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 4 

Abstract:  5 

Humans vary substantially in their willingness to take risks. In a combined sample of over one 6 

million individuals, we conducted genome-wide association studies (GWAS) of general risk 7 

tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual 8 

domains. We identified 611 approximately independent genetic loci associated with at least one 9 

of our phenotypes, including 124 with general risk tolerance. We report evidence of substantial 10 

shared genetic influences across general risk tolerance and risky behaviors: 72 of the 124 general 11 

risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk 12 

tolerance is moderately to strongly genetically correlated ( !"  ~ 0.25 to 0.50) with a range of 13 

risky behaviors. Bioinformatics analyses imply that genes near general-risk-tolerance-associated 14 

SNPs are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic 15 

neurotransmission. We find no evidence of enrichment for genes previously hypothesized to 16 

relate to risk tolerance.  17 

 18 

  19 
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 2 

Main Text: 20 

Choices in important domains of life, including health, fertility, finance, employment, and social 21 

relationships, rarely have consequences that can be anticipated perfectly. The degree of 22 

variability in possible outcomes is called risk. Risk tolerance—defined as the willingness to take 23 

risks, typically to obtain some reward—varies substantially across humans and has been actively 24 

studied in the behavioral and social sciences. An individual’s risk tolerance may vary across 25 

domains, but survey-based measures of general risk tolerance (e.g., “Would you describe 26 

yourself as someone who takes risks?”) have been found to be good all-around predictors of 27 

risky behaviors such as portfolio allocation, occupational choice, smoking, drinking alcohol, and 28 

starting one’s own business1–3.  29 

Twin studies have established that various measures of risk tolerance are moderately heritable 30 

(ℎ$~30%, although estimates in the literature vary3–5). Discovery of specific genetic variants 31 

associated with general risk tolerance could advance our understanding of how genetic 32 

influences are amplified and dampened by environmental factors; provide insights into 33 

underlying biological pathways; enable the construction of polygenic scores (indexes of many 34 

genetic variants) that can be used as overall measures of genetic influences on individuals; and 35 

help distinguish genetic variation associated with general versus domain-specific risk tolerance. 36 

Although risk tolerance has been one of the most studied phenotypes in social science genetics, 37 

most claims of positive findings have been based on small-sample candidate gene studies 38 

(Supplementary Table 11.1), whose limitations are now appreciated6. To date, only two loci 39 

associated with risk tolerance have been identified in genome-wide association studies 40 

(GWAS)7,8.  41 

Here, we report results from large-scale GWAS of self-reported general risk tolerance (our 42 

primary phenotype) and six supplementary phenotypes: “adventurousness” (defined as the self-43 

reported tendency to be adventurous vs. cautious); four risky behaviors: “automobile speeding 44 

propensity” (the tendency to drive faster than the speed limit), “drinks per week” (the average 45 

number of alcoholic drinks consumed per week), “ever smoker” (whether one has ever been a 46 

smoker), and “number of sexual partners” (the lifetime number of sexual partners); and the first 47 

principal component (PC) of these four risky behaviors, which we interpret as capturing the 48 

general tendency to take risks across domains. All seven phenotypes are coded such that higher 49 
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 3 

phenotype values are associated with higher risk tolerance or risk taking. Table 1 lists, for each 50 

GWAS, the datasets we analyzed and the GWAS sample size.   51 

 52 

Association analyses 53 

All seven GWAS were performed in European-ancestry subjects, following procedures described 54 

in a pre-specified analysis plan (https://osf.io/cjx9m/) and in Supplementary Information 55 

section 2. 56 

In the discovery phase of our GWAS of general risk tolerance (n = 939,908), we performed a 57 

sample-size-weighted meta-analysis of results from the UK Biobank (UKB, n = 431,126) and a 58 

sample of research participants from 23andMe (n = 508,782). The UKB measure of general risk 59 

tolerance is based on the question: “Would you describe yourself as someone who takes risks? 60 

Yes / No.” The 23andMe measure is based on a question about overall comfort taking risks, with 61 

five response options ranging from “very comfortable” to “very uncomfortable.” The genetic 62 

correlation9 between the UKB and 23andMe cohorts (!" = 0.77, SE = 0.02) is smaller than one 63 

but high enough to justify our approach of pooling the two cohorts10.  64 

The Q-Q plot (Extended Data Fig. 3.2a) from the discovery GWAS exhibits substantial 65 

inflation (λGC = 1.41). According to the estimated intercept from a linkage disequilibrium (LD) 66 

Score regression11, only a small share of this inflation (~5%) in test statistics is due to bias. To 67 

account for this bias, we inflated GWAS standard errors by the square root of the LD Score 68 

regression intercept. 69 

We identified 124 approximately independent SNPs (pairwise r2 < 0.1) that attained genome-70 

wide significance (P < 5´10-8). These 124 “lead SNPs” are listed in Supplementary Table 3.1 71 

and shown in Fig. 1a. All have coefficients of determination (R2’s) below 0.02%, and the SNP 72 

with the largest per-allele effect is estimated to increase general risk tolerance by ~0.026 73 

standard deviations in our discovery sample (Extended Data Fig. 3.3). 74 

In the replication phase of our GWAS of general risk tolerance (combined n = 35,445), we meta-75 

analyzed summary statistics from ten smaller cohorts. Additional details on cohort-level 76 

phenotype measures are provided in Supplementary Table 1.2. The questions differ in terms of 77 

their exact wording and number of response categories, but all questions ask subjects about their 78 
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overall or general attitudes toward risk. The genetic correlation9 between the discovery and 79 

replication GWAS is 0.83 (SE = 0.13). 123 of the 124 lead SNPs were available or well proxied 80 

by an available SNP in the replication GWAS results. Out of the 123 SNPs, 94 have a 81 

concordant sign (P = 1.7×10-9) and 23 are significant at the 5% level in one-tailed t tests (P = 82 

4.5×10-8) (Extended Data Fig. 5.1). This empirical replication record matches theoretical 83 

projections that take into account sampling variation and the winner’s curse (Supplementary 84 

Information section 5).  85 

Our six supplementary GWAS—of adventurousness, four risky behaviors, and their principal 86 

component (n = 315,894 to 557,923; Supplementary Tables 1.1-1.2)—were conducted using 87 

methods comparable to those in the primary GWAS, but without a replication phase. Extended 88 

Data Fig. 3.2 (c to h) shows Q-Q plots and Extended Data Fig. 3.1 (a to f) shows Manhattan 89 

plots. 90 

Table 1 provides a summary overview of the seven GWAS. We identified a total of 865 lead 91 

SNPs across the seven GWAS. The lead SNPs are located in 611 approximately independent 92 

loci, where a locus is defined as the set of all SNPs in weak LD (pairwise r2 > 0.1) with a lead 93 

SNP. The SNP heritabilities of the seven phenotypes range from ~0.05 (for general risk 94 

tolerance) to ~0.16 (for the first PC of the four risky behaviors). 95 

 96 

Genetic overlap  97 

There is substantial overlap across the results of our GWAS. For example, 72 of the 124 general-98 

risk-tolerance lead SNPs are in loci that also contain lead SNPs for at least one of the other 99 

GWAS, including 45 for adventurousness and 49 for at least one of the four risky behaviors or 100 

their first PC. To empirically assess if this overlap could be attributed to chance, we conducted a 101 

resampling exercise under the null hypothesis that the lead SNPs of our supplementary GWAS 102 

are distributed independently of the 124 general-risk-tolerance lead loci. We strongly rejected 103 

this null hypothesis (P < 0.0001; Supplementary Information section 3.3.3). 104 

Several regions of the genome stand out for being associated both with general risk tolerance and 105 

with all or most of the supplementary phenotypes. We tested whether the signs of the lead SNPs 106 

located in these regions tend to be concordant across our primary and supplementary GWAS. We 107 
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strongly rejected the null hypothesis of no concordance (P < 3×10-30; Supplementary 108 

Information section 3.2.3), suggesting that these regions represent shared genetic influences, 109 

rather than colocalization of causal SNPs. Fig. 1b and Extended Data Fig. 3.4 show local 110 

Manhattan plots for some of these regions. The long-range LD region12 on chromosome 3 (~83.4 111 

to 86.9 Mb) contains lead SNPs from all seven GWAS as well as the most significant lead SNP 112 

from the general risk tolerance GWAS, rs993137 (P = 2.14×10–40), which is located in the gene 113 

CADM2. Another long-range LD region, on chromosome 6 (~25.3 to 33.4 Mb), covers the HLA-114 

complex and contains lead SNPs from all GWAS except drinks per week. Three candidate 115 

inversions (i.e., genomic regions that are highly prone to inversion polymorphisms; 116 

Supplementary Information section 2.9.2) on chromosomes 7 (~124.6 to 132.7 Mb), 8 (~7.89 117 

to 11.8 Mb), and 18 (~49.1 to 55.5 Mb) contain lead SNPs from six, five, and all seven of our 118 

GWAS, respectively. Finally, four other LD blocks13 that do not overlap known long-range LD 119 

or candidate inversion regions each contain lead SNPs from five of our GWAS (including 120 

general risk tolerance). The two long-range LD regions and the three candidate inversions have 121 

previously been found to be associated with numerous phenotypes, including many cognitive and 122 

neuropsychiatric phenotypes14.  123 

To investigate genetic overlap at the genome-wide level, we estimated genetic correlations with 124 

self-reported general risk tolerance using bivariate LD Score regression9. (For this and all 125 

subsequent analyses involving general risk tolerance, we used the summary statistics from the 126 

combined meta-analysis of our discovery and replication GWAS.) The estimated genetic 127 

correlations with our six supplementary phenotypes are all positive, larger than ~0.25, and highly 128 

significant (P < 2.3×10–30; Fig. 2), indicating that SNPs associated with higher general risk 129 

tolerance also tend to be associated with riskier behavior. The largest estimated genetic 130 

correlations are with adventurousness (!" = 0.83, SE = 0.01), number of sexual partners (0.52, SE 131 

= 0.02), automobile speeding propensity (0.45, SE = 0.02), and the first PC of the four risky 132 

behaviors (0.50, SE = 0.02). 133 

Our estimates of the genetic correlations between general risk tolerance and the supplementary 134 

risky behaviors are substantially higher than the corresponding phenotypic correlations 135 

(Supplementary Tables 1.3 and 7.1). Although measurement error partly accounts for the low 136 

phenotypic correlations, the genetic correlations remain considerably higher even after 137 
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adjustment of the phenotypic correlations for measurement error. The comparatively large 138 

genetic correlations support the view that a general factor of risk tolerance partly accounts for 139 

cross-domain variation in risky behavior15,16 and imply that this factor is genetically influenced. 140 

The lower phenotypic correlations suggest that environmental factors are more important 141 

contributors to domain-specific risky behavior17,18. 142 

To increase the precision of our estimates of the SNPs’ effects on general risk tolerance, we 143 

leveraged the high degree of genetic overlap across our phenotypes by conducting Multi-Trait 144 

Analysis of GWAS (MTAG)19. We used as inputs the summary statistics of our GWAS of 145 

general risk tolerance, of our first five supplementary GWAS (i.e., not including the first PC of 146 

the four risky behaviors), and of a previously published GWAS on lifetime cannabis use20 147 

(Supplementary Information section 9). MTAG increased the number of general-risk-tolerance 148 

lead SNPs from 124 to 312 (Extended Data Fig. 9.1, Supplementary Table 9.1). 149 

We also estimated genetic correlations between general risk tolerance and 28 additional 150 

phenotypes (Fig. 2 and in Supplementary Table 7.1). These included phenotypes for which we 151 

could obtain summary statistics from previous GWAS, as well as five phenotypes for which we 152 

conducted new GWAS. The estimated genetic correlations for the personality traits extraversion 153 

(!" = 0.51, SE = 0.03), neuroticism (-0.42, SE = 0.04), and openness to experience (0.33, SE = 154 

0.03) are substantially larger in magnitude than previously reported phenotypic correlations21, 155 

pointing to substantial shared genetic influences among general risk tolerance and these traits. 156 

After Bonferroni correction, we also find significant positive genetic correlations with the 157 

neuropsychiatric phenotypes ADHD, bipolar disorder, and schizophrenia. Viewed in light of the 158 

genetic correlations we find with risky behaviors classified as externalizing (e.g., substance use, 159 

elevated sexual behavior, and fast driving), these results suggest the hypothesis that the overlap 160 

with the neuropsychiatric phenotypes is driven by their externalizing component. 161 

 162 

Biological annotation 163 

To gain insights into the biological mechanisms through which genetic variation influences 164 

general risk tolerance, we conducted a number of analyses. First, we systematically reviewed the 165 

literature that aimed to link risk tolerance to biological pathways (Supplementary Information 166 

section 11). Our review covered studies based on candidate genes (i.e., specific genetic variants 167 
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used as proxies for biological pathways), pharmacological manipulations, biochemical assays, 168 

genetic manipulations in rodents, as well as other research designs. Our review identified 132 169 

articles that matched our search criteria (Supplementary Table 11.1).  170 

Previous work has focused on five main biological pathways: the steroid hormone cortisol, the 171 

monoamines dopamine and serotonin, and the steroid sex hormones estrogen and testosterone. 172 

Using a MAGMA22 competitive gene-set analysis, we found no evidence that SNPs within genes 173 

associated with these five pathways tend to be more associated with general risk tolerance than 174 

SNPs in other genes (Supplementary Table 11.3). Further, none of the other bioinformatics 175 

analyses we report below point to these pathways.  176 

We also examined the 15 most commonly tested autosomal genes within the dopamine and 177 

serotonin pathways, which were the focus of most of the 34 candidate-gene studies identified by 178 

our literature review. We verified that the SNPs available in our GWAS results tag most of the 179 

genetic variants typically used to test the 15 genes. Across one SNP-based test and two gene-180 

based tests, we found no evidence of non-negligible associations between those genes and 181 

general risk tolerance (Fig. 1c and Supplementary Table 11.4). (We note, however, that some 182 

brain regions identified in analyses we report below are areas where dopamine and serotonin 183 

play important roles.) 184 

Second, we performed a MAGMA22 gene analysis to test each of ~18,000 protein-coding genes 185 

for association with general risk tolerance (Supplementary Information section 12.2). After 186 

Bonferroni correction, 285 genes were significant (Extended Data Fig. 12.1 and 187 

Supplementary Table 12.3). To gain insight into the functions and expression patterns of these 188 

285 genes, we looked up these genes in the Gene Network23 co-expression database. Third, to 189 

identify relevant biological pathways and identify tissues in which genes near general-risk-190 

tolerance-associated SNPs are expressed, we applied the software tool DEPICT24 to the SNPs 191 

with P values less than 10-5 in our GWAS of general risk tolerance (Supplementary 192 

Information section 12.4).  193 

Both the Gene Network and the DEPICT analyses separately point to a role for glutamate and 194 

GABA neurotransmitters, which are the main excitatory and inhibitory neurotransmitters in the 195 

brain, respectively25 (Fig. 3a and Supplementary Tables 12.4 and 12.8). To our knowledge, no 196 

published large-scale GWAS of cognition, personality, or neuropsychiatric phenotypes has 197 
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pointed to clear roles both for glutamate and GABA (although glutamatergic neurotransmission 198 

has been implicated in recent GWAS of schizophrenia26 and major depression27). Our results 199 

suggest that the balance between excitatory and inhibitory neurotransmission may contribute to 200 

variation in general risk tolerance across individuals. 201 

The Gene Network and the DEPICT tissue enrichment analyses also both separately point to 202 

enrichment of the prefrontal cortex and the basal ganglia (Fig. 3b and Supplementary Tables 203 

12.4, 12.6, and 12.7). The cortical and subcortical regions highlighted by DEPICT include some 204 

of the major components of the cortical-basal ganglia circuit, which is known as the reward 205 

system in human and non-human primates and is critically involved in learning, motivation, and 206 

decision-making, notably under risk and uncertainty28,29. We caution, however, that our results 207 

do not point exclusively to the reward system.  208 

Lastly, we used stratified LD Score regression30 to test for the enrichment of SNPs associated 209 

with histone marks in 10 tissue or cell types (Supplementary Information section 12.1). 210 

Central nervous system tissues are the most enriched, accounting for 44% (SE = 3%) of the 211 

heritability while comprising only 15% of the SNPs (Extended Data Fig. 12.3a and 212 

Supplementary Table 12.2). Immune/hematopoietic tissues are also significantly enriched. 213 

While a role for the immune system in modulating risk tolerance is plausible given prior 214 

evidence of its involvement in several neuropsychiatric disorders26,27, future work is needed to 215 

confirm this result and to uncover specific pathways that might be involved.  216 

 217 

Polygenic prediction  218 

We constructed polygenic scores of general risk tolerance to gauge their potential usefulness in 219 

empirical research (Supplementary Information section 10). We used the Add Health, HRS, 220 

NTR, STR, UKB-siblings, and Zurich cohorts as validation cohorts (Supplementary Table 1.1 221 

provides an overview of these cohorts; the UKB-siblings cohort comprised individuals with at 222 

least one full sibling in the UKB). For each validation cohort, we constructed the score using 223 

summary statistics from a meta-analysis of our discovery and replication GWAS that excluded 224 

the cohort. Our measure of predictive power is the incremental R2 (or pseudo-R2) from adding 225 

the score to a regression of the phenotype on sex, birth year, and the top ten principal 226 

components of the genetic relatedness matrix.  227 
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Our preferred score was constructed with LDpred31. In the UKB-siblings cohort, which is our 228 

largest validation cohort ()	~ 35,000), the score’s predictive power is 1.6% for general risk 229 

tolerance, 1.0% for the first PC of the four risky behaviors, 0.8% for number of sexual partners, 230 

0.6% for automobile speeding propensity, and ~0.15% for drinks per week and ever smoker. 231 

Across our validation cohorts, the score is also predictive of several personality phenotypes and a 232 

suite of real-world measures of risky behaviors in the health, financial, career, and other domains 233 

(Extended Data Figs. 10.1-10.2 and Supplementary Tables 10.1-10.3). The incremental R2 we 234 

observe for general risk tolerance is consistent with the theoretical prediction, given the SNP 235 

heritability of general risk tolerance (Table 1) and the imperfect genetic correlations across the 236 

GWAS and validation cohorts32,33 (Supplementary Information section 10.4). 237 

 238 

Discussion 239 

Our results provide insights into biological mechanisms that influence general risk tolerance. Our 240 

bioinformatics analyses point to the role of gene expression in brain regions that have been 241 

identified by neuroscientific studies on decision-making, notably the prefrontal cortex, basal 242 

ganglia, and midbrain, thereby providing convergent evidence with that from neuroscience28,29. 243 

Yet our analyses failed to find evidence for the main biological pathways that had been 244 

previously hypothesized to influence risk tolerance. Instead, our analyses implicate genes 245 

involved in glutamatergic and GABAergic neurotransmission, which were heretofore not 246 

generally believed to play a role in risk tolerance. 247 

Although our focus has been on the genetics of general risk tolerance and risky behaviors, 248 

environmental and demographic factors account for a substantial share of these phenotypes’ 249 

variation. We observe sizeable effects of sex and age on general risk tolerance in the UKB data 250 

(Extended Data Fig. 1.1), and life experiences have been shown to affect both measured risk 251 

tolerance and risky behaviors (e.g., refs. 34,35). The data we have generated will allow 252 

researchers to construct and use polygenic scores of general risk tolerance to measure how 253 

environmental, demographic, and genetic factors interact with one another. 254 

For the behavioral sciences, our results bear on the ongoing debate about the extent to which risk 255 

tolerance is a “domain-general” as opposed to a “domain-specific” trait. Low phenotypic 256 

correlations in risk tolerance across decision-making domains have been interpreted as 257 
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supporting the domain-specific view17,18. Across the risky behaviors we study, we find that the 258 

genetic correlations are considerably higher than the phenotypic correlations (even after the latter 259 

are corrected for measurement error) and that many lead SNPs are shared across our phenotypes. 260 

These observations suggest that the low phenotypic correlations across domains are due to 261 

environmental factors that dilute the effects of a genetically-influenced domain-general factor of 262 

risk tolerance.  263 
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 377 

a  

 

b  c

  

 

Figure 1 | Manhattan plots. In all panels, the x-axis is chromosomal position; the y-axis is the 378 

significance on a −log10 scale; the horizontal dashed line marks the threshold for genome-wide 379 

significance (P = 5×10−8); and each approximately independent (pairwise r2 < 0.1) genome-wide 380 

significant association (“lead SNP”) is marked by a red ×. a, Manhattan plots for the discovery 381 

GWAS of general risk tolerance. b, Local Manhattan plots of two genomic regions that contain 382 

lead SNPs for all seven of our GWAS. The gray background marks the locations of long-range 383 

LD or candidate inversion regions. c, Local Manhattan plots of the loci around the 15 most 384 

commonly tested candidate genes in the prior literature on the genetics of risk tolerance. Each 385 

locus comprises all SNPs within 500 kb of the gene’s borders that are in LD	(!$ > 0.1) with a 386 

SNP in the gene.  The 15 plots are concatenated and shown together in the panel, divided by the 387 

black vertical lines. The 15 genes are not particularly strongly associated with general risk 388 

tolerance or the risky behaviors, as can be seen by comparing the results within each row across 389 

panels b and c (the three rows correspond to the GWAS of general risk tolerance, 390 

adventurousness, and the first PC of the four risky behaviors).  391 

 392 

 393 
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 394 

Figure 2 | Genetic correlations with general risk tolerance. The genetic correlations were 395 

estimated using bivariate LD Score (LDSC) regression9. Error bars show 95% confidence 396 

intervals. For the supplementary phenotypes and the additional risky behaviors, green bars 397 

represent significant estimates with the expected signs, where higher risk tolerance is associated 398 

with riskier behavior. For the other phenotypes, blue bars represent significant estimates. Light 399 

green and light blue bars represent genetic correlations that are statistically significant at the 5% 400 

level, and dark green and dark blue bars represent correlations that are statistically significant 401 

after Bonferroni correction for 34 tests (the total number of phenotypes tested). Grey bars 402 

represent correlations that are not statistically significant at the 5% level. 403 
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a 

 
b 
 

 
Figure 3 | Results from selected biological analyses. a, DEPICT gene-set enrichment diagram. 404 

We identified 93 reconstituted gene sets that are significantly enriched (FDR < 0.01) for genes 405 

overlapping loci associated with general risk tolerance; using the Affinity Propagation method36, 406 

these were grouped into the 13 clusters displayed in the graph. Each cluster was named after the 407 

most significant gene set it contained, and each cluster’s color represents the permutation P value 408 

of its most significant gene set. The “synapse part” cluster includes the gene set “glutamate 409 

receptor activity,” and several members of the “GABAA receptor activation” cluster are defined 410 

by gamma-aminobutyric acid signaling. Overlap between the named representatives of two 411 
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clusters is represented by an edge. Edge width represents the Pearson correlation ρ between the 412 

two respective vectors of gene membership scores (ρ < 0.3, no edge; 0.3 ≤ ρ < 0.5, thin edge; 0.5 413 

≤ ρ < 0.7, intermediate edge; ρ ≥ 0.7, thick edge). b, Results of DEPICT tissue enrichment 414 

analysis using GTEx data. The panel shows whether the genes overlapping loci associated with 415 

general risk tolerance are significantly overexpressed (relative to genes in random sets of loci 416 

matched by gene density) in various tissues. Tissues are grouped by organ or tissue type. The 417 

orange bars correspond to tissues with significant overexpression (FDR < 0.01). The y-axis is the 418 

significance on a −log10 scale. 419 

 420 
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Table 1 | GWAS results  

 

GWAS Cohorts analyzed n Mean !" LD Score 
intercept (SE) 

# lead 
SNPs SNP h2 (SE) 

General risk tolerance (disc. GWAS) UKB; 23andMe 939,908 1.85 1.04 (0.01) 124 0.046 (0.001) 

General risk tolerance (rep. GWAS) 10 indep. cohorts 35,445 1.03 1.00 (0.07) 0 -- 

General risk tolerance (disc. + rep.) UKB; 23andMe; 10 indep. cohorts 975,353 1.87 1.04 (0.01) 132 0.045 (0.001) 

Adventurousness 23andMe 557,923 1.98 1.05 (0.01) 167 0.098 (0.002) 

Automobile speeding propensity UKB 404,291 1.53 1.03 (0.01) 42 0.079 (0.003) 

Drinks per week UKB 414,343 1.61 1.03 (0.01) 85 0.085 (0.003) 

Ever smoker UKB; TAG Consortium 37 518,633 1.97 1.05 (0.01) 223 0.109 (0.003) 

Number of sexual partners UKB 370,711 1.77 1.04 (0.01) 118 0.128 (0.003) 

First PC of the four risky behaviors UKB 315,894 1.77 1.05 (0.01) 106 0.156 (0.004) 

The table provides an overview of the GWAS of our primary and supplementary phenotypes. “n”: GWAS sample size; “Mean !"”: 

mean GWAS chi-squared statistics across HapMap3 SNPs with minor allele frequency (MAF) greater than 0.01; “LD Score 

intercept”: estimate of the intercept from a LD Score regression11 using HapMap3 SNPs with MAF greater than 0.01; “# lead SNPs”: 

number of lead SNPs, calculated after the associated statistics have been adjusted using the estimated LD score intercept; “SNP h2”: 

SNP heritability estimated with the Heritability Estimator from Summary Statistics (HESS) method38 using 1000 Genomes phase 3 

SNPs with MAF greater than 0.05; “disc.”: discovery; “rep.”: replication; “indep.”: independent.  
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