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Abstract

Long-read sequencing and novel long-range assays have revolutionized de novo genome
assembly by automating the reconstruction of reference-quality genomes. In particular,
Hi-C sequencing is becoming an economical method for generating chromosome-scale
scaffolds. Despite its increasing popularity, there are limited open-source tools available.
Errors, particularly inversions and fusions across chromosomes, remain higher than
alternate scaffolding technologies. We present a novel open-source Hi-C scaffolder that
does not require an a priori estimate of chromosome number and minimizes errors by
scaffolding with the assistance of an assembly graph. We demonstrate higher accuracy
than the state-of-the-art methods across a variety of Hi-C library preparations and
input assembly sizes. The Python and C++ code for our method is openly available at
https://github.com/machinegun/SALSA

Author summary

Hi-C technology was originally proposed to study the 3D organization of a genome.
Recently, it has also been applied to assemble large eukaryotic genomes into
chromosome-scale scaffolds. Despite this, there are few open source methods to generate
these assemblies. Existing methods are also prone to small inversion errors due to noise
in the Hi-C data. In this work, we address these challenges and develop a method,
named SALSA2. SALSA2 uses sequence overlap information from an assembly graph to
correct inversion errors and provide accurate chromosome-scale assemblies.

Introduction 1

Genome assembly is the process of reconstructing a complete genome sequence from 2

significantly shorter sequencing reads. Most genome projects rely on whole genome 3

shotgun sequencing which yields an oversampling of each genomic locus. Reads 4

originating from the same locus are identified using assembly software, which can use 5

these overlaps to reconstruct the genome sequence [1, 2]. Most approaches are based on 6

either a de Bruijn [3] or a string graph [4] formulation. Repetitive sequences exceeding 7
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the sequencing read length [5] introduce ambiguity and prevent complete reconstruction. 8

Unambiguous reconstructions of the sequence are output as ”unitigs” (or often 9

”contigs”). Ambiguous reconstructions are output as edges linking unitigs. Scaffolding 10

utilizes long-range linking information such as BAC or fosmid clones [6, 7], optical 11

maps [8–10], linked reads [11–13], or chromosomal conformation capture [14] to order 12

and orient unitigs. If the linking information spans large distances on the chromosome, 13

the resulting scaffolds can span entire chromosomes or chromosome arms. 14

Hi-C is a sequencing-based assay originally designed to interrogate the 3D structure 15

of the genome inside a cell nucleus by measuring the contact frequency between all pairs 16

of loci in the genome [15]. The contact frequency between a pair of loci strongly 17

correlates with the one-dimensional distance between them. Hi-C data can provide 18

linkage information across a variety of length scales, spanning tens of megabases. As a 19

result, Hi-C data can be used for genome scaffolding. Shortly after its introduction, 20

Hi-C was used to generate chromosome-scale scaffolds [16–20]. 21

LACHESIS [16] is an early method for Hi-C scaffolding which first clusters unitigs 22

into a user-specified number of chromosome groups and then orients and orders the 23

unitigs in each group independently to generate scaffolds. Thus, the scaffolds inherit 24

any assembly errors present in the unitigs. The original SALSA1 [21] method first 25

corrects the input assembly, using a lack of Hi-C coverage as evidence of error. It then 26

orients and orders the corrected unitigs to generate scaffolds. Recently, the 27

3D-DNA [20] method was introduced and demonstrated on a draft assembly of the 28

Aedes aegypti genome. 3D-DNA also corrects the errors in the input assembly and then 29

iteratively orients and orders unitigs into a single megascaffold. This megascaffold is 30

then broken, identifying chromosomal ends based the on Hi-C contact map. 31

There are several shortcomings common across currently available tools. They are 32

sensitive to input assembly contiguity and Hi-C library variations and require tuning of 33

parameters for each dataset. Inversions are common when the input unitigs are short, 34

as orientation is determined by maximizing the interaction frequency between unitig 35

ends across all possible orientations [16]. When unitigs are long, there are few 36

interactions spanning the full length of the unitig, making the true orientation apparent 37

from the higher weight of links. However, in the case of short unitigs, there are 38

interactions spanning the full length of the unitig, making the true orientation have a 39

similar weight to incorrect orientations. Biological factors, such as topologically 40

associated domains (TADs) also confound this analysis [22]. 41

SALSA1 [21], addressed some of these challenges, such as not requiring the expected 42

number of chromosomes beforehand and correcting assemblies before scaffolding them 43

with Hi-C data. We showed that SALSA1 worked better than the most widely used 44

method, LACHESIS [16]. However, SALSA1 often did not generate chromosome-sized 45

scaffolds. The contiguity and correctness of the scaffolds depended on the coverage of 46

Hi-C data and required manual data-dependent parameter tuning. Building on this 47

work, SALSA2 does not require manual parameter tuning and is able to utilize all the 48

contact information from the Hi-C data to generate near optimal sized scaffolds 49

permitted by the data using a novel iterative scaffolding method. In addition to this, 50

SALSA2 enables the use of an assembly graph to guide scaffolding, thereby minimizing 51

errors, particularly orientation errors. 52

In this work, we introduce SALSA2 – an open source software that combines Hi-C 53

linkage information with the ambiguous-edge information from a genome assembly 54

graph to better resolve unitig orientations. We also propose a novel stopping condition, 55

which does not require an a priori estimate of chromosome count, as it naturally stops 56

when the Hi-C information is exhausted. We show that SALSA2 has fewer orientation, 57

ordering, and chimeric errors across a wide range of assembly contiguities. We also 58

demonstrate robustness to different Hi-C libraries with varying intra-chromosomal 59
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contact frequencies. When compared to 3D-DNA, SALSA2 generates more accurate 60

scaffolds across most conditions. To our knowledge, this is the first method to leverage 61

assembly graph information for scaffolding Hi-C data. 62

1 Methods 63
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Fig 1. (A) Overview of the SALSA2 scaffolding algorithm. (B) Linkage information
obtained from the alignment of Hi-C reads to the assembly. (C) The assembly graph
obtained from the assembler. (D) A hybrid scaffold graph constructed from the links
obtained from the Hi-C read alignments and the overlap graph. Solid edges indicate the
linkages between different unitigs and dotted edges indicate the links between the ends
of the same unitig. (E) Maximal matching obtained from the graph using a greedy
weighted maximum matching algorithm. (F) Edges between the ends of same unitigs
are added back to the matching.

Figure 1(A) shows the overview of the SALSA2 pipeline. SALSA2 begins with a 64

draft assembly generated from long reads such as Pacific Biosciences [23] or Oxford 65

Nanopore [24]. SALSA2 requires the unitig sequences and, optionally, a GFA-formatted 66

assembly graph [25] representing the ambiguous reconstructions. Hi-C reads are aligned 67

to the unitig sequences, and unitigs are optionally split in regions lacking Hi-C coverage. 68

A hybrid scaffold graph is constructed using both ambiguous edges from the GFA and 69

edges from the Hi-C reads, scoring edges according to a ”best buddy” scheme. Scaffolds 70

are iteratively constructed from this graph using a greedy weighted maximum matching. 71

A mis-join detection step is performed after each iteration to check if any of the joins 72

made during this round are incorrect. Incorrect joins are broken and the edges 73

blacklisted during subsequent iterations. This process continues until the majority of 74

joins made in the prior iteration are incorrect. This provides a natural stopping 75

condition, when accurate Hi-C links have been exhausted. Below, we describe each of 76

the steps in detail. 77
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1.1 Hi-C library preparation 78

Hi-C methods first crosslink a sample (cells or tissues) to preserve the genome 79

conformation. The crosslinked DNA is then digested using restriction enzymes (in this 80

case GATC and GANTC). The single-stranded 5’-overhangs are then filled in causing 81

digested ends to be labeled with a biotinylated nucleotide. Next, spatially proximal 82

digested ends of DNA are ligated, preserving both short- and long-range DNA 83

contiguity. The DNA is then purified and sheared to a size appropriate for Illumina 84

short-read sequencing. After shearing, the biotinylated fragments are enriched to assure 85

that only fragments originating from ligation events are sequenced in paired-end mode 86

via Illumina sequencers to inform DNA contiguity. 87

1.2 Read alignment 88

Hi-C paired end reads are aligned to unitigs using the BWA aligner [26](parameters: -t 89

12 -B 8) as single end reads. First, the reads mapping at multiple locations are ignored 90

as they can cause ambiguities while scaffolding. Reads which align across ligation 91

junctions are chimeric and are trimmed to retain only the start of the read which aligns 92

prior to the ligation junction. After filtering the chimeric reads, the pairing information 93

is restored. Any PCR duplicates in the paired-end alignments are removed using Picard 94

tools [27]. Read pairs aligned to different unitigs are used to construct the initial 95

scaffold graph. The suggested mapping pipeline is available at 96

http://github.com/ArimaGenomics/mapping pipeline. 97

1.3 Unitig correction 98

As any assembly is likely to contain mis-assembled sequences, SALSA2 uses the physical 99

coverage of Hi-C pairs to identify suspicious regions and break the sequence at the likely 100

point of mis-assembly. We define the physical coverage of a Hi-C read pair as the region 101

on the unitig spanned by the start of the leftmost fragment and the end of the 102

rightmost fragment. A drop in physical coverage indicates a likely assembly error. In 103

SALSA1, unitigs are split when a fixed minimum coverage threshold is not met. A 104

drawback of this approach is that coverage can vary, both due to sequencing depth and 105

variation in Hi-C link density. 106

Figure 2 sketches the new unitig correction algorithm implemented in SALSA2. 107

Instead of the single coverage threshold used in SALSA1, a set of suspicious intervals is 108

found with a sweep of thresholds. For different thresholds for low coverage cutoffs, we 109

find the continuous stretches of regions which have lower physical coverage than the 110

cutoff under consideration. We find such intervals of continuous low coverage for 111

different cutoffs. Using the collection of intervals as an interval graph, we find the 112

maximal clique. This maximal clique represents the region of the unitig which had low 113

coverage for all the cutoffs. This can be done in O(NlogN) time, where N is the 114

number of intervals. For a maximal clique, the region between the start and end of the 115

smallest interval in the clique is flagged as a mis-assembly and the unitig is split into 116

three pieces — the sequence to the left of the region, the junction region itself, and the 117

sequence to the right of the region. The intuition behind choosing the smallest interval 118

is to accurately pinpoint the location of assembly error. 119

1.4 Assembly graph construction 120

For our experiments, we use the unitig assembly graph produced by Canu [28] 121

(Figure 1(C)), as this is the more conservative graph output. SALSA2 requires only a 122

GFA format [25] representation of the assembly. Since most long read genome 123
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C
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Fig 2. Example of the mis-assembly detection algorithm in SALSA2. The plot shows
the position on x-axis and the physical coverage on the y-axis. The dotted horizontal
lines show the different thresholds tested to find low physical coverage intervals. The
lines at the bottom show the suspicious intervals identified by the algorithm. The
dotted line through the intervals shows the maximal clique. The smallest interval
(purple) in the clique is identified as mis-assembly and the unitig is broken in three
parts at its boundaries.

assemblers such as FALCON [29], miniasm [25], Canu [28], and Flye [30] provide 124

assembly graphs in GFA format, their output is compatible with SALSA2 for 125

scaffolding. 126

1.5 Scaffold graph construction 127

The scaffold graph is defined as G(V,E), where nodes V are the ends of unitigs and 128

edges E are derived from the Hi-C read mapping (Figure 1B). The idea of using unitig 129

ends as nodes is similar to that used by the string graph formulation [4]. 130

Modeling each unitig as two nodes allows a pair of unitigs to have multiple edges in 131

any of the four possible orientations (forward-forward, forward-reverse, reverse-forward, 132

and reverse-reverse). The graph then contains two edge types — one explicitly connects 133

two different unitigs based on Hi-C data, while the other implicitly connects the two 134

ends of the same unitig. 135

As in SALSA1, we normalize the Hi-C read counts by the frequency of restriction
enzyme cut sites in each unitig. This normalization reduces the bias in the number of
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shared read pairs due to the unitig length as the number of Hi-C reads sequenced from
a particular region are proportional to the number of restriction enzyme cut sites in
that region. For each unitig, we denote the number of times a cut site appears as C(V ).
We define edges weights of G as:

W (u, v) =
N(u, v)

C(u) + C(v)

where N(u, v) is the number of Hi-C read pairs mapped to the ends of the unitigs u and 136

v. 137

We observed that the globally highest edge weight does not always capture the 138

correct orientation and ordering information due to variations in Hi-C interaction 139

frequencies within a genome. To address this, we defined a modified edge ratio, similar 140

to the one described in [20], which captures the relative weights of all the neighboring 141

edges for a particular node. 142

The best buddy weight BB(u, v) is the weight W (u, v) divided by the maximal 143

weight of any edge incident upon nodes u or v, excluding the (u, v) edge itself. 144

Computing best buddy weight naively would take O(|E|2) time. This is 145

computationally prohibitive since the graph, G, is usually dense. If the maximum 146

weighted edge incident on each node is stored with the node, the running time for the 147

computation becomes O(|E|). We retain only edges where BB(u, v) > 1. This keeps 148

only the edges which are the best incident edge on both u and v. Once used, the edges 149

are removed from subsequent iterations. Thus, the most confident edges are used first 150

but initially low scoring edges can become best in subsequent iterations. 151

For the assembly graph, we define a similar ratio. Since the edge weights are optional 152

in the GFA specification and do not directly relate to the proximity of two unitigs on 153

the chromosome, we use the graph topology to establish this relationship. Let ū denote 154

the reverse complement of the unitig u. Let σ(u, v) denote the length of shortest path 155

between u and v. For each edge (u, v) in the scaffold graph, we find the shortest path 156

between unitigs u and v in every possible orientation, that is, σ(u, v), σ(u, v̄), σ(ū, v) 157

and σ(ū, v̄). With this, the score for a pair of unitigs is defined as follows: 158

Score(u, v) =

min
x′∈{u,ū}−{x},y′∈{v,v̄}−{y}

σ(x′, y′)

min
x∈{u,ū},y∈{v,v̄}

σ(x, y)

where x and y are the orientations in which u and v are connected by a shortest path in 159

the assembly graph. Essentially, Score(u, v) is the ratio of the length of the second 160

shortest path to the length of the shortest path in all possible orientations. Once again, 161

we retain edges where Score(u, v) > 1. If the orientation implied by the assembly graph 162

differs from the orientation implied by the Hi-C data, we remove the Hi-C edge and 163

retain the assembly graph edge (Figure 1D). Computing the score graph requires |E| 164

shortest path queries, yielding total runtime of O(|E| ∗ (|V |+ |E|)) since we do not use 165

the edge weights. 166

1.6 Unitig layout 167

Once we have the hybrid graph, we lay out the unitigs to generate scaffolds. Since there 168

are implicit edges in the graph G between the beginning and end of each unitig, the 169

problem of computing a scaffold layout can be modeled as finding a weighted maximum 170

matching in a general graph, with edge weights being our ratio weights. If we find the 171

weighted maximum matching of the non-implicit edges (that is, edges between different 172

unitigs) in the graph, adding the implicit edges to this matching would yield a complete 173

traversal. However, adding implicit edges to the matching can introduce a cycle. Such 174
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cycles are prevented by removing the lowest weight non-implicit edge. Computing a 175

maximal matching takes O(|E||V |2) time [31]. We iteratively find a maximum matching 176

in the graph by removing nodes found in the previous iteration. Using the optimal 177

maximum matching algorithm this would take O(|E||V |3) time, which would be 178

extremely slow for large graphs. Instead, we use a greedy maximal matching algorithm 179

which is guaranteed to find a matching within 1/2-approximation of the optimum [32]. 180

The greedy matching algorithm takes O(|E|) time, thereby making the total runtime 181

O(|V ||E|). The algorithm for unitig layout is sketched in Algorithm 1. Figure 1(D - F) 182

show the layout on an example graph. Contigs which were not scaffolded are inserted in 183

the large scaffolds with the method used in SALSA1. 184

Algorithm 1 Unitig Layout Algorithm

E : Edges sorted by the best buddy weight
M : Set to store maximal matchings
G : The scaffold graph
while all nodes in G are not matched do
M∗ = {}
for e ∈ E sorted by best buddy weights do

if e can be added to M∗ then
M∗ = M∗ ∪ e

end if
end for
M = M ∪M∗
Remove nodes and edges which are part of M∗ from G

end while

1.7 Iterative mis-join correction 185

Since the unitig layout is greedy, it can introduce errors by selecting a false Hi-C link 186

which was not eliminated by our ratio scoring. These errors propagate downstream, 187

causing large chimeric scaffolds and chromosomal fusions. We examine each join made 188

within all the scaffolds in the last iteration for correctness. Any join with low spanning 189

Hi-C support relative to the rest of the scaffold is broken and the links are blacklisted 190

for further iterations. 191

We compute the physical coverage spanned by all read pairs aligned in a window of 192

size w around each join. For each window, w, we create an auxiliary array, which stores 193

−1 at position i if the physical coverage is greater than some cutoff δ and 1, otherwise. 194

We then find the maximum sum subarray in this auxiliary array, since it captures the 195

longest stretch of low physical coverage. If the position being tested for a mis-join lies 196

within the region spanned by the maximal clique generated with the maximum sum 197

subarray intervals for different cutoffs (Figure 2), the join is marked as incorrect. The 198

physical coverage can be computed in O(w +N) time, where N is the number of read 199

pairs aligned in window w. The maximum sum subarray computation takes O(w) time. 200

If K is the number of cutoffs(δ) tested for the suspicious join finding, then the total 201

runtime of mis-assembly detection becomes O(K(N + 2 ∗ w)). The parameter K 202

controls the specificity of the mis-assembly detection, thereby avoiding false positives. 203

The algorithm for mis-join detection is sketched in Algorithm 2. When the majority of 204

joins made in a particular iteration are flagged as incorrect by the algorithm, SASLA2 205

stops scaffolding and reports the scaffolds generated in the penultimate iteration as the 206

final result. 207
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Algorithm 2 Misjoin detection and correction algorithm

Cov : Physical coverage array for a window size w around a scaffold join at position p
on a scaffold
A : Auxiliary array
I : Maximum sum subarray intervals
for δ ∈ {min coverage, max coverage} do
if Cov[i] ≤ δ then
A[i] = 1

else
A[i] = −1

end if
sδ, eδ = maximum sum subarray(A)
I = I ∪ {sδ, eδ}

end for
s, e =maximal clique interval(I)
if p ∈ {s, e} then

Break the scaffold at position p
end if

2 Results 208

2.1 Dataset description 209

We created artificial assemblies, each containing unitigs of same size, by splitting the 210

GRCh38 [33] reference into fixed sized unitigs of 200 to 900 kbp. This gave us eight 211

assemblies. The assembly graph for each input is built by adding edges for any adjacent 212

unitigs in the genome. 213

For real data, we use the recently published NA12878 human dataset sequenced with 214

Oxford Nanopore [34] and assembled with Canu [28]. We use a Hi-C library from Arima 215

Genomics (Arima Genomics, San Diego, CA) sequenced to 40x Illumina coverage 216

(SRX3651893). We compare results with the original SALSA(commit - 833fb11), 217

SALSA2 with and without the assembly graph input(commit - 68a65b4), and 3D-DNA 218

(commit - 3f18163). We did not compare our results with LACHESIS because it is no 219

longer supported and is outperformed by 3D-DNA [20]. SALSA2 was run using default 220

parameters, with the exception of graph incorporation, as listed. For 3D-DNA, 221

alignments were generated using the Juicer alignment pipeline [35] with defaults (-m 222

haploid -t 15000 -s 2), except for mis-assembly detection, as listed. A genome size of 3.2 223

Gbp was used for contiguity statistics for all assemblies. 224

For evaluation, we also used the GRCh38 reference to define a set of true and false 225

links from the Hi-C graph. We mapped the assembly to the reference with 226

MUMmer3.23 (nucmer -c 500 -l 20) [36] and generated a tiling using MUMmer’s 227

show-tiling utility. For this ”true link” dataset, any link joining unitigs in the same 228

chromosome in the correct orientation was marked as true. This also gives the true 229

unitig position, orientation, and chromosome assignment. We masked sequences in 230

GRCh38 which matched known structural variants from a previous assembly of 231

NA12878 [37] to avoid counting true variations as scaffolding errors. 232
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Fig 3. Comparison of orientation, ordering, and chimeric errors in the scaffolds
produced by SALSA2 and 3D-DNA on the simulated data. As expected, the number of
errors for all error types decrease with increasing input unitig size. Incorporating the
assembly graph reduces error across all categories and most assembly sizes, with the
largest decrease seen in orientation errors. SALSA2 utilizing the graph has 2-4 fold
fewer errors than 3D-DNA.

2.2 Evaluation on simulated unitigs 233

2.2.1 Assembly correction 234

We simulated assembly error by randomly joining 200 pairs of unitigs from each 235

simulated assembly. All erroneous joins were made between unitigs that are more than 236

10 Mbp apart or were assigned to different chromosomes in the reference. The 237

remaining unitigs were unaltered. We then aligned the Arima-HiC data and ran our 238

assembly correction algorithm. When the algorithm marked a mis-join within 20 kbp of 239

a true error we called it a true positive, otherwise we called it a false positive. Any 240

unmarked error was called a false negative. The average sensitivity over all simulated 241

assemblies was 77.62% and the specificity was 86.13%. The sensitivity was highest for 242

larger unitigs (50% for 200 kbp versus more than 90% for untigs greater than 500 kbp, 243

Supplementary Table S1) implying that our algorithm is able to accurately identify 244

errors in large unitigs, which can have a negative impact on the final scaffolds if not 245

corrected. Although we used a cutoff of 20 kbp to evaluate sensitivity and specificity, 246

most of the predicted locations of misassembly were within 5 kbp from the true 247

misassembly location (Supplementary Figure S2). 248

2.2.2 Scaffold mis-join validation 249

As before, we simulated erroneous scaffolds by joining unitigs which were not within 10 250

Mbp in the reference or were assigned to different chromosomes. Rather than pairs of 251

unitigs, each erroneous scaffold joined 10 unitigs and we generated 200 such erroneous 252

scaffolds. The remaining unitigs were correctly scaffolded (ten unitigs per scaffold) 253

based on their location in the reference. The average sensitivity was 67.66% and 254

specificity was 100% (Supplementary Table S2)(no correct scaffolds were broken). Most 255

of the un-flagged joins occurred near the ends of scaffolds and could be captured by 256

decreasing the window size. Similar to assembly correction, we observed that sensitivity 257

was highest with larger input unitigs. Most of the misjoins missed by the algorithm 258

were near the ends of scaffolds. The issue in detecting mis-assemblies in these regions is 259

the low Hi-C physical coverage. Also, the other missed joins were between the small 260

contigs which are hard to capture with Hi-C data alone. This evaluation highlights the 261

accuracy of the mis-join detection algorithm to avoid over-scaffolding and provide a 262
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Fig 4. (A) NGA50 statistic for different input unitig sizes and (B) The length of
longest error-free block for different input unitig sizes. Once again, the assembly graph
typically increases both the NGA50 and the largest correct block.

suitable stopping condition. 263

2.2.3 Scaffold accuracy 264

We evaluated scaffolds across three categories of error: orientation, order, and chimera. 265

An orientation error occurs whenever the orientation of a unitig in a scaffold differs 266

from that of the scaffold in the reference. An ordering error occurs when a set of three 267

unitigs adjacent in a scaffold have non-monotonic coordinates in the reference. A 268

chimera error occurs when any pair of unitigs adjacent in a scaffold align to different 269

chromosomes in the reference. We broke the assembly at these errors and computed 270

corrected scaffold lengths and NGA50 (analogous to the corrected NG50 metric defined 271

by Salzberg et al. [38]). This statistic corrects for large but erroneous scaffolds which 272

have an artificially high NG50. We did not include SALSA1 in the comparison because 273

for small contig sizes (200 kbp to 500 kbp), none of the scaffolds contained more than 2 274

contigs. For larger sizes (600 kbp to 900 kbp), the contiguity widely varied depending 275

upon the minimum confidence parameter for accepting links between contigs. 276

Hi-C scaffolding errors, particularly orientation errors, increased with decreasing 277

assembly contiguity. We evaluated scaffolding methods across a variety of simulated 278

unitig sizes. Figure 3 shows the comparison of these errors for 3D-DNA, SALSA2 279

without the assembly graph, and SALSA2 with the graph. SALSA2 produced fewer 280

errors than 3D-DNA across all error types and input sizes. The number of correctly 281

oriented unitigs increased significantly when assembly graph information was integrated 282

with the scaffolding, particularly for lower input unitig sizes (Figure 3). For example, at 283

400 kbp, the orientation errors with the graph were comparable to the orientation errors 284

of the graph-less approach at 900 kbp. The NGA50 for SALSA2 also increased when 285

assembly graph information was included (Figure 4). This highlights the power of the 286

assembly graph to improve scaffolding and correct errors, especially on lower contiguity 287

assemblies. This also indicates that generating a conservative assembly, rather than 288

maximizing contiguity, can be preferable for input to Hi-C scaffolding. All the 289

assemblies described in this paper are available online and can be found at 290

https://obj.umiacs.umd.edu/paper_assemblies/index.html. 291
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2.3 Evaluation on NA12878 292

Dataset Method NG50(Mbp) NGA50(Mbp) Longest Chunk (Mbp) Orientation Errors Ordering Errors Chimeric Errors
Arima-HiC SALSA2 true links 83.31 79.48 172.19 78 101 0

SALSA2 w graph 112.08 71.54 164.46 102 106 90
SALSA2 wo graph 118.42 58.81 155.68 148 112 135

3D-DNA 90.15 22.44 89.46 182 133 115
SALSA1 19.09 14.81 73.14 99 176 96

Mitotic Hi-C SALSA2 w graph 61.97 24.18 145.53 81 54 19
SALSA1 27.88 15.62 85.71 142 78 120

3D-DNA w correction 0.199 0.627 2.24 9775 10563 6159
3D-DNA wo correction 85.56 17.18 70.18 250 215 164

Chicago SALSA2 w graph 5.80 4.54 34.60 46 60 98
SALSA1 5.21 3.94 34.60 83 21 187

3D-DNA w correction 3.63 2.74 18.62 63 69 324
3D-DNA wo correction 9.61 4.76 44.48 67 63 137

Illumina Assembly SALSA2 w graph 96.78 7.99 43.56 1830 2299 635
SALSA2 wo graph 119.57 4.16 26.22 2225 2353 738

3D-DNA w correction NA NA NA NA NA NA
3D-DNA wo correction 176.09 1.00 13.12 5935 3433 2119

Table 1. Scaffold and correctness statistics for NA12878 assemblies scaffolded with
different Hi-C libraries. ”True links” is an idealized case where the Hi-C links have been
filtered in advance. The NG50 of human reference GRCh38 is 145 Mbp. The ratio
between NG50 and NGA50 represents how many erroneous joins affect large scaffolds in
the assembly. The bigger the difference between these values, the more aggressive the
scaffolding was at the expense of accuracy. Longest chunk represents the longest
error-free portion of the scaffolds. We observed that the 3D-DNA mis-assembly
detection was overly aggressive in some cases, and so we ran some assemblies both with
and without this feature. For the Illumina assembly as an input, 3D-DNA w correction
did not finish within two weeks and is omitted. An evaluation of a previously
published [20] 3D-DNA assembly from short-read contigs is included in Supplementary
Table S3 but did not exceed SALSA2’s NGA50.

(A) (B) (C)

Fig 5. Feature Response Curve for (A) assemblies obtained from unitigs as input (B)
assemblies obtained from mitotic Hi-C data and (C) assemblies obtained using Dovetail
Chicago data. The best assemblies lie near the top left of the plot, with the largest area
under the curve.

Table 1 lists the metrics for NA12878 scaffolds. We include an idealized scenario, 293

using only reference-filtered Hi-C edges for comparison. As expected, the scaffolds 294

generated using only true links had the highest NGA50 value and longest error-free 295

scaffold block. SALSA2 scaffolds were generally more accurate and contiguous than the 296

scaffolds generated by SALSA1 and 3D-DNA, even without use of the assembly graph. 297

The addition of the graph further improved the NGA50 and longest error-free scaffold 298

length. 299

We also evaluated the assemblies using Feature Response Curves (FRC) based on 300

scaffolding errors [40]. An assembly can have a high raw error count but still be of high 301

quality if the errors are restricted to only short scaffolds. FRC captures this by showing 302

how quickly error is accumulated, starting from the largest scaffolds. Figure 5(D) shows 303

the FRC for different assemblies, where the X-axis denotes the cumulative % of 304

assembly errors and the Y-axis denotes the cumulative assembly size. The assemblies 305
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Fig 6. Contiguity plot for scaffolds generated with (A) standard Arima-HiC data (B)
mitotic Hi-C data and (C) Chicago data. The X-axis denotes the NGAX statistic and
the Y-axis denotes the corrected block length to reach the NGAX value. SALSA2
results were generated using the assembly graph, unless otherwise noted.

1   2   3      4   5       6   7  8   9 10 1112
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Fig 7. Chromosome ideogram generated using the coloredChromosomes [39] package.
Each color switch denotes a change in the aligned sequence, either due to large
structural error or the end of a unitig/scaffold. Left: input unitigs aligned to the
GRCh38 reference genome. Right: SALSA2 scaffolds aligned to the GRCh38 reference
genome. More than ten chromosomes are in a single scaffold. Chromosomes 16 and 19
are more fragmented due to scaffolding errors which break the alignment.

with more area under the curve accumulate fewer errors in larger scaffolds and hence 306

are more accurate. SALSA2 scaffolds with and without the graph have similar areas 307

under the curve and closely match the curve of the assembly using only true links. The 308

3D-DNA scaffolds have the lowest area under the curve, implying that most errors in 309

the assembly occur in the long scaffolds. This is confirmed by the lower NGA50 value 310

for the 3D-DNA assembly (Table 1). 311

Apart from the correctness, SALSA2 scaffolds were highly contiguous and reached 312

an NG50 of 112.8 Mbp (cf. GRCh38 NG50 of 145 Mbp). Figure 7 shows the alignment 313

ideogram for the input unitigs as well as the SALSA2 assembly. Every color change 314

indicates an alignment break, either due to error or due to the end of a sequence. The 315

input unitigs are fragmented with multiple unitigs aligning to the same chromosome, 316
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while the SALSA2 scaffolds are highly contiguous and span entire chromosomes in many 317

cases. Figure 6(A) shows the contiguity plot with corrected NG stats. As expected, the 318

assembly generated with only true links has the highest values for all NGA stats. The 319

curve for SALSA2 assemblies with and without the assembly graph closely matches this 320

curve, implying that the scaffolds generated with SALSA2 are approaching the optimal 321

assembly of this Arima-HiC data. 322

We also evaluated the ability of scaffolding short read assemblies for both 3D-DNA 323

and SALSA2. We did not include SALSA1 in this comparison because it is not designed 324

to scaffold short read assemblies. We observed that use of the assembly graph when 325

scaffolding significantly reduced the number of orientation errors for SALSA2, increasing 326

the scaffold NGA50 and largest chunk almost two-fold. When compared to 3D-DNA 327

without input assembly correction, SALSA2 with the assembly graph generates scaffolds 328

of much higher NGA50 (7.99 Mbp vs. 1.00 Mbp). The number of scaffolding errors 329

across all the categories was much lower in SALSA2 compared to 3D-DNA. 330

We computed the CPU runtime and memory usage for both the methods while 331

scaffolding long and short read assemblies with Arima-HiC data. We excluded the time 332

required to map reads in both cases. While scaffolding the long-read assembly SALSA2 333

was 30-fold faster and required 3-fold less memory than 3D-DNA (11.44 CPU hours and 334

21.43 Gb peak memory versus 3D-DNA with assembly correction at 318 CPU hours and 335

64.66 Gb peak memory). For the short-read assembly, the difference in runtime was 336

even more prounced. SALSA2 required 36.8 CPU hours and 61.8 Gb peak memory 337

compared to 2980 CPU hours and 48.04 Gb peak memory needed by 3D-DNA without 338

assembly correction. When run with assembly correction, 3D-DNA ran over 14 days on 339

a 16-core machine without completing so we could not report any results. 340

2.4 Robustness to input library 341

(A) (B) (C)

Fig 8. Contact map of Hi-C interactions on Chromosome 3 generated by the Juicebox
software [41]. The cells sequenced in (A) normal conditions, (B) during mitosis, and (C)
Dovetail Chicago

We next tested scaffolding using two libraries with different Hi-C contact patterns. 342

The first, from [42], is sequenced during mitosis. This removes the topological domains 343

and generates fewer off-diagonal interactions. The other library was from [43], are in 344

vitro chromatin sequencing library (Chicago) generated by Dovetail Genomics (L1). It 345

also removes off-diagonal matches but has shorter-range interactions, limited by the size 346

of the input molecules. As seen from the contact map in Figure 8, both the mitotic 347

Hi-C and Chicago libraries follow different interaction distributions than the standard 348

Hi-C (Arima-HiC in this case). We ran SALSA2 with defaults and 3D-DNA with both 349
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the assembly correction turned on and off. 350

For mitotic Hi-C data, we observed that the 3D-DNA mis-assembly correction 351

algorithm sheared the input assembly into small pieces, which resulted in more than 352

25,000 errors and more than half of the unitigs incorrectly oriented or ordered. Without 353

mis-assembly correction, the 3D-DNA assembly has a higher number of orientation (250 354

vs. 81) and ordering (215 vs. 54) errors compared to SALSA2. The feature response 355

curve for the 3D-DNA assembly with breaking is almost a diagonal (Figure 5(B)) 356

because the sheared unitigs appeared to be randomly joined. SALSA2 scaffolds contain 357

longer stretches of correct scaffolds compared to 3D-DNA with and without 358

mis-assembly correction (Figure 6(B)). SALSA1 scaffolds had a similar error count to 359

SALSA2 but were less contiguous. 360

For the Chicago libraries, 3D-DNA without correction had the best NGA50 and 361

largest correct chunk. However, the scaffolds had more chimeric join errors than 362

SALSA2. SALSA2 outperformed 3D-DNA in terms of NG50, NGA50, and longest 363

chunk when 3D-DNA was run with assembly correction. 3D-DNA uses signatures of 364

chromosome ends [20] to identify break positions which are not prominently present in 365

Chicago data. As a result, it generated more chimeric joins compared to SALSA2. 366

However, the number of order and orientation errors was similar across the methods. 367

Since Chicago libraries do not provide chromosome-spanning contact information for 368

scaffolding, the NG50 value for SALSA2 is 5.8 Mbp, comparable to the equivalent 369

coverage assembly (50% L1+L2) in [43] but much smaller than Hi-C libraries. 370

Interestingly, SALSA1 was able to generate scaffolds of similar contiguity to SALSA2, 371

which can be attributed to the lack of long range contact information in the library. 372

SALSA2 is robust to changing contact distributions. In the case of Chicago data it 373

produced a less contiguous assembly due to the shorter interaction distance. However, it 374

avoids introducing false chromosome joins, unlike 3D-DNA, which appears tuned for a 375

specific contact model. 376

3 Conclusion 377

In this work, we present the first Hi-C scaffolding method that integrates an assembly 378

graph to produce high-accuracy, chromosome-scale assemblies. Our experiments on both 379

simulated and real sequencing data for the human genome demonstrate the benefits of 380

using an assembly graph to guide scaffolding. We also show that SALSA2 outperforms 381

alternative Hi-C scaffolding tools on assemblies of varied contiguity, using multiple Hi-C 382

library preparations. 383

SALSA2’s misassembly correction and scaffold misjoin validation can be improved in 384

several ways. The current implementation doesn’t detect a misjoin between two small 385

contigs with high accuracy, mainly because Hi-C data doesn’t have enough resolution to 386

correct such errors. Also, we don’t account for any GC bias correction when using the 387

Hi-C coverage for detecting misjoins. Addressing these challenges in misjoin detection 388

and misassembly correction is the immediate next step to improve the SALSA2 software. 389

Hi-C scaffolding has been historically prone to inversion errors when the input 390

assembly is highly fragmented. The integration of the assembly graph with the 391

scaffolding process can overcome this limitation. Orientation errors introduced in the 392

assembly and scaffolding process can lead to incorrect identification of structural 393

variations. On simulated data, more than 50% of errors were due to inversions, and 394

integrating the assembly graph reduced these by as much as 3 to 4 fold. We did not 395

observe as much improvement with the NA12878 test dataset because the contig NG50 396

was much higher than in the simulation. However, it is not always possible to assemble 397

multi-megabase contigs. In such cases, the assembly graph is useful for limiting Hi-C 398

errors. 399
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Most existing Hi-C scaffolding methods also require an estimate for the number of 400

chromosomes for a genome. This is implicitly taken to be the desired number of scaffolds 401

to output. As demonstrated by the Chicago, mitotic, and replicate [44] Hi-C libraries, 402

the library as well as the genome influences the maximum correct scaffold size. It can 403

be impractical to sweep over hundreds of chromosome values to select a “best” assembly. 404

Since SALSA2’s mis-join correction algorithm stops scaffolding after the useful linking 405

information in a dataset is exhausted, no chromosome count is needed as input. 406

Obtaining the chromosome-scale picture of the genome is important and there is a 407

trade-off between accuracy and continuity of the assembly. However, we believe that 408

manual curation to remove assembly errors is an expensive and involved process which 409

can often outpace the cost of the rest of the project. Most of the assembly projects 410

using Hi-C data have had a significant curation effort to date [19,45]. Thus, we believe 411

that not introducing errors in the first place is a better strategy to avoid the later 412

burden of manual curation of small errors in chromosomes. The Hi-C data can be used 413

with other independent technologies, such as optical mapping or linked-reads to reach 414

accurate chromosome-scale scaffolds. 3D-DNA was recently updated to not require the 415

chromosome count as input but the algorithm used has not been described. 416

Interestingly, it no longer generates single chromosome scaffolds in our experiments, a 417

major claim in [20], supporting a conservative scaffolding approach. Even while 418

scaffolding short-read assemblies, we observed that SALSA2 generated more accurate 419

scaffolds than 3D-DNA, indicating the utility of SALSA2 in scaffolding existing 420

short-read assemblies of different genomes with the newly generated Hi-C data. 421

As the Genome10K consortium [46] and independent scientists begin to sequence 422

novel lineages in the tree of life, it may be impractical to generate physical or genetics 423

maps for every organism. Thus, Hi-C sequencing combined with SALSA2 presents an 424

economical alternative for the reconstruction of chromosome-scale assemblies 425
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