-B. In this case, the computation times

(top panels) grow linearly the number of samples in each MCMC chain, and are not sensitive to the dimensionality of the parameter space. On the other

hand, the estimation error plots (bottom panels) suggest that a high-dimensional model requires more samples for accurate inference.

that the most-informative stimuli are selected first (also see Lewi,739

Schneider, Woolley, and Paninski (2011) for a similar approach).740

To obtain a re-ordering, we iteratively apply our algorithm to the741

stimuli shown during the experiment. On each trial, we use our742

adaptive algorithm to select the optimal stimulus from the set of743

stimuli {xi} not yet incorporated into the model. This selection744

takes place without access to the actual responses {yi}. We then745

update the posterior using the stimulus xi and the response yi it ac-746

tually elicited during the experiment, then proceed to the next trial.747

We can then ask whether adding the data according to the proposed748

re-ordering would have led to faster narrowing of the posterior dis-749

tribution than other orderings.750

To perform this analysis, we used a dataset from macaque751

monkeys performing a four-alternative motion discrimination task 752

(Churchland, Kiani, & Shadlen, 2008). Monkeys were trained to 753

observe a motion stimulus with dots moving in one of the four car- 754

dinal directions, and report this direction of motion with an eye 755

movement. The difficulty of the task was controlled by varying the 756

fraction of coherently moving dots on each trial, with the remain- 757

ing dots appearing randomly (Fig. 8A). Each moving-dot stimulus 758

in this experiment could be represented as a two-dimensional vec- 759

tor, where the direction of the vector is the direction of the mean 760

movement of the dots, and the amplitude of the vector is given by 761

the fraction of coherently moving dots (a number between 0 and 762

1). Each stimulus presented in the the experiment was aligned with 763

either one of the two cardinal axes of the stimulus plane (Fig. 8B). 764
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Figure 8: Optimal re-ordering of a real monkey dataset. (A) The psychometric task consisted of a 2D stimulus presented as moving dots, characterized

by a coherence and a mean direction of movement, and a 4-alternative response. The four choices are color coded consistently in A-C in this figure. (B)

The axes-only stimulus space of the original dataset, with 15 fixed stimuli along each axis. Colors indicate the most likely response in the respective

stimulus regime according to the best estimate of the PF. (C) The best estimate of the PF of monkeys in this task, inferred from all observations in the

dataset. (D) Stimuli selection in the first N = 100 trials during the re-ordering experiment, under the inference method that ignores lapse. Shown are

histograms of x2 along one of the axes, x1 = 0, averaged over 100 independent runs in each case. (E-F) Error traces under different algorithms, averaged

over 100 runs. Both Laplace-based (purple) and MCMC-based (cyan; with M = 1000) algorithms achieve significant speedups over uniform sampling.

Because the monkeys were almost lapse-free in this task, inference methods that ignore lapse (E) and consider lapse (F) performed similarly. Standard

error intervals over 100 runs are shown in lighter lines, but are very narrow.

The PF for this dataset consists of a set of four 2D curves, where765

each curve specifies the probability of choosing a particular direc-766

tion as a function of location in the 2D stimulus plane (Fig. 8C).767

This monkey dataset contained more than 10, 000 total obser-768

vations at 29 distinct stimulus conditions, accumulating more than769

300 observations per stimulus. This multiplicity of observations770

per stimulus ensured that the posterior distribution given the full771

dataset was narrow enough that it could be considered to provide a772

“ground truth” psychometric function against which the inferences773

based on the re-ordering experiment could be compared.774

The first 100 stimuli selected by the infomax algorithms had775

noticeably different statistics than the full dataset or its uniform776

sub-sampling (the first N = 100 trials under uniform sampling).777

On the other hand, the sets of stimuli selected by both MAP- 778

based and MCMC-based infomax algorithms were similar. Fig. 8D 779

shows the histogram of stimulus component along one of the axes, 780

p(x2 |x1 = 0), from the first N = 100 trials, averaged over 100 781

independent runs under each stimulus selection algorithm using the 782

lapse-free model. 783

Because the true PF was unknown, we compared the perfor- 784

mance of each algorithm to an estimate of the PF from the entire 785

dataset. When using the MAP algorithm, the full-dataset PF was 786

given by pij = p(y = j|xi, θ̂full), evaluated at the MAP estimate 787

of the log posterior, θ̂full = argmaxθ log p(θ|Dfull), given the full 788

dataset Dfull. For the MCMC algorithm, the full-dataset PF was 789

computed by pij ≈ 1
M

∑
m p(y = j|xi,θm), where the MCMC 790
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chain {θm} ∼ log p(θ|Dfull) sampled the log posterior given the791

full dataset. The re-ordering test on the monkey dataset showed792

that our adaptive stimulus sampling algorithms were able to infer793

the PF to a given accuracy in a smaller number of observations,794

compared to a uniform sampling algorithm (Fig. 8E-F). In other795

words, data collection could have been faster with an optimal re-796

ordering of the experimental procedure.797

Exploiting the full stimulus space. In the experimental798

dataset considered in the previous section, the motion stimuli were799

restricted to points along the cardinal axes of the 2D stimulus plane800

(Fig. 8B) (Churchland et al., 2008). In some experimental settings,801

however, the psychometric functions of interest may lack identi-802

fiable axes of alignment or may exhibit asymmetries in shape or803

orientation. Here we show that in such cases, adaptive stimulus804

selection methods can benefit from the ability to select points from805

the full space of possible stimuli.806

We performed experiments with a simulated observer gov-807

erned by the lapse-free psychometric function estimated from the808

macaque monkey dataset (Fig. 8C). This psychometric function809

was either aligned to the original stimulus axes (Fig. 9A-B) or ro-810

tated counter-clockwise by 45 degrees (Fig. 9C). We tested the per-811

formance of adaptive stimulus selection using the Laplace infomax812

algorithm, with stimuli restricted to points along the cardinal axes813

(Fig. 9A), or allowed to a grid of points in the full 2D stimulus814

plane (Fig. 9B-C).815

The simulated experiment indeed closely resembled the results816

of our dataset re-ordering test in terms of the statistics of adap-817

tively selected stimuli (compare Fig. 9A to the purple histogram in818

Fig. 8D). With the full 2D stimulus space aligned to the cardinal819

axes, on the other hand, our adaptive infomax algorithm detected820

and sampled more stimuli near the boundaries between colored re-821

gions in the stimulus plane, which were usually not on the cardi-822

nal axes (Fig. 9B). Finally, we also observed that this automatic823

exploitation of the stimulus space was not limited by the lack of824

alignment between the PF and the stimulus axes; our adaptive in-825

fomax algorithm was just as effective in detecting and sampling the826

boundaries between stimulus regions in the case of the unaligned 827

PF (Fig. 9C). 828

The error traces in Fig. 9D show that we can infer the PF at a 829

given accuracy in an even fewer number of observations using our 830

adaptive algorithm on the full 2D stimulus plane (orange curves), 831

compared to the cardinal-axes design (black curves). It also con- 832

firms that we can infer the PF accurately and effectively with an 833

unaligned stimulus space (red curves), as well as with an aligned 834

stimulus space. For comparison purposes, all errors were calcu- 835

lated over the same 2D stimulus grid, even when the stimulus se- 836

lection was from the cardinal axes. (This had negligible effects on 837

the resulting error values: compare the black curves in Fig. 9D and 838

the purple curves in Fig. 8E.) 839

Discussion 840

We developed effective Bayesian adaptive stimulus selection al- 841

gorithms for inferring psychometric functions, with an objective of 842

maximizing the expected informativeness of each stimulus. The al- 843

gorithms select an optimal stimulus adaptively in each trial, based 844

on the posterior distribution of model parameters inferred from the 845

accumulating set of past observations. 846

We emphasized that in psychometric experiments, especially 847

with animals, it is crucial to use models that can account for the 848

non-ideal yet common behaviors, such as omission (no response; 849

an additional possibility for the outcome) or lapse (resulting in 850

a random, stimulus-independent response). Specifically, we con- 851

structed a hierarchical extension of a multinomial logistic (MNL) 852

model that incorporates both omission and lapse. Although we 853

did not apply these additional features to real data, we performed 854

simulated experiments to investigate their impacts on the accurate 855

inference of psychometric functions. To ensure applicability of the 856

extended model in real-time closed-loop adaptive stimulus selec- 857

tion algorithms, we also developed efficient methods for inferring 858

the posterior distribution of the model parameters, with approxi- 859

mations specifically suited for sequential experiments. 860
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Figure 9: Design of multi-dimensional stimulus space. (A-C) Three different stimulus space designs were used in a simulated psychometric experi-

ment. Responses were simulated according to fixed lapse-free PFs, matched to our best estimate of the monkey PF (Fig. 8C). Stimuli were selected within

the respective stimulus spaces, (A) the cardinal-axes design, as in the original experiment; (B) full stimulus plane, with the PF aligned to the cardinal axes

of the original stimulus space; (C) full stimulus plane, with rotated PF. The black dots in A-C indicate which stimuli were sampled by the Laplace-based

infomax algorithm during the first N = 100 trials of simulation, where the dot size is proportional to the number of trials in which each stimulus was selected

(averaged over 20 independent runs, and excluding the 10 fixed initial stimuli). (D) The corresponding error traces, under infomax (solid lines) or uniform

(dashed lines) stimulus selection, averaged over 100 runs respectively. Colors indicate the three stimulus space designs, as shown in A-C. Standard error

intervals over 100 runs are shown in lighter lines.

Advantages of adaptive stimulus selection. We observed861

two important advantages of using Bayesian adaptive stimulus se-862

lection methods in psychometric experiments. First, we showed863

that our adaptive stimulus selection algorithms achieved signifi-864

cant speed-ups in learning time (number of measurements), both865

on simulated data and in re-ordering test of a real experimental866

dataset, with and without lapse in the underlying behavior. Impor-867

tantly, the success of the algorithm depends heavily on the use of868

the correct model family; for example, adaptive stimulus selection869

fails when a classical (lapse-ignorant) model was used to measure870

behavior with a finite lapse rate. Based on the simulation results,871

it seems good practice to always use the lapse-aware model unless872

the behavior under study is known to be completely lapse-free, al-873

though it should be checked that the addition of the lapse param-874

eters does not make the inference problem intractable, given the875

constraints of the specific experiments. (One way to check this is876

using a simulated experiment, where lapse is added to the psycho-877

metric function inferred by lapse-free model; similarly to what we878

did in this paper.) The computational cost for incorporating lapses879

amounts to having k additional parameters to sample, one per each880

available choice, which is independent from the dimensionality of881

the stimulus space. 882

Second, we demonstrated that our adaptive stimulus selection 883

study has implications on the optimization of the experimental de- 884

signs more generally. Contrary to the conventional practice of ac- 885

cumulating repeated observations at a small set of fixed stimuli, we 886

suggest that the (potentially high-dimensional) stimulus space can 887

be exploited more efficiently using our Bayesian adaptive stimulus 888

selection algorithm. Specifically, the adaptive stimulus selection 889

algorithm can automatically detect the structure of the stimulus 890

space (with respect to the psychometric function) as part of the 891

process. We also showed that there are benefits of using the full 892

stimulus space even when the PF is aligned to the cardinal axes of 893

the stimulus space. 894

Comparison of the two algorithms. Our adaptive stimulus 895

selection algorithms were developed based on two methods for ef- 896

fective posterior inference: one based on local Gaussian approxi- 897

mation (Laplace approximation) of the posterior, and another based 898

on MCMC sampling. The well-studied analytical method based 899

on the Laplace approximation is fast and effective in simple cases, 900

but becomes heavier in the case of more complicated PFs, because 901
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the computational bottleneck is the numerical integration over the902

parameter space that needs to be performed separately for each903

candidate stimulus. In the case of sampling-based methods, on904

the other hand, the computational speed is constrained by the num-905

ber of MCMC samples used to approximate the posterior distribu-906

tion, but not directly by the number of parameters or the number907

of candidate stimuli. In general, however, accurately inferring a908

higher-dimensional posterior distribution requires more samples,909

and therefore a longer computation time. We note that our semi-910

adaptive turning algorithm helps with the cost-accuracy tradeoff911

by optimizing the sampling accuracy in a given number of sam-912

ples, without human intervention. although it does not reduce the913

computation time itself.914

To summarize, when the PF under study is low-dimensional and915

well-described by the multinomial logistic model, for example in916

a 2AFC study with human subjects, Laplace-based approach pro-917

vides a lightweight and elegant approach. But if the PF is higher-918

dimensional or deviates significantly from the ideal model (e.g.,919

large lapse), MCMC sampling provides a flexible and affordable920

solution. Results suggest that our MCMC-based algorithm will be921

applicable to most animal psychometric experiments, as the model922

complexities are not expected to significantly exceed our simulated923

example. However, one should always make sure that the number924

of MCMC samples being used is sufficient to sample the posterior925

distribution under study.926

Limitations and Open Problems. One potential drawback927

of adaptive experiments is the undesired possibility that the psy-928

chometric function of the observer might adapt to the distribution929

of stimuli presented during the experiments. If this is the case,930

the system under measurement would no longer be stationary, nor931

independent of the experimental design, profoundly altering the932

problem one should try to solve. The usual assumption in psycho-933

metric experiments is that well trained observers exhibit stationary934

behavior on the timescale of an experiment; under this assumption,935

the order of data collection cannot bias inference MacKay (1992).936

However, the empirical validity of this claim remains a topic for937

future research. 938

One approach for mitigating non-stationarity is to add regressors 939

to account for the history dependence of psychophysical behavior. 940

Recent work has shown that extending a psychophysical model to 941

incorporate past rewards (Bak et al., 2016; Busse et al., 2011; Cor- 942

rado, Sugrue, Seung, & Newsome, 2005; Lau & Glimcher, 2005), 943

past stimuli (Akrami, Kopec, Diamond, & Brody, 2018) or the full 944

stimulus-response history (Fründ, Wichmann, & Macke, 2014) can 945

provide a more accurate description of the factors influencing re- 946

sponses on a trial-by-trial basis. 947

Our work leaves open a variety of directions for future research. 948

One simple idea is to re-analyze old datasets under the multinomial 949

response model with omissions included as a separate response cat- 950

egory; this will reveal whether omissions exhibit stimulus depen- 951

dence (e.g., occurring more often on difficult trials), and provide 952

greater insight into the factors influencing psychophysical behavior 953

on single trials. Another set of directions is to extend the multino- 954

mial logistic observer model to obtain a more accurate or more 955

flexible model of psychophysical behavior; particular directions 956

include models with nonlinear stimulus dependencies or interac- 957

tion terms (Cowley, Williamson, Clemens, Smith, & Byron, 2017; 958

DiMattina & Zhang, 2011; Hyafil & Moreno-Bote, 2017; Neri & 959

Heeger, 2002), models with output nonlinearities other than the 960

logistic (Kontsevich & Tyler, 1999; Schütt et al., 2016; A. B. Wat- 961

son, 2017; A. B. Watson & Pelli, 1983), or models that capture 962

overdispersion, e.g., due to non-stationarities of the observer, via a 963

hierarchical prior (Schütt et al., 2016). In general, such extensions 964

will be much easier to implement with the MCMC-based inference 965

method, due to the fact that it does not rely on gradients or Hessians 966

of a particular parametrization of log-likelihood. Finally, it may be 967

useful to consider the same observer model under optimality cri- 968

teria other than mutual information — recent work has shown that 969

infomax methods do not necessarily attain optimal performance 970

according to alternate metrics (e.g., mean squared error, I. M. Park 971

and Pillow (2017); M. Park et al. (2014)) — or using non-greedy 972

selection criteria that optimize stimulus selection based on a time 973
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horizon longer than the next trial (Kim et al., 2017; King-Smith et974

al., 1994).975

Code availability976

A Matlab implementation of our methods is available online at977

https://github.com/pillowlab/adaptivePsychophysicsToolbox.978
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Barthelmé, S., & Mamassian, P. (2008). A flexi-996

ble bayesian method for adaptive measurement in psy-997

chophysics. arXiv:0809.0387, 1–28.998

Bishop, C. M. (2006). Pattern recognition and machine learning.999

Springer New York.1000

Busse, L., Ayaz, A., Dhruv, N. T., Katzner, S., Saleem, A. B.,1001

Scholvinck, M. L., . . . Carandini, M. (2011). The de-1002

tection of visual contrast in the behaving mouse. Jour-1003

nal of Neuroscience, 31(31), 11351–11361. doi: 10.1523/ 1004

JNEUROSCI.6689-10.2011 1005

Carandini, M., & Churchland, A. K. (2013). Probing perceptual 1006

decisions in rodents. Nature Neuroscience, 16(7), 824–831. 1007

doi: 10.1038/nn.3410 1008

Cavagnaro, D. R., Myung, J. I., Pitt, M. A., & Kujala, J. V. (2010). 1009

Adaptive design optimization: a mutual information-based 1010

approach to model discrimination in cognitive science. Neu- 1011

ral computation, 22(4), 887–905. doi: 10.1162/neco.2009 1012

.02-09-959 1013

Chaloner, K., & Larntz, K. (1989). Optimal logistic Bayesian 1014

design applied to logistic regression experiments. Journal 1015

of Statistical Planning and Inference, 21, 191–208. doi: 10 1016

.1016/0378-3758(89)90004-9 1017

Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental de- 1018

sign: a review. Statistical Science, 10, 273–304. 1019

Churchland, A. K., Kiani, R., & Shadlen, M. N. (2008). Decision- 1020

making with multiple alternatives. Nature Neuroscience, 1021

11(6), 693–702. doi: 10.1038/nn.2123 1022

Corrado, G. S., Sugrue, L. P., Seung, H. S., & Newsome, W. T. 1023

(2005). Linear-nonlinear-poisson models of primate choice 1024

dynamics. Journal of the Experimental Analysis of Behavior, 1025

84(3), 581–617. doi: 10.1901/jeab.2005.23-05 1026

Cowley, B., Williamson, R., Clemens, K., Smith, M., & Byron, 1027

M. Y. (2017). Adaptive stimulus selection for optimizing 1028

neural population responses. In Advances in neural infor- 1029

mation processing systems (pp. 1395–1405). 1030

DiMattina, C. (2015). Fast adaptive estimation of multidimen- 1031

sional psychometric functions. Journal of Vision, 15(9), 5. 1032

doi: 10.1167/15.9.5 1033

DiMattina, C., & Zhang, K. (2011). Active data collection 1034

for efficient estimation and comparison of nonlinear neu- 1035

ral models. Neural Computation, 23(9), 2242–2288. doi: 1036

10.1162/NECO a 00167 1037

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/260976doi: bioRxiv preprint 

https://github.com/pillowlab/adaptivePsychophysicsToolbox
https://doi.org/10.1101/260976
http://creativecommons.org/licenses/by/4.0/


Fründ, I., Wichmann, F. A., & Macke, J. H. (2014). Quantifying1038

the effect of intertrial dependence on perceptual decisions.1039

Journal of vision, 14(7), 1–16. doi: 10.1167/14.7.91040

Gardner, J. R., Song, X., Weinberger, K. Q., Barbour, D., & Cun-1041

ningham, J. P. (2015). Psychophysical detection testing with1042

bayesian active learning. In Proceedings of the thirty-first1043

conference on uncertainty in artificial intelligence (pp. 286–1044

297). AUAI Press.1045

Gelman, A., Roberts, G., & Gilks, W. (1996). Efficient metropolis1046

jumping rules. Bayesian statistics, 5, 599–607.1047

Glonek, G., & McCullagh, P. (1995). Multivariate Logistic1048

Models. Journal of the Royal Statistical Society, Series B1049

(Methodological), 57(3), 533–546.1050

Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive1051

metropolis algorithm. Bernoulli, 7(2), 223–242. doi: 101052

.2307/33187371053

Heiss, F., & Winschel, V. (2008). Likelihood approximation by1054

numerical integration on sparse grids. Journal of Economet-1055

rics, 144(1), 62–80. doi: 10.1016/j.jeconom.2007.12.0041056

Henderson, H. V., & Searle, S. R. (1981). On deriving the inverse1057

of a sum of matrices. SIAM Review, 23(1), 53–60. doi:1058

10.1137/10230041059

Higham, N. J. (1988). Computing a nearest symmetric positive1060

semidefinite matrix. Linear Algebra and Its Applications,1061

103(C), 103–118. doi: 10.1016/0024-3795(88)90223-61062

Hyafil, A., & Moreno-Bote, R. (2017). Breaking down hierarchies1063

of decision-making in primates. eLife, 6.1064

Kim, W., Pitt, M. A., Lu, Z., & Myung, J. I. (2017). Planning be-1065

yond the next trial in adaptive experiments: A dynamic pro-1066

gramming approach. Cognitive Science, 41(8), 2234–2252.1067

doi: 10.1111/cogs.124671068

Kim, W., Pitt, M. A., Lu, Z.-l., Steyvers, M., & Myung, J. I.1069

(2014). A hierarchical adaptive approach to optimal ex-1070

perimental design paradigm of adaptive design optimiza-1071

tion (ADO). Neural computation, 26, 2465–2492. doi: 1072

10.1162/NECO a 00654 1073

King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C., 1074

& Supowit, A. (1994, apr). Efficient and unbiased modifi- 1075

cations of the quest threshold method: Theory, simulations, 1076

experimental evaluation and practical implementation. Vi- 1077

sion Research, 34(7), 885–912. doi: 10.1016/0042-6989(94) 1078

90039-6 1079

Knoblauch, K., & Maloney, L. T. (2008). Estimating classification 1080

images with generalized linear and additive models. Journal 1081

of Vision, 8(16), 10.1–1019. doi: 10.1167/8.16.10 1082

Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive es- 1083

timation of psychometric slope and threshold. Vision Re- 1084

search, 39(16), 2729–2737. doi: 10.1016/S0042-6989(98) 1085

00285-5 1086

Kujala, J. V., & Lukka, T. J. (2006). Bayesian adaptive estimation: 1087

The next dimension. Journal of Mathematical Psychology, 1088

50(4), 369–389. doi: 10.1016/j.jmp.2005.12.005 1089
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Appendix A 1199

Log likelihood for the classical MNL. Here we provide more 1200

details about the log likelihood L = y> log p under the multino- 1201

mial logistic model (6), first in the lapse-free case. 1202

A convenient property of the multinomial logistic model (a prop- 1203

erty common to all generalized linear models) is that the parameter 1204

vector pi governing y depends only on a 1-dimensional projection 1205

of the input, Vi = φ>wi, which is known as the linear predictor. 1206

Recall that φ = φ(x) is the input feature vector. In the multinomial 1207

case, it is useful to consider the column vector of linear predictors 1208

for a single trial, V = [V1, · · · , Vk]
>

, and the concatenated weight 1209

vector w = [w>1 , · · · ,w>k ]>, consisting of all weights stacked 1210

into a single vector. We can summarize their linear relationship 1211

as V = Xw, where X is a block diagonal matrix containing k 1212

blocks of φ> along the diagonal. In other words, 1213

X =


φ> 0> · · · 0>

0> φ> · · · 0>

...
...

. . .
...

0> 0> · · · φ>

 , w =


w1

w2

...

wk

 . (26) 1214

Derivatives. It is convenient to work in terms of the linear pre- 1215

dictor V = {Vi} first. If Ny ≡
∑
i yi = 1 is the total number of 1216

responses per trial, the first and second derivatives ofLwith respect 1217

to V are ∂L/∂Vj = yj−Nypj and ∂2L/∂Vi∂Vj = Nypi(δij−pj), 1218

respectively. Rewriting in vector forms, we have 1219

∂L

∂V
= (y −Nyp)>, (27) 1220

∂2L

∂V2
= −Ny

(
diag(p)− pp>

)
≡ −NyΓ(p), (28) 1221

1222

where diag(p) = [piδij ] is a square matrix with the elements of p 1223

on the diagonal, and zeros otherwise. 1224

Putting back in terms of the weight vector w is easy, thanks to 1225

the linear relationship V = Xw: 1226

∂L

∂w
=
∂L

∂V
X = (y − p)>X ≡∆>, (29) 1227

∂2L

∂w2
= X>

∂2L

∂V2
X = −X>ΓX ≡ −Λ. (30) 1228

1229
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Concavity. Importantly, L is concave with respect to V (and1230

therefore with respect to w). To prove the concavity of L, we show1231

that the Hessian H = −diag(p) + pp> ≡ −Γ is negative semi-1232

definite, which is equivalent to showing that z>Γz ≥ 0:1233

z>Γz = z>diag(p)z− (z>p)21234

=
∑
i z

2
i pi −

(∑
j zjpj

)2
1235

=
∑
i pi

[(
zi −

∑
j zjpj

)2]
≥ 0 (31)1236

1237

for an arbitrary vector z.1238

Log likelihood with lapse. With a finite lapse rate λ, to recap,1239

the multinomial logistic model is modified as pi = (1−λ)qi +λci1240

where1241

qi =
exp(Vi)∑
j exp(Vj)

, λci =
exp(ui)

1 +
∑
j exp(uj)

. (32)1242

Let us introduce the following abbreviations,1243

ri ≡
λci
pi
, ti ≡ yi(1− ri), si ≡ yiri(1− ri), (33)1244

where the dimensionless ratio r ∈ [0, 1] can be considered as the1245

order parameter for the effect of lapse.1246

Derivatives with respect to the weights. Differentiating with the1247

linear predictor V, we get1248

∂qi
∂Vl

= (δil − ql)qi,1249

∂2qi
∂Vj∂Vl

= [(δij − qj)(δil − ql)− (δjlql − qjql)] qi.1250

1251

which leads to1252

∂pi
∂Vl

= (1− λ)
∂qi
∂Vl

,
∂2pi
∂Vj∂Vl

= (1− λ)
∂2qi
∂Vj∂Vl

.1253

We are interested in the derivatives of the log likelihood L =1254

y> log p with respect to V. The partial gradient:1255

∂L

∂Vl
=
∑
i

yi
1

pi

∂pi
∂Vl

= (1− λ)
∑
i

yi
qi
pi

(δil − ql)1256

= tl − ql
∑
i

ti.1257

1258

Similarly, the partial Hessian is written as 1259

∂2L

∂Vj∂Vl
=
∑
i

yi

(
1

pi

∂2pi
∂Vj∂Vl

− 1

p2i

∂pi
∂Vj

∂pi
∂Vl

)
1260

= δjl (sl − ql
∑
i ti)− (qjsl + qlsj) + qjql (

∑
i si +

∑
i ti) . 1261

1262

In vector forms, and with τ ≡
∑
i ti and σ ≡

∑
i si, 1263

∂L

∂V
= (t− τq)>; (34) 1264

1265

∂2L

∂V2
= diag(s− τq)− (qs> + sq>) + (τ + σ)qq> 1266

= −τ
[
diag(q)− qq>

]
1267

+
[
diag(s)− (qs> + sq>) + σ qq>

]
. (35) 1268

1269

Note that we recover ti → yi and si → 0 in the lapse-free limit 1270

λ → 0. Hence the first square bracket in (35) reduces back to 1271

the lapse-free Hessian, while the second square bracket vanishes 1272

as λ→ 0. 1273

In the presence of lapse, one might still be interested in the 1274

partial Hessian with respect to the weight parameters, H ≡ 1275

∂2L/∂V2, which should be evaluated as in (35). To test the nega- 1276

tive semi-definiteness of this partial Hessian, again for an arbitrary 1277

vector z, we end up with 1278

z>Hz = −
∑
j

tj

〈
(z − 〈z〉q)

2
〉
q

+
∑
j

sj

(
zj − 〈z〉q

)2
(36) 1279

1280

where 〈x〉q =
∑
j xjqj . The partial Hessian is asymptotically neg- 1281

ative semi-definite (which is equivalent to the log likelihood being 1282

concave) in the lapse-free limit, where tj → yj and sj → 0. 1283

Derivatives with respect to lapse parameters. From (2) and (3), 1284

we have pi = (1− λ)qi + λci where 1285

ci =
exp(ui)∑
j exp(uj)

; λ =

∑
j exp(uj)

1 +
∑
j exp(uj)

. (37) 1286

Differentiating with respect to the auxiliary lapse parameter ui, 1287

∂ci
∂uj

= (δij − ci)cj ;
∂λ

∂uj
= (1− λ)λcj . (38) 1288

The gradient is then 1289

∂pi
∂uj

= (δij − pi)λcj ; (39) 1290

1291

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/260976doi: bioRxiv preprint 

https://doi.org/10.1101/260976
http://creativecommons.org/licenses/by/4.0/


using the abbreviations in (33), the gradient of the log likelihood is1292

∂L

∂uj
=
∑
i

yi
1

pi

∂pi
∂uj

= rj (yj −Ny · pj) . (40)1293

1294

Second derivative with respect to lapse:1295

∂2pi
∂uj∂ul

= δjl
∂pi
∂ul
− (δij + δil − 2pi)λclλcj ; (41)1296

1297

it is useful to notice that1298

∂pi
∂uj

∂pi
∂ul

= δjl
∂pi
∂ul

λcl − pi(δij + δil − 2pi)λclλcj . (42)1299

1300

The corresponding part of the Hessian:1301

∂2L

∂uj∂ul
=
∑
i

yi

(
1

pi

∂2pi
∂uj∂ul

− 1

p2i

∂pi
∂uj

∂pi
∂ul

)
1302

= δjl
∑
i

yi
1

pi

(
1− λcl

pi

)
∂pi
∂ul

1303

= δjl

(
sl − rlplNy + r2l p

2
l

∑
i

yi
pi

)
. (43)1304

1305

Finally, the mixed derivative:1306

∂2pi
∂uj∂Vl

= −(1− λ)λcj · (δil − ql)ql. (44)1307

1308

again it is useful to notice that1309

∂pi
∂uj

∂pi
∂Vl

= −(δij − pi)
∂2pi
∂uj∂Vl

. (45)1310

1311

Hence1312

∂2L

∂uj∂Vl
=
∑
i

yi

(
1

pi

∂2pi
∂uj∂Vl

− 1

p2i

∂pi
∂uj

∂pi
∂Vl

)
1313

= −sj
(
δjl +

q2l
qj

)
. (46)1314

1315

From (40), (43) and (46), we see that all derivatives involving the1316

lapse parameter scale with at least one order of r, therefore vanish-1317

ing in the lapse-free limit λ→ 0.1318

Appendix B1319

The Metropolis-Hastings algorithm. The Metropolis-1320

Hastings algorithm (Metropolis et al., 1953) generates a chain of1321

samples, using a proposal density and a method to accept or reject1322

the proposed moves.1323

A proposal is made at each iteration, where the algorithm ran- 1324

domly chooses a candidate for the next sample value x′ based on 1325

the current sample value xt. The choice follows the proposal den- 1326

sity function, x′ ∼ Q(x′|xt). When the proposal density Q is 1327

symmetric, for example a Gaussian, the sequence of samples is a 1328

random walk. In general the width of Q should match with the 1329

statistics of the distribution being sampled, and individual dimen- 1330

sions in the sampling space may behave differently in the multi- 1331

variate case; finding the appropriate Q can be difficult. 1332

The proposed move is either accepted or rejected with some 1333

probability; if rejected, the current sample value is reused in the 1334

next iteration, x′ = xt. The probability of acceptance is deter- 1335

mined by comparing the values of P (xt) and P (x′), where P (x) is 1336

the distribution being sampled. Because the algorithm only consid- 1337

ers the acceptance ratio ρ = P (x′)/P (xt) = f(x′)/f(xt) where 1338

f(x) can be any function proportional to the desired distribution 1339

P (x), there is no need to worry about the proper normalization 1340

of the probability distribution. If ρ ≥ 1, the move is always ac- 1341

cepted; if ρ < 1, it is accepted with a probability ρ. Consequently 1342

the samples tend to stay in the high-density regions, visiting the 1343

low-density regions only occasionally. 1344

Optimizing the sampler. One of the major difficulties in using 1345

the MCMC method is to make an appropriate choice of the pro- 1346

posal distribution, which may significantly affect the performance 1347

of the sampler. If the proposal distribution is too narrow, it will 1348

take a long time for the chain to diffuse away from the starting 1349

point, producing a chain with highly correlated samples, requiring 1350

a long time to achieve independent samples. On the other hand if 1351

the proposal distribution is too wide, most of the proposed moves 1352

would be rejected, once again resulting in the chain stuck at the ini- 1353

tial point. In either case the chain would “mix” poorly (Rosenthal, 1354

2011). In this paper we restrict our consideration to the Metropolis- 1355

Hastings algorithm (Metropolis et al., 1953), although the issue of 1356

proposal distribution optimization is universal in most variants of 1357

MCMC algorithms, only with implementation-level differences. 1358

The basic idea is that the optimal width of the proposal distribu- 1359
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Figure 10: Statistics of the semi-adaptive MCMC in a simulated experiment, with M = 1000 samples per chain. We used the same binomial model as

in Fig. 3, and the uniform stimulus selection algorithm. (A-B) In a lapse-free model: (A) The standard deviation of the samples, along each dimension of

the parameter space, decreases as the learning progresses, as expected because the posterior distribution should narrow down as more observations are

collected. Also shown is the scatter plot of all 1000 samples at the last trial N = 50, where the true parameter values are (a, b) = (5, 0). (B) The mixing

time of the chain (number of steps before the autocorrelation falls to 1/e) quickly converges to some small value, meaning that the sampler is quickly

optimized. Autocorrelation function at the last trial N = 50 is shown. (C-D) Same information as (A) and (B), but with a lapse rate of λ = 0.1, with uniform

lapse (c1 = c2 = 1/2).

tion would be determined in proportion to the typical length scale1360

of the distribution being sampled. This idea was made precise in1361

the case of a stationary random-walk Metropolis algorithm with1362

Gaussian proposal distributions, by comparing the covariance ma-1363

trix Σp of the proposal distribution to the covariance matrix Σ of1364

the sampled chain. Once a linear scaling relation Σp = sdΣ is1365

fixed, it was observed that it is optimal to have sd = (2.38)2/d1366

where d is the dimensionality of the sampling space (Gelman et1367

al., 1996; Roberts et al., 1997). An adaptive Metropolis algo-1368

rithm (Haario et al., 2001) followed this observation, where the1369

Gaussian proposal distribution adapts continuously as the sampling1370

progresses. Their adaptive algorithm used the same scaling rule1371

Σp = sdΣ, but updates Σp at each proposal where Σ is covariance1372

of the samples accumulated so far. Additionally, a small diagonal1373

component was added for stability, as Σp = sd(Σ + εI). We used1374

ε = 0.0001 in this work.1375

Here we propose and use the semi-adaptive Metropolis-Hastings1376

algorithm, which is a coarse-grained version of the original adap-1377

tive algorithm by Haario et al. (2001). The major difference in1378

our algorithm is that the adjustment of the proposal distribution is 1379

made only at the end of each (sequential) chain, rather than at each 1380

proposal within the chain. This coarse-graining is a reasonable ap- 1381

proximation because we will be sampling the posterior distribution 1382

many times as it refines over the course of data collection, once 1383

after each trial. Assuming that the change in posterior distribu- 1384

tion after each new observation is small enough, we can justify our 1385

use of the statistics of the previous chain to adjust the properties 1386

of the current chain. Unlike in the fully adaptive algorithm where 1387

the proposal distribution needs to stabilize quickly within a single 1388

chain, we can allow multiple chains until stabilization, usually a 1389

few initial observations – leaving some room for the coarse-grained 1390

approximation. This is because, for our purpose, it is not impera- 1391

tive that we have a good sampling of the distribution at the very 1392

early stage of the learning sequence where the accuracy is already 1393

limited by the smallness of the dataset. 1394

When applied to the sequential learning algorithm, our semi- 1395

adaptive Metropolis sampler shows a consistent well-mixing prop- 1396

erty after a few initial adjustments, with the standard deviation 1397
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of each sampling dimension decreasing stably as data accumulate1398

(Fig. 10). Whereas Kujala and Lukka (2006) also had the idea of1399

adjusting the proposal density between trials, their scaling factor1400

was fixed and independent of the sampling dimension. Building on1401

more precise statistical observations, our method generalize well to1402

high-dimensional parameter spaces, typical for multiple-alternative1403

models. Our semi-adaptive sampler provides an efficient and ro-1404

bust alternative to the particle filter implementations (Kujala &1405

Lukka, 2006), which has the known problem of weight degener-1406

ation (DiMattina, 2015) as the posterior distribution narrows down1407

with the accumulation of data.1408

Appendix C1409

Fast sequential update of the posterior, with Laplace ap-1410

proximation. Use of Laplace approximation was shown to be1411

particularly useful in a sequential experiment (Lewi et al., 2009),1412

where it can be assumed that the posterior distribution after the1413

next trial in sequence, Pt+1, would not be very different from the1414

current posterior Pt. Let us consider the lapse-free case θ = w for1415

the moment, where the use of Laplace approximation is valid. Re-1416

arranging from (7) and (9), the sequential update for the posterior1417

distribution is1418

logPt+1(w) = logPt(w) + Lt+1(w); (47)1419

or with Laplace approximation,1420

logN (w|θt+1, Ct+1) ≈ logN (w|θt, Ct) + Lt+1(w) (48)1421

where Li(w) = log p(yi|xi,w) is a shorthand for the log likeli-1422

hood of the i-th observation.1423

With this, we can achieve a fast sequential update of the posterior1424

without performing the full numerical optimization each time. Be-1425

cause the new posterior mode θt+1 is where the gradient vanishes,1426

it can be approximated from the previous mode θt by taking the1427

first derivative of (48). The posterior covariance Ct+1 is similarly1428

approximated by taking the second derivate. 1429

θt+1 = θt + Ct∆t+1, ∆t+1 =
∂Lt+1

∂w

∣∣∣∣
w=θt

(49) 1430

Ct+1 =
(
C−1t + Λt+1

)−1
, Λt+1 = − ∂2Lt+1

∂w2

∣∣∣∣
w=θt+1

(50) 1431

1432

Using the matrix inversion lemma (Henderson & Searle, 1981), we 1433

can rewrite the posterior covariance update as 1434

Ct+1 = Ct
[
I − (I + Λt+1Ct)

−1Λt+1Ct
]
. (51) 1435

Unlike in the earlier application of this trick (Lewi et al., 2009), the 1436

covariance matrix update (50) is not a rank-one update, because of 1437

the multinomial nature of our model (our linear predictor y is a 1438

vector, not a scalar as in a binary model). 1439

Integration over the parameter space: reducing the inte- 1440

gration space. The evaluation of expected utility function usu- 1441

ally involves a potentially high-dimensional integral over the pa- 1442

rameter space. With the Gaussian approximation of the posterior, 1443

we can reduce and standardize the integration space. The process 1444

consists of three steps: diagonalization, marginalization, and stan- 1445

dardization. First we choose a new “coordinate system” of the (say 1446

q-dimensional) weight space, such that the first k elements of the 1447

extended weight vector w are coupled one-to-one to the elements 1448

of k-vector y. Then we marginalize to integrate out the remaining 1449

(q − k) dimensions, effectively changing the integration variable 1450

from w to y. Finally, we use Cholesky decomposition to stan- 1451

dardize the normal distribution which is the posterior on y. The 1452

resulting integral is still multi-dimensional, due to the multinomial 1453

nature of our model. But once the distribution is standardized, there 1454

are a number of efficient numerical integration methods that can be 1455

applied. For example, in this work, we use the Sparse Grid method 1456

(Heiss & Winschel, 2008) based on Gauss-Hermite quadrature. 1457

Diagonalization. It is clear from (19-20) and (29-30) that all 1458

parameter-dependence in our integrand is in terms of the linear 1459

predictor y = Xw. That is, we are dealing with the integral of 1460

the form 1461

F =

∫
dw′ N (w′|ŵ′, C) · f(Xw′), (52) 1462
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where C is the covariance matrix, and X = ⊕kj=1g
′>
j is a fixed1463

matrix constructed from direct sum of k vectors. It helps to work1464

in a diagonalized coordinate system, so that we can separate out the1465

relevant dimensions of w. We use the singular value decomposi-1466

tion of the design matrix (X = UGV > with U = I and V = Q>).1467

Because of the direct-sum construction, XX> is already diagonal,1468

and the left singular matrix is always I in this case. Then1469

G = XQ> =
[
Gk Gq

]
, (53)1470

where Gk is a k × k diagonal matrix and Gq is a k × (q − k)1471

matrix of zeros. We can now denote wk = (w1, · · · , wk) and1472

wq = (wk+1, · · · , wq) in the diagonalized variable w = Qw′,1473

such that1474

w = [wk,wq]
>, Gw = Gkwk = (g1w1, g2w2, · · · gkwk).1475

Marginalization. Now we have1476

F =

∫
dw N (w|ŵ, B−1) · f(Gw), B−1 = QCQ> (54)1477

whereB is the inverse of the new covariance matrix after diagonal-1478

ization. If we block-decompose this matrix,1479

B =

 Bkk Bkq

Bqk Bqq

 , Bkq = (Bqk)>, (55)1480

the Gaussian distribution is also decomposed as1481

N (w|ŵ, B−1) = N (wk|ŵk, B
−1
∗ ) · N (wq|(ŵq − b), B−1qq )1482

where b = B−1qq Bqkwk and B∗ = Bkk − BkqB−1qq Bqk. As the1483

non-parallel part wq is integrated out, we have marginalized the1484

integral. It is useful to recall that if a variable w ∼ N (ŵ, C) is1485

Gaussian distributed, its linear transform y = Xw is also Gaus-1486

sian distributed as y ∼ N (ŷ,Σ), with ŷ = Xŵ and Σ = XCX>.1487

Changing the integration variable to y = Gkwk is then straight-1488

forward:1489

F =

∫
dwk N (wk|ŵk, B

−1
∗ ) · f(Gkwk)1490

=

∫
dy N (y|ŷ,Σ) · f(y), Σ = GkB

−1
∗ G>k . (56)1491

1492

Standardization. Finally, in order to deal with the numerical in- 1493

tegration, it is convenient to have the normal distribution standard- 1494

ized. We can use the Cholesky decomposition for the covariance 1495

matrix, 1496

LL> = Σt+1, (57) 1497

such that the new variable θ = L−1(y − ŷt+1) is standard normal 1498

distributed. From the above formulation, L can be written directly 1499

in terms of the Cholesky decomposition of B∗: 1500

L = GkR
−1 where R>R = B∗. (58) 1501

Importantly, with this transformation, each dimension of θ is inde- 1502

pendently and identically distributed. The objective function to be 1503

evaluated is now 1504

F (x) =

∫
dy · N (y|ŷt+1,Σt+1) · f(y,x) 1505

=

∫
dθ · N (θ|0, I) · f(φ(θ),x) (59) 1506

1507

where φ(θ) = ŷt+1+Lθ. Once the integration is standardized this 1508

way, there are a number of efficient numerical methods that can be 1509

applied. 1510
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